
Towards an Efficient Weighted Random
Walk Domination

Songsong Mo, Zhifeng Bao, Ping Zhang, Zhiyong Peng

1

2

Outline

 Problem Definition

 Applications

 Solutions

 Experiments

3

Problem Definition: Weighted Random Walk Model

Probability-aware Random Walk Model
(PR)

Edge weight

the probability that a node chooses
or affects its neighbors

Cost-aware Random Walk Model
(CR)

Edge weight

the cost of moving a node
to its neighbors

4

Problem Definition

The expected cost for u to hit S via weighted random walk:

is used to denote the value of bounded by budget B.

Weighted Random Walk Domination (WRWD)

• Input: Weighted graph G(V,E); Budget B.

• Output: A k-size set S ⊆ V that can maximize the budget B to
be saved:

Monotonicity & Submodularity

5

Outline

 Problem Definition

 Applications

 Solutions

 Experiments

6

Applications

Social Browsing
��

��

��

��
��

��

�	

Page Browsing Process

Probability-aware Random Walk
(length ≤ budget B)

how to select pages in the network so that
other users can easily browse these pages?

7

Base Station Selection

Data Transmission

Cost-aware Random Walk
(energy cost ≤ budget B)

How to choose a node set as base
stations to minimize the energy cost?

2

1

1

1 1

3

v1

v2

v3

v4 v5

v6

v7

Room 2

Room 1

Room 4

Room 5 Room 7

Room 6Room 3

5 sensors 2 base stations

Applications

8

Outline

 Problem Definition

 Applications

 Solutions

 Experiments

9

Solutions: An Overview

Algorithm

DpSel

MatrixSel

Guarantee Time Complexity

1 − 1/

O(δkBn2m)

O(δkBnm)

BoundSel O(δkBnm)

Guarantee

1 − 1/

Time Complexity

O(kBn2m)

O(kBnm)

O(kBnm)

Apply to C-WRWDApply to P-WRWD

P-WRWD: the WRWD over PR C-WRWD: the WRWD over CR δ: the average of the edge weight

10

Solutions: A Greedy Framework

K iterations: select the node
with the largest marginal gain

approximation ratio: 1-1/e

Challenge : how to compute effectively

• Dynamic programming

• Matrix-based solution

Strategy :

11

Solutions : DpSel

Dynamic-programming-based selection (DpSel)

Recursive manner:

Time Complexity

Calculate marginal gain one time Call DP O(n) time Time Complexity O(Bnm)

Each iteration: select the node with the largest marginal gain Time Complexity O(Bn2m)

K iterations Time Complexity O(kBn2m)
Too slow

12

Solutions : MatrixSel

Core idea : Calculate of all nodes at the same time by the matrix

Trapped Model

Any walk steps after S is visited will have no effect on

Transition matrix P

reconstruction

represents the sub-transition matrix corresponding to

13

Solutions : MatrixSel

The bridge between and

Observation: The length of random walk equals to ,
where Y(v) denotes the frequency of reaching v

Lemma: The sum of the u-th row of is equal to

Computing to get of all nodes

14

Solutions : MatrixSel

Computing

Computing Matrix multiplication needs at least O(n2.37) time

How to avoid calculating and get directly and quickly?

Matrix multiplication vector

Iterative calculation

Time Complexity
Computing Time Complexity O(Bm)

Select the node with the largest marginal gain

K iterations Time Complexity O(kBnm)

Computing O(n) time

How to avoid calculating the marginal gain of all nodes?

B iterations

15

Solutions : BoundSel

Core idea
Submodularity Pruning, if marginal gain of round i ≤ upper bound of the marginal gain of round i-1

Round

2

Round

3

Round

1

Accelerate success

Unable to prune,
Seriously affect
efficiency

How to estimate the upper bound of the first-round marginal gain of nodes?

Lemma: first-round marginal gain of node v

: the expected number of nodes that can reach v at step t

: the minimal integer that satisfies

16

Solutions : Apply our solutions to C-WRWD

��

���	 ��

��

��

��

1

3

2

1

1

1

��

���	 ��

��

��

��

An edge-weighted graph An unweighted graph

The expected hitting step from u to S in an unweighted graph is

equal to the expected hitting cost in an edge-weighted graph.

17

Outline

 Problem Definition

 Applications

 Solutions

 Experiments

18

Experiments: Datasets

• n: node number

• m: edge number

• maxD: maximal degree

• avgD: average degree

Experiments: Algorithms

 TopK: selects the top-k nodes in term of degree as the seeds

 DpSel: a dynamic programming based greedy method

 MatrixSel: a matrix-based greedy method

 BoundSel: a bound-based greedy method

 SamSel: a sampling-based method proposed in [1]

 PageRankSel: chooses the top-k nodes in terms of the pagerank value

[1] Rong-Hua Li, et. al. 2014. Random-walk domination in large graphs. In ICDE. IEEE, 736–747. 19

Experiments: Efficiency

Running time vs. k Running time vs. B

1
0

-4
1

0
-3

1
0

-2
1
0

-1
1
0

0
1
0

1

 2 4 6 8 10

T
im

e
 (

s
)

k

1
0

-4
1

0
-3

1
0

-2
1
0

-1
1
0

0
1
0

1

 2 4 6 8 10

T
im

e
 (

s
)

B

TopK DpSel SamSel BoundSel MatrixSel PageRankSel

20

Efficiency of solutions over PR

Experiments: Efficiency

Running time vs. k Running time vs. B

TopK DpSel SamSel BoundSel MatrixSel PageRankSel

21

Efficiency of solutions over CR

1
0

-4
1

0
-2

1
0

0
1
0

2

 2 4 6 8 10

T
im

e
 (

s
)

k

1
0

-4
1
0

-2
1
0

0
1
0

2

 2 4 6 8 10

T
im

e
 (

s
)

B

Experiments: Effectiveness

Gain vs. k Gain vs. B

22

Effectiveness of solutions over PR

 0
 1

 2
 3

2 4 6 8 10

G
a

in

k

TopK
SamSel

BoundSel
MatrixSel

DpSel
PageRankSel

 0
 1

.5
 3

 4
.5

2 4 6 8 10

G
a

in

B

TopK
SamSel

BoundSel
MatrixSel

DpSel
PageRankSel

Experiments: Effectiveness

Gain vs. k Gain vs. B

23

Effectiveness of solutions over CR

 0
 0

.2
 0

.4
 0

.6

2 4 6 8 10

G
a

in

B

TopK
SamSel

BoundSel
MatrixSel

DpSel

 0
 0

.1
 0

.2
 0

.3
 0

.4

2 4 6 8 10

G
a

in

k

TopK
SamSel

BoundSel
MatrixSel

DpSel

Experiments: Scalability

Memory vs. n Running time vs. n

1
0

2
1

0
3

1
0

4
1

0
5

 50 100 150 200 250

T
im

e
 (

s
)

n (*10
3
)

24

 0
 1

0
 2

0
 3

0
 4

0

 50 100 150 200 250

M
e
m

o
ry

 (
G

B
)

n (*10
3
)

Thanks!

