RMIT Classification: Trusted

Minimizing the Regret of an Influence Provider

Yipeng Zhang, Yuchen Li, Zhifeng Bao, Baihua Zheng, H. V. Jagadish

RMIT

Out-Of-Home Advertising

Out-of-home advertising (OOH) is any visual advertising media found outside of the home.

Why this problem interest us?

- Business perspective
 - USD 6.13 million in 2020 → USD 15.03 million by 2026¹
- Academic perspective
 - Problem Definition
 - Existing studies: Single advertiser
 - Our work: Host (Influence provider)
 - Hardness

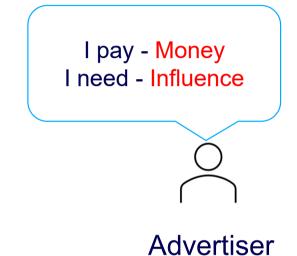
1. https://www.mordorintelligence.com/industry-reports/digital-ooh-market

For Advertiser – Existing Work

I provide - Billboards I earn - Money

Host

Billboard	Influence	Cost
Billboard 1	30	100
Billboard 2	50	200
Billboard 3	100	300



For Advertiser – Existing Work

Advertiser needs billboards to advertising (under budget).

- Given budget B
- Host owns billboards

Given a set of billboards *S*; each of them has a cost

Find **billboards** to advertising for this advertiser under her budget, which have the **best effectiveness**.

Find a subset billboard $S' \in S$, that achieves $\operatorname{argmax} I(S')$ while the total cost is not larger than B, where I() is a given influence module

For Advertiser – Existing Work

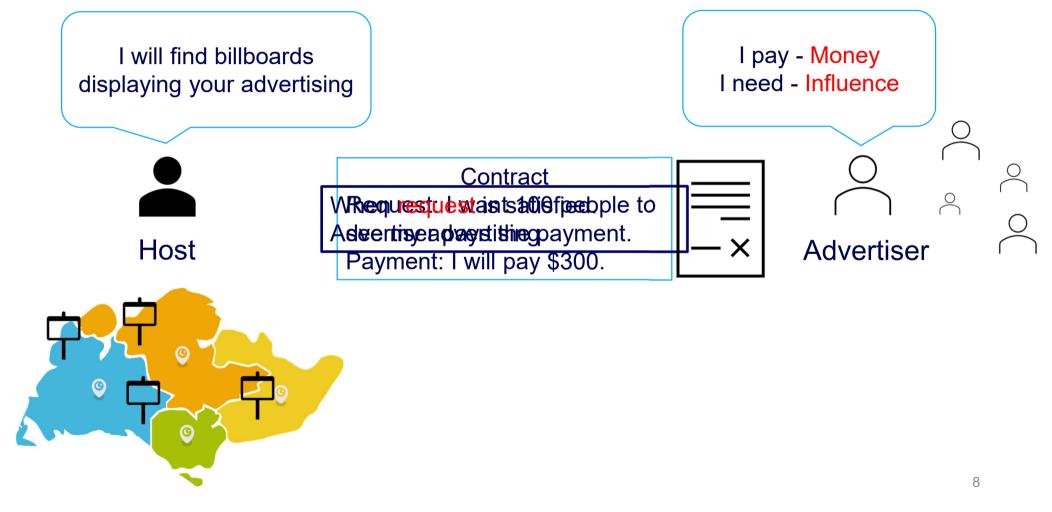
Find billboards to advertising for one advertiser under her budget, which have the maximum influence.

Real-world:

- 1. Host needs to deal with multiple advertisers.
- 2. Each advertiser has a demanded influence.

Host - Advertisers

Host - Advertisers



For Host – Our Work

Host owns billboards; Advertisers request influence service, each advertiser has a budget and a demanded influence

Input: billboard set *S*, advertisers set *A*, each $a_i \in A$ has a budget L_i and a demanded influence I_i

Find **billboards** for **each** advertiser, which can achieve the demanded influence, so that maximize the **host's** profit.

Output: billboard sets $S_i \in S$, that achieves $\operatorname{argmax} \sum_{i=1}^{|A|} R(S_i)$, R() is how to measure the profit.

RMIT Classification: Trusted

For Host – Our Work

What is profit? Profit = Total payment from all advertisers

For Host – Our Work

Provides Influence and earns the Profit

Contract Request: Influence 300 audiences. Payment: Pay \$300.

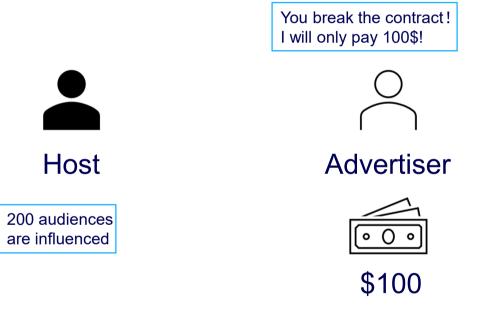
 \bigcirc

Host

Advertiser

Scenario 1

Provides Influence and earns the Profit

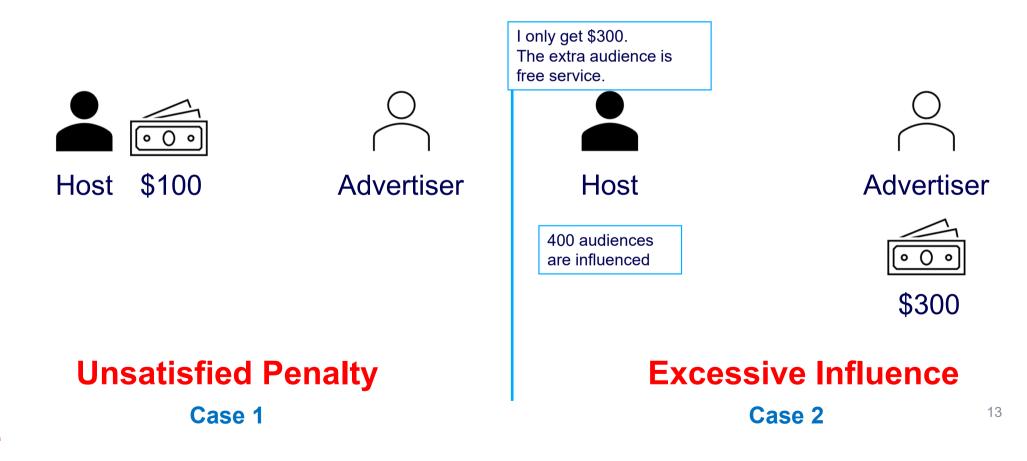


Unsatisfied Penalty

Case 1

Scenario 2

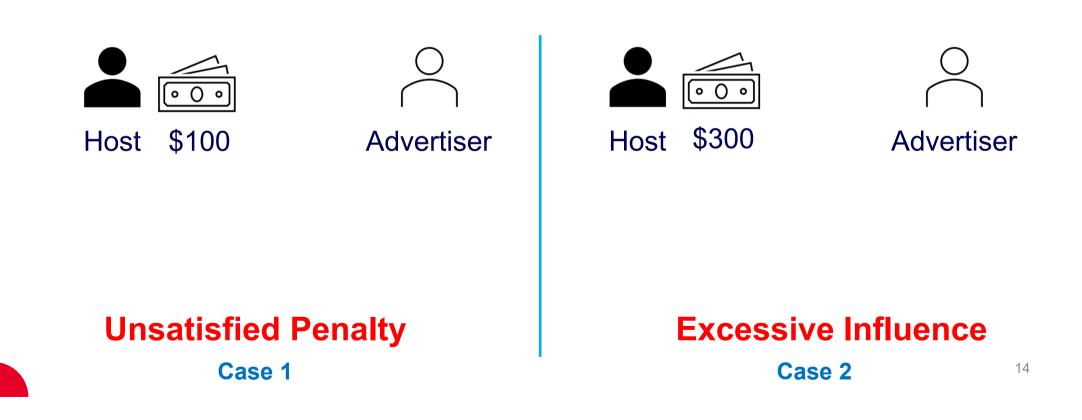
Provides Influence and earns the Profit



Scenario 2

Provides Influence and Maninshitte Regfiet

1. Unsatisfied Penalty
2. Excessive Influence



For Host – Our Work

 $\operatorname{argmin}_{i=1}^{|A|} R(S_i)$

Profit = Total payment from all Advertisers Regret = Unsatisfied Penalty + Excessive Influence Minimize Regret ⊆ Maximize Profit

MROAM

Minimizing Regret for the OOH Advertising Market

For Host – Our Work

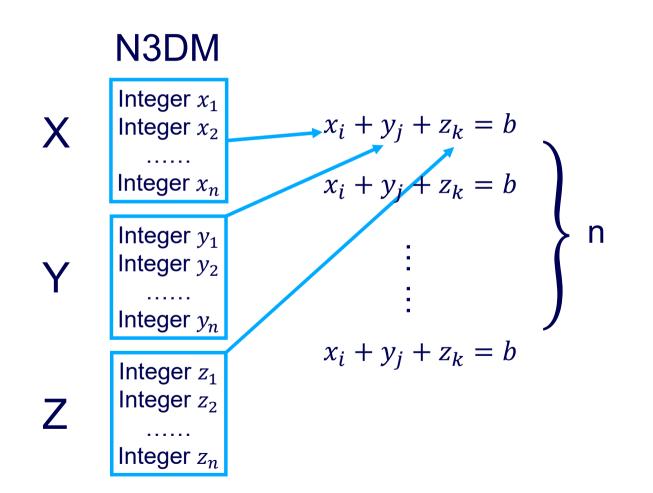
$$\operatorname{argmin} \sum_{i=1}^{|A|} R(S_i)$$

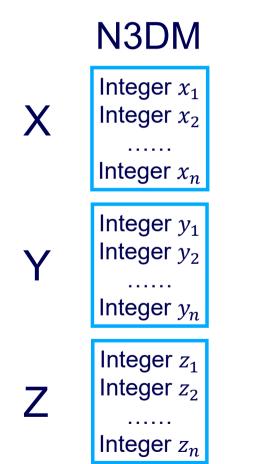
$$R(S_i) = \begin{cases} L_i \left(1 - \underbrace{I(S_i)}{I_i} \right), & \text{if } a_i . I_i > I(S_i) & \text{Unsatisfied Penalty} \\ L_i \frac{I(S_i) - I_i}{I_i}, & \text{otherwise} & \text{Excessive Influence} \end{cases}$$

 L_i : budget of a_i I_i : demanded influence of a_i $I(S_i)$: billboards influence assigned to a_i

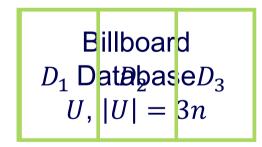
Minimizing Regret for the OOH Advertising Market problem (MROAM)

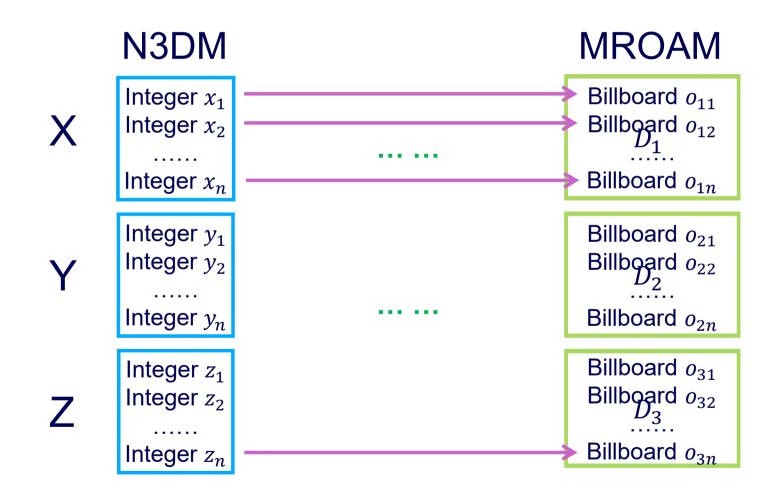
- 1. MROAM is non-monotone and non-submodular
 - Any greedy-based algorithm is not applicable
- 2. MROAM problem is NP-hard to approximate within any constant factor
- Baseline Synchronous Greedy
- Randomized local search framework
 - (1) advertiser-driven local search
 - (2) billboard-driven local search.

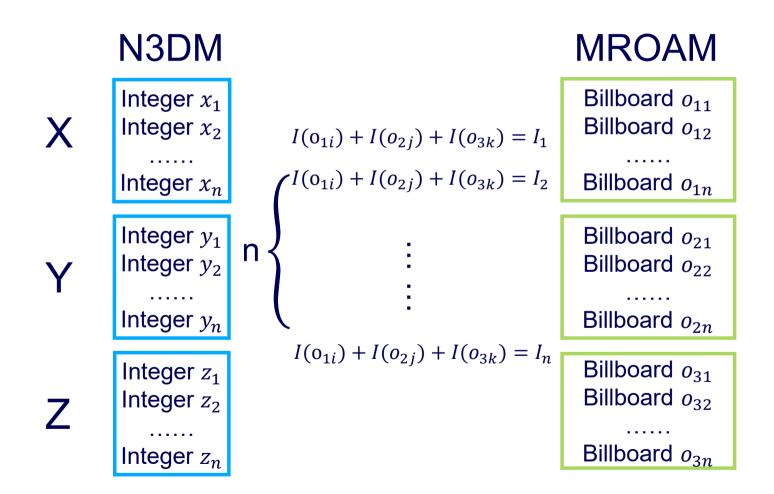




MROAM







N3DM MROAM Integer x_1 Find plan S Billboard o_{11} Find M Billboard o_{12} Integer x_2 Such that Such that Billboard o_{1n} Integer x_n Integer y_1 For every triple For every triple Billboard o_{21} Integer y_2 Billboard *o*₂₂ $(x_i, y_j z_k) \in M$ $(o_{1i}, o_{2j}, o_{3k}) \in S$ Integer y_n Billboard o_{2n} $I(o_{1i}) + I(o_{2j})$ $x_i + y_i + z_k = b$ Billboard o_{31} Integer z_1 $+ I(o_{3k}) = I_n$ Billboard o_{32} Integer z_2 Billboard o_{3n} Integer z_n

Synchronous Greedy

Iteratively assign a billboard o_i to S_n (belong to the advertiser a_n), such that o_i can maximize $\frac{R(S_n) - R(S_n \cup \{o_i\})}{I(\{o_i\})}$

Repeat until (1) Exhausting all billboards, or (2) all advertisers are satisfied

$$a_1$$
 o_1 o_2 ... a_2 o_7 o_{10} ... a_3 o_6 o_8 ...Adver
-tiserBillboard Set S_n

Synchronous Greedy

The problem of Synchronous Greedy:

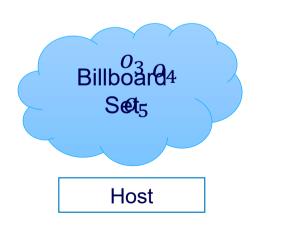
The objective R(S) of MROAM is neither monotone nor submodular.

Synchronous Greedy can easily produce a poor local minimum.

Randomized local search framework

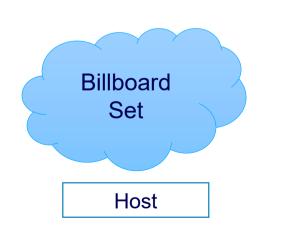
Advertiser-driven local search (ALS) Billboard-driven local search (BLS)

- 1. Greedy Randomized Adaptive phase (generating a solution).
 - 1. randomly assign a billboard to an advertiser
 - 2. execute a greedy search to assign the remaining billboards to the advertisers



$$a_1$$
 o_1 o_2 ... a_2 o_7 o_{10} ... a_3 o_6 o_8 ...Adver
-tiserBillboard Set S_n

- 1. Greedy Randomized Adaptive phase (generating a solution).
 - 1. randomly assign a billboard to an advertiser
 - 2. execute a greedy search to assign the remaining billboards to the advertisers
- 2. Advertiser-driven local search (finding a local minimum).



$$a_1$$
 $o_3 \circ_1 \circ_2 \ldots$
 a_2
 $o_4 \circ_7 \circ_{10} \ldots$
 a_3
 $o_5 \circ_6 \circ_8 \ldots$

 Adver
-tiser
 Billboard Set S_n

Billboards: $o_1 = \{t_1, \dots, t_{x-1}\}, o_2 = \{t_1, \dots, t_{x-2}, t_x\}, o_3 = \{t_x, t_{x+1}\}$

Advertiser	Budget L	Demand I _i	Billboard <i>S</i> ;	Influence $I(S_i)$	Regret
<i>a</i> ₁	x	x	$\{o_1, o_2\}$	x	0
a ₂	x - 1	<i>x</i> – 1	{ <i>0</i> ₃ }	2	$x-1-2\gamma$

Exchange

$$R(S_i) = \begin{cases} L_i \left(1 - \frac{\gamma \cdot I(S_i)}{I_i} \right), & \text{if } a_i \cdot L_i > I(S_i) \\ L_i \frac{I(S_i) - I_i}{I_i}, & \text{otherwise} \end{cases}$$

Total Regret
$$x - 1 - 2\gamma$$

Billboards: $o_1 = \{t_1, \dots, t_{x-1}\}, o_2 = \{t_1, \dots, t_{x-2}, t_x\}, o_3 = \{t_x, t_{x+1}\}$

Advertiser	Budget L	Demand I _i	Billboard <i>S</i> ;	Influence $I(S_i)$	Regret
<i>a</i> ₁	x	x	{ <i>0</i> ₃ }	2	$x - 2\gamma$
a ₂	<i>x</i> – 1	<i>x</i> – 1	$\{o_1, o_2\}$	x	1

Exchange

$$R(S_i) = \begin{cases} L_i \left(1 - \frac{\gamma \cdot I(S_i)}{I_i} \right), & \text{if } a_i \cdot L_i > I(S_i) \\ L_i \frac{I(S_i) - I_i}{I_i}, & \text{otherwise} \end{cases}$$

Total Regret
$$x + 1 - 2\gamma$$

Billboards: $o_1 = \{t_1, \dots, t_{x-1}\}, o_2 = \{t_1, \dots, t_{x-2}, t_x\}, o_3 = \{t_x, t_{x+1}\}$

Advertiser	Budget L	Demand I _i	Billboard <i>S</i> i	Influence $I(S_i)$	Regret
<i>a</i> ₁	x	x	{ <mark>0</mark> 3,02}	x	0
a ₂	<i>x</i> – 1	<i>x</i> – 1	{ <mark>0</mark> 1}	<i>x</i> – 1	0

$$R(S_i) = \begin{cases} L_i \left(1 - \frac{\gamma \cdot I(S_i)}{I_i} \right), & \text{if } a_i \cdot L_i > I(S_i) \\ L_i \frac{I(S_i) - I_i}{I_i}, & \text{otherwise} \end{cases}$$

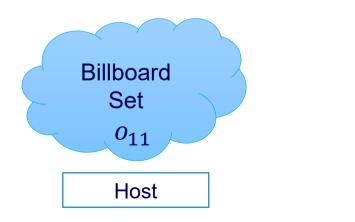
Total Regret $\emptyset - 1 - 2\gamma$

Randomized local search framework

Advertiser-driven local search (ALS) Billboard-driven local search (BLS)

Billboard-driven local search (BLS)

- 1. Greedy Randomized Adaptive phase (generating a solution).
 - 1. randomly assign a billboard to an advertiser
 - 2. execute a greedy search to assign the remaining billboards to the advertisers
- 2. Billboard-driven local search (BLS)
 - 1) Exchange within two advertisers
 - 2) Unassign one billboard
 - 3) Exchange with one unused billboard



<i>a</i> ₁	<i>0</i> ₅ <i>0</i> ₆ <i>0</i> ₈
<i>a</i> ₂	$o_4 \ o_7 \ o_{10} \ \dots \ \dots$
a_3	$o_3 o_1 o_2 \dots$
Adver -tiser	Billboard Set S_n

Experiment

- 1. Evaluation algorithms' performance
- 2. What situation is good for the host?
 - 1. Demand-Supply Ratio α : Total demand / Host's supply
 - 2. Average-Individual Demand Ratio $p(\overline{I^A})$: Average demand / Host's supply

Global	Low demand	High demand
Individual	$(lpha \le 80\%)$	$(lpha \geq 100\%)$
Low demand $(p(\overline{I^{\mathcal{A}}}) \leq 2\%)$	Case 1	Case 3
High demand $(p(\overline{I^{\mathcal{A}}}) \ge 5\%)$	Case 2	Case 4

Experiment

City	Movement Pattern	Billboard Type
NYC	Taxi trajectories	Roadside billboards
SG	Public transport records	Bus station billboards

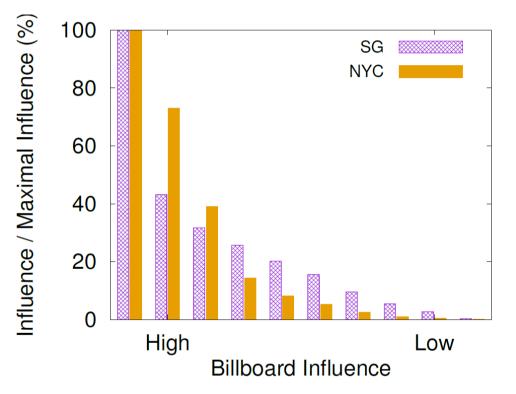


Figure 1: Influence Distribution of Billboards

RMIT Classification: Trusted

Low Individual Demand $p(\overline{I^A}) = 1\%$ - Low global demand vs. High global demand

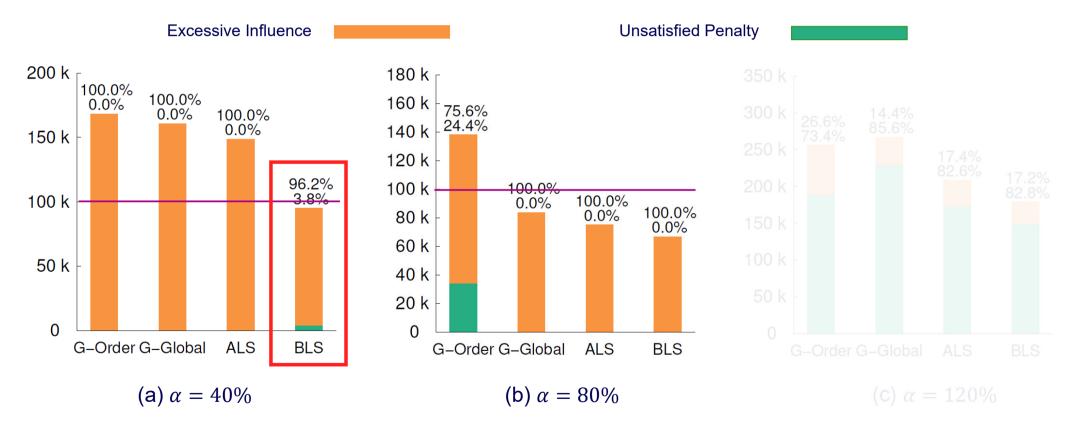


Figure 2: Regret of varying the demand-supply ratio α when $p(\overline{I^A}) = 1\%$ (NYC)

RMIT Classification: Trusted

Low Individual Demand $p(\overline{I^A}) = 1\%$ - Low global demand vs. High global demand

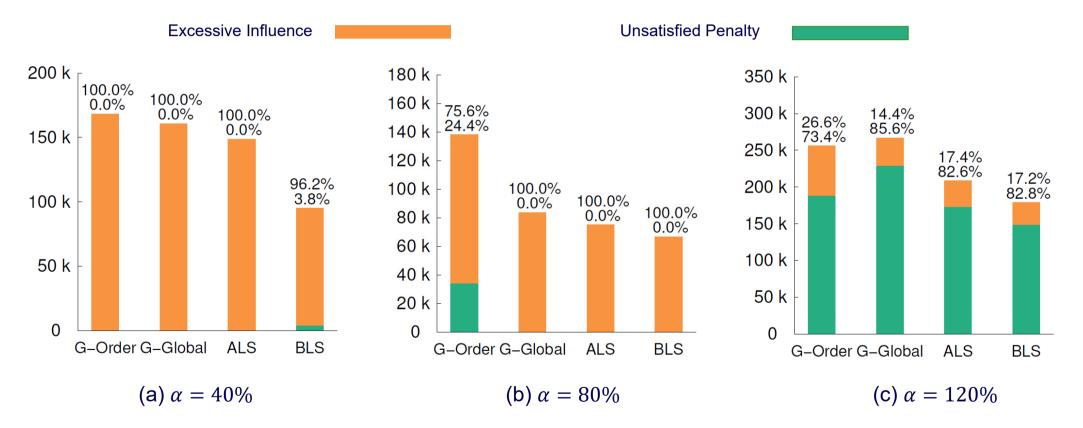


Figure 2: Regret of varying the demand-supply ratio α when $p(I^A) = 1\%$ (NYC)

High Individual Demand $p(\overline{I^A}) = 10\%$ - Low global demand vs. High global demand

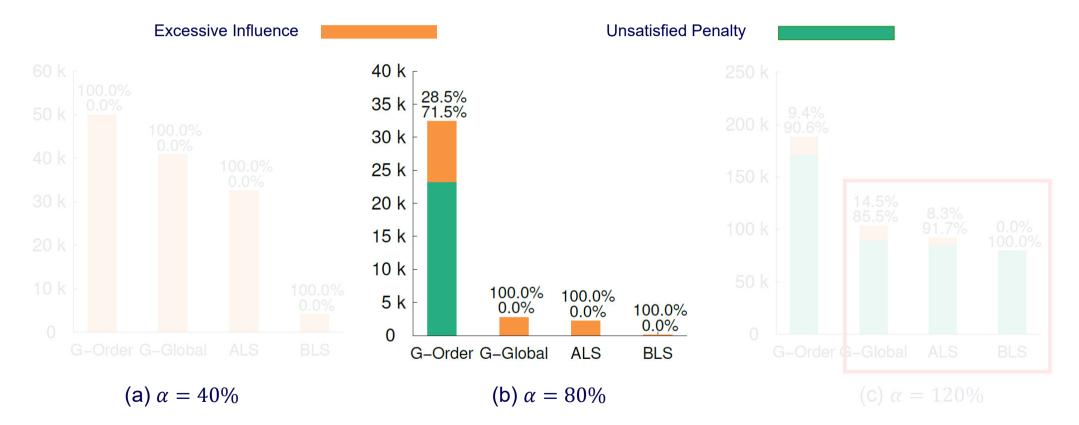
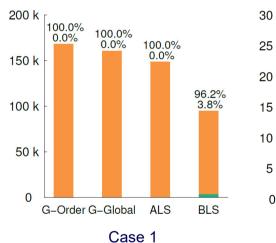


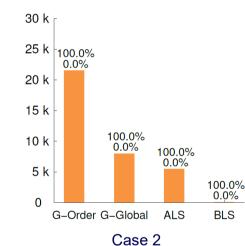
Figure 3: Regret of varying the demand-supply ratio α when $p(\overline{I^A}) = 10\%$ (NYC)

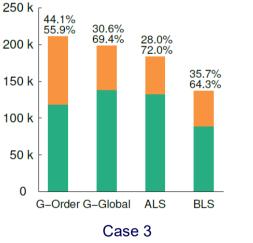
Experiment

Excessive Influence

Global	Low demand	High demand
Individual	$(lpha \le 80\%)$	$(lpha \geq 100\%$)
Low demand $(p(\overline{I^{\mathcal{A}}}) \leq 2\%)$	Case 1	Case 3
High demand $(p(\overline{I^{\mathcal{A}}}) \ge 5\%)$	Case 2	Case 4







Unsatisfied Penalty Ratio γ

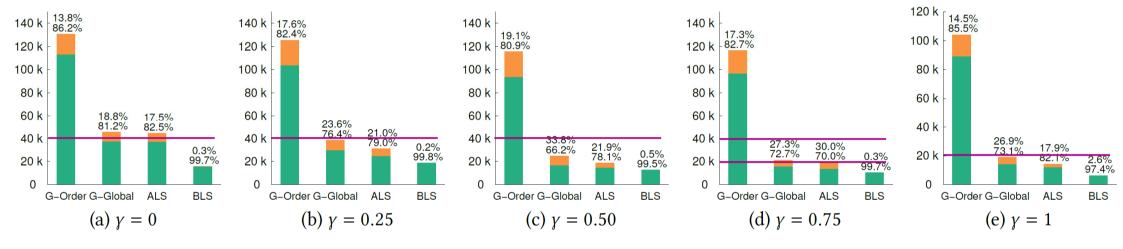


Figure 4: Regret of varying the unsatisfied penalty ratio γ (NYC)

$$R(S_i) = \begin{cases} L_i \left(1 - \frac{\gamma \cdot I(S_i)}{I_i} \right), & \text{if } a_i \cdot L_i > I(S_i) & \text{Unsatisfied Penalty} \\ L_i \frac{I(S_i) - I_i}{I_i}, & \text{otherwise} & \text{Excessive Influence} \end{cases}$$

NYC - SG

Figure 5: Regret when $\alpha = 80\%$ and $p(\overline{I^A}) = 10\%$

Thanks

NYC - SG

The influence range is modeled as a circle centered on a billboard with a radius of λ meters

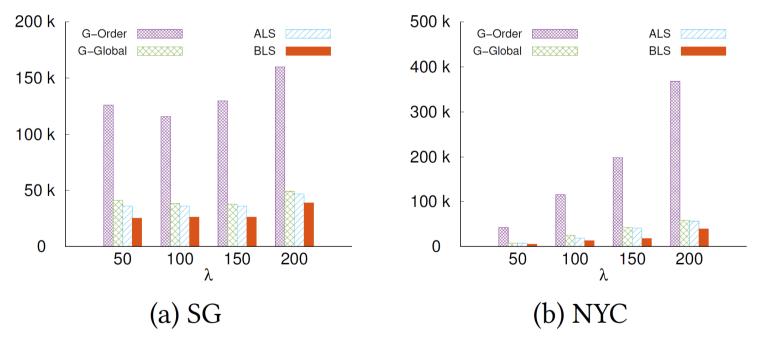


Figure 6: Regret of varying λ

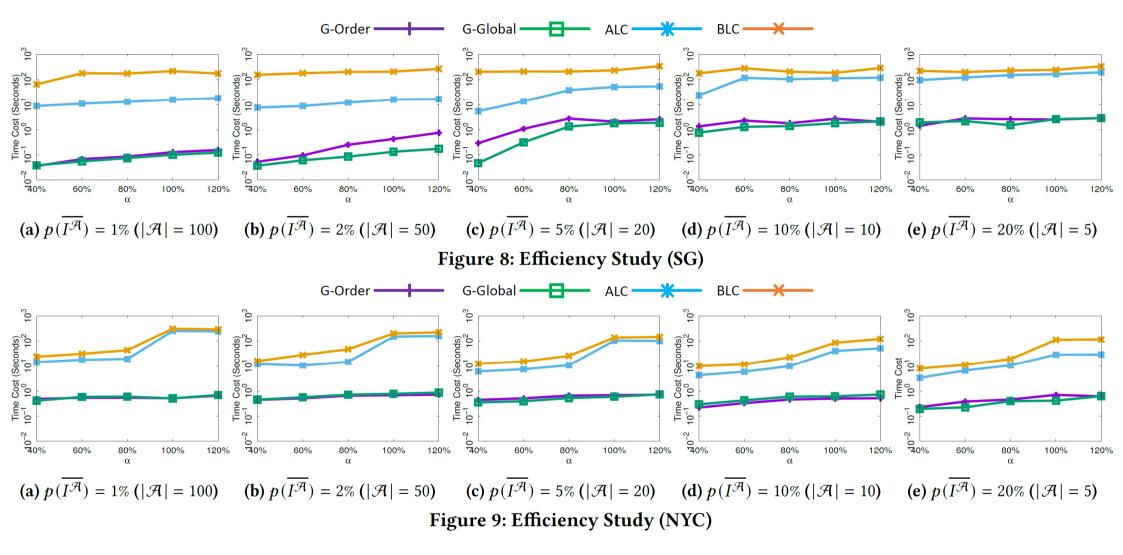
Dataset

Table 5: Statistics of Datasets

	$ \mathcal{T} $	$ \mathcal{U} $	AvgDistance	AvgTravelTime
NYC	1.7×10^{6}	1462	2.9km	569s
SG	2.2×10^{6}	4092	4.2km	1342s

Table 6: Parameter Settings

Parameter	Values	
α	40%, 60%, 80%, 100%, 120%	
$p(\overline{I^{\mathcal{A}}})$	1%, 2%, 5%,10%, 20%	
Y	0, 0.25, 0.5, 0.75, 1	
λ	50m, 100m , 150m, 200m	



Algorithm 1: Budget-Effective Greedy

Input: $\mathcal{U}, \mathcal{T}, \mathcal{A}$
Output: S1.1 Order each advertiser $a_i \in \mathcal{A}$ based on descending order of L_i/I_i 1.2 Initialize $S \leftarrow \{S_1, ..., S_{|\mathcal{A}|}\}$ 1.3 foreach $a_i \in \mathcal{A}$ do1.4while $\mathcal{U} \neq \emptyset \land I_i > I(S_i)$ do1.5Select $o \in \mathcal{U}$ that maximizes $\frac{R(S_i) - R(S_i \cup \{o\})}{I(\{o\})}$ 1.6 $S_i \leftarrow S_i \cup \{o\}$ 1.7 $\mathcal{U} \leftarrow \mathcal{U} \setminus \{o\}$ 1.8 return S

Algorithm 2: Synchronous Greedy **Input:** $\mathcal{U}, \mathcal{T}, \mathcal{A}, S^{in} (S^{in} = \{S_1^{in}, ..., S_{|\mathcal{A}|}^{in}\})$ **Output:** S 2.1 $S \leftarrow S^{in}$ 2.2 while TRUE do for each $a_i \in \mathcal{A}$ do 2.3 if $I_i > I(S_i)$ then 2.4 Select $o \in \mathcal{U}$ that maximizes $\frac{R(S_i) - R(S_i \cup \{o\})}{I(\{o\})}$ $S_i \leftarrow S_i \cup \{o\}$ 2.52.6 $S_i \leftarrow S_i \cup \{o\}$ $\mathcal{U} \leftarrow \mathcal{U} \setminus \{o\}$ 2.72.8 if more than two $a_i \in \mathcal{A}$ are not satisfied then 2.9 Release $S_j \in S$ such that $I_j > I(S_j)$ and has minimum 2.10 L_j/I_j $\mathcal{A} \leftarrow \mathcal{A} \setminus \{a_i\}$ 2.11 else 2.12 return S 2.13

Algorithm 3: Randomized Local Search

Input: $\mathcal{U}, \mathcal{T}, \mathcal{A}$ Output: Sbest 3.1 $S^{best} \leftarrow \text{SynchronousGreedy}(\mathcal{U}, \mathcal{T}, \mathcal{A}, \emptyset)$ 3.2 while the number of iterations < a preset count do $\mathcal{U}^* \leftarrow \mathcal{U}$ 3.3 for $a_i \in \mathcal{A}$ do 3.4 $S_i \leftarrow \{ a \text{ random billboard } o \in \mathcal{U}^* \}$ 3.5 $\mathcal{U}^* \leftarrow \mathcal{U}^* \setminus \{o\}$ 3.6 $S \leftarrow \{S_1, ..., S_{|\mathcal{A}|}\}$ 3.7 $S^* \leftarrow \text{SynchronousGreedy}(\mathcal{U}^*, \mathcal{T}, \mathcal{A}, S)$ 3.8 $S^{can} \leftarrow \text{Advertiser-drivenLocalSearch}(\mathcal{U}^*, \mathcal{T}, S^*)$ 3.9 if $R(S^{can}) < R(S^{best})$ then 3.10 $S^{best} \leftarrow S^{can}$ 3.11 3.12 return S^{best}

Algorithm 4: Advertiser-driven Local Search (ALS)				
Input: $\mathcal{U}, \mathcal{T}, S^{best}$				
0	output: S ^{best}			
4.1 while TRUE do				
4.2	$S^{can} \leftarrow S^{best}$			
4.3	for each $a_i \in \mathcal{A}$ do			
4.4	for each $a_j \in \mathcal{A} \setminus \{a_i\}$ do			
4.5	if Exchange S_i with S_j will reduce $R(S^{can})$ then			
4.6	Exchange S_i with S_j			
4.7	if $R(S^{can}) < R(S^{best})$ then			
4.8	$S^{best} \leftarrow S^{can}$			
4.9	else			
4.10	return S ^{best}			

Al	Algorithm 5: Billboard-driven Local Search (BLS)			
Input: $\mathcal{U}, \mathcal{T}, S^{best}$				
C	Output: S ^{best}			
5.1 W	5.1 while TRUE do			
5.2	$S^{can} \leftarrow S^{best}$			
5.3	foreach $S_i \in S^{can}$ do			
5.4	foreach $S_j \in S^{can} \setminus S_i$ do			
5.5	if $\exists o_m \in S_i \land o_n \in S_j$ such that $Exchange(o_m, o_n)$			
	will decrease $R(S^{can})$ then			
5.6	Exchange (o_m, o_n)			
5.7	if $\exists o_m \in S_i \land o_n \in \mathcal{U}$ such that $Exchange(o_m, o_n)$ will			
	decrease $R(S^{can})$ then			
5.8	$\text{Exchange}(o_m, o_n)$			
5.9	if $\exists o_m \in S_i$ such that releasing o_m will decrease $R(S^{can})$			
	then			
5.10	Release $o_m \in S_i$			
5.11	$S \leftarrow \text{SynchronousGreedy}(\mathcal{U}, \mathcal{T}, \mathcal{A}, S^{can})$			
5.12	if $R(S) < R(S^{can})$ then			
5.13	$S^{can} \leftarrow S$			
5.14	The same as Lines 4.7-4.10			

Hardness - N3DM to MROAM

Numerical 3-Dimensional Matching (N3DM) Input:

- 1. A bound **b** (set demanded influence I_i as b)
- 2. Three multisets of integers X, Y and Z, |X| = |Y| = |Z| = n(set advertiser database A, such that |A| = n)

Find:

Matching relation *M*, such that

- 1. Every integer in X, Y and Z occurs exactly once
- 2. Every triple $(x_i, y_j, z_k) \in M$, $x_i + y_j + z_k = b$ hold

Seek Influence – Our Work

Minimizing Regret for the OOH Advertising Market problem (MROAM)

Input

- 1. Billboard database U
- 2. Trajectory database T
- 3. Advertiser set $A = \{a_1, ..., a_{|A|}\}$ with demanded influence I_i and a payment L_i
- 4. Influence Measurement $I(S_i)$
- 5. Regret Measurement $R(S_i)$

Output

Billboard deployment strategy $S = {S_1, ..., S_{|A|}}$ that minimizes the regret of the influence host

52

1. How a billboard impresses an audience?

λ

Different Influence Measurement

1. One impression model

$$p(S,t) = 1 - \prod_{o_i \in S} [1 - pr(o_i, t)]$$

2. Multiple impression model

$$p(S,t) = \begin{cases} \frac{1}{1+exp\{\alpha-\beta:\sum_{o_i \in S} I(o_i,t)\}} & \text{if } \exists o_i \in S I(o_i,t) = 1\\ 0 & \text{otherwise} \end{cases}$$

$$I(S) = \sum_{t_j \in T} p(S,t_j)$$

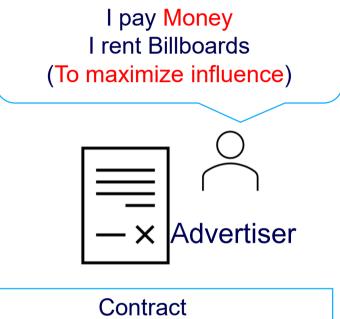
$$T(S) = \sum_{t_j \in T} p(S,t_j)$$

For Advertiser – Existing Work

I have Billboards I provide Billboards I earn Money

Host

Billboard	Influence	Cost
Billboard 1	30	100
Billboard 2	50	200
Billboard 3	100	300



Request: I want to rent Billboard 3. Payment: I will pay \$300.