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Problem Definition: Weighted Random Walk Model

Probability-aware Random Walk Model
(PR)

Edge weight

the probability that a node chooses 
or affects its neighbors

Cost-aware Random Walk Model
(CR)

Edge weight

the cost of moving a node 
to its neighbors
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Problem Definition

The expected cost for u to hit S via weighted random walk:

is used to denote the value of bounded by budget B.

Weighted Random Walk Domination (WRWD)

• Input: Weighted graph G(V,E); Budget B.

• Output: A k-size set S ⊆ V that can maximize the budget B to
be saved:

Monotonicity & Submodularity
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Applications

Social Browsing
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Page Browsing Process

Probability-aware Random Walk
(length ≤ budget B)

how to select pages in the network so that 
other users can easily browse these pages?
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Base Station  Selection

Data Transmission

Cost-aware Random Walk
(energy cost ≤ budget B)

How to choose a node set as base 
stations to minimize the energy cost?
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Solutions: An Overview

Algorithm

DpSel

MatrixSel

Guarantee Time Complexity

1 − 1/

O(δkBn2m)

O(δkBnm)

BoundSel O(δkBnm)

Guarantee

1 − 1/

Time Complexity

O(kBn2m)

O(kBnm)

O(kBnm)

Apply to C-WRWDApply to P-WRWD

P-WRWD: the WRWD over PR C-WRWD: the WRWD over CR δ: the average of the edge weight
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Solutions: A Greedy Framework 

K iterations: select the node 
with the largest marginal gain

approximation ratio: 1-1/e

Challenge : how to compute effectively

• Dynamic programming

• Matrix-based solution

Strategy :
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Solutions : DpSel

Dynamic-programming-based selection (DpSel)

Recursive manner:

Time Complexity

Calculate marginal gain one time Call DP O(n) time Time Complexity O(Bnm)

Each iteration: select the node with the largest marginal gain Time Complexity O(Bn2m)

K iterations Time Complexity O(kBn2m)
Too slow
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Solutions : MatrixSel

Core idea : Calculate of all nodes at the same time by the matrix

Trapped Model

Any walk steps after S is visited will have no effect on 

Transition matrix P

reconstruction

represents the sub-transition matrix corresponding to
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Solutions : MatrixSel

The bridge between         and 

Observation: The length of random walk equals to , 
where Y(v) denotes the frequency of reaching v

Lemma: The sum of the u-th row of is equal to 

Computing to get         of all nodes  
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Solutions : MatrixSel

Computing 

Computing Matrix multiplication needs at least O(n2.37) time

How to avoid calculating         and get           directly and quickly?

Matrix multiplication vector

Iterative calculation

Time Complexity
Computing Time Complexity O(Bm)

Select the node with the largest marginal gain

K iterations Time Complexity O(kBnm)

Computing         O(n) time

How to avoid calculating the marginal gain of all nodes?

B iterations
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Solutions : BoundSel

Core idea
Submodularity Pruning, if marginal gain of round i ≤ upper bound of the marginal gain of round i-1

Round

2

Round

3

Round

1

Accelerate success

Unable to prune,
Seriously affect 
efficiency

How to estimate the upper bound of the first-round marginal gain of nodes?

Lemma: first-round marginal gain of node v

: the expected number of nodes that can reach v at step t

: the minimal integer that satisfies
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Solutions : Apply our solutions to C-WRWD
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An edge-weighted graph An unweighted graph

The expected hitting step from u to S in an unweighted graph is 

equal to the expected hitting cost in an edge-weighted graph.
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Experiments: Datasets

• n: node number

• m: edge number

• maxD: maximal degree

• avgD: average degree



Experiments: Algorithms

 TopK: selects the top-k nodes in term of degree as the seeds

 DpSel: a dynamic programming based greedy method

 MatrixSel: a matrix-based greedy method

 BoundSel: a bound-based greedy method

 SamSel: a sampling-based method proposed in [1]

 PageRankSel:  chooses the top-k nodes in terms of the pagerank value

[1] Rong-Hua Li, et. al. 2014. Random-walk domination in large graphs. In ICDE. IEEE, 736–747. 19



Experiments: Efficiency

Running time vs. k Running time vs. B
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Efficiency of solutions over PR



Experiments: Efficiency

Running time vs. k Running time vs. B

TopK DpSel SamSel BoundSel MatrixSel PageRankSel
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Efficiency of solutions over CR
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Experiments: Effectiveness

Gain vs. k Gain vs. B
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Effectiveness of solutions over PR
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Experiments: Effectiveness

Gain vs. k Gain vs. B
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Effectiveness of solutions over CR
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Experiments: Scalability

Memory vs. n Running time vs. n
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Thanks!


