Optimizing Impression Counts for Outdoor Advertising

Yipeng Zhang, Yuchen Li, Zhifeng Bao, Songsong Mo and Ping Zhang

RMIT University, Melbourne, Australia
$30 Billion

80%
Impression Counts for Outdoor Advertising

Trajectory
Billboards
Budget
Input:
(1) Billboard database \(U \); (2) Trajectory database \(T \); (3) Budget constraint \(B \); (4) Influence Measurement \(I(S) \)

Output:
Subset \(S \subseteq U \) that maximizes the overall influence of \(S \) such that the total cost of \(S \) does not exceed \(B \).

\[
\text{argmax } I(S) \quad \text{subject to } \text{cost}(S) \leq B
\]
1. How a billboard impresses an audience?
2. Influence Measurement

$$\arg\max_{I(S)} \text{ argmax } I(S)$$

$$\text{cost}(S) \leq B$$

$$I(S) = \sum_{t_j \in T} I(S, t_j)$$ \hspace{1em} (Ping et al., SIGKDD 2018 [1])

Is It enough for impressing a person only one time?

One-time impression is not enough (Gershon et al., 1985[2]; William et al., 2003 [3])
2. Influence Measurement

I see it!

Impression Times

Influence

1st Time
2. Influence Measurement

It is familiar!
2. Influence Measurement

I remember it!
The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.
The **logistic function** (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.
The **logistic function** (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.
Influence Measurement

\[p(S, t) = \begin{cases}
\frac{1}{1 + \exp\{\alpha - \beta \sum_{o_i \in S} I(o_i, t)\}} & \text{if } \exists o_i \in S \text{ such that } I(o_i, t) = 1 \\
0 & \text{otherwise}
\end{cases} \]

\[I(S) = \sum_{t_j \in T} p(S, t_j) \]
1. Influence Measurement is not submodular
 - No approximation ratio for a greedy-based algorithm

 Upper-bound Estimation (submodular)

2. NP-hard to approximate within any constant factor

 Branch-and-Bound Framework
Upper-bound Estimation

Tangent Point

Upper Bound

Lower Bound

Influence

Impression Times

λ_t
Upper-bound Estimation

Upper Bound

Line 1

Lower Bound

Influence

Impression Times

Strategy 1

Upper Bound

Lower Bound
Upper-bound Estimation

Influence

Impression Times

Line 1

x_t^S

Strategy 1

Influence
Upper-bound Estimation

\[\text{Influence} \]

\[\text{Impression Times} \]

Line 1

\[x_t^S \]

Strategy 2

Influence
Upper-bound Estimation

Influence

Impression Times

Strategy 1

Strategy 2
Upper-bound Estimation

Strategy 1
Branch-and-Bound Framework
<table>
<thead>
<tr>
<th>Optimization</th>
<th>Approximation Ratio</th>
<th>Effectiveness</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS: Branch-and-Bound Framework</td>
<td>$\frac{1}{2}(1 - \frac{1}{e})$</td>
<td>1X</td>
<td>1X</td>
</tr>
<tr>
<td>PBBS: Branch-and-Bound Framework with Progressive Bound-Estimation</td>
<td>$\frac{\theta}{2}(1 - \frac{1}{e} - \epsilon)$</td>
<td>0.92X</td>
<td>50X</td>
</tr>
</tbody>
</table>
Experiment - Statistics of datasets

| | $|\mathcal{T}|$ | $|\mathcal{U}|$ | AvgDistance | AvgTravelTime | AvgPoint |
|----------|----------------|----------------|--------------|--------------|---------|
| NYC | 600k | 1500 | 2.9km | 569s | 159 |
| LA | 250k | 2500 | 2.7km | 511s | 138 |

1 TLC, 2 Lamar
Experiment - Algorithms

• Greedy: Maximum ratio of marginal influence gain to cost
• Top-k: Maximum number of trajectories
• BBS: Branch-and-bound framework
• PBBS: Branch-and-bound framework with progressive Bound Estimation
• LazyProbe: The best-performing method in [1]
Varying the budget B

Figure 1: Influence in NYC

Figure 2: Influence in LA
Varying the number of trajectories $|T|$
Scalability test in NYC

(a) Varying $|U|$
(b) Varying $|\mathcal{T}|$
Comparison with LazyProbe

(a) Influence

(b) Time
Conclusion

• Real Problem
 • Meet more than one billboard in each travel (Impression Count)
 • Non-uniform cost of billboards
 • Budget

• Real Solution
 • While having the approximation guarantee

• Real-world Trajectory Dataset and Billboard Dataset

Takeaways

• Personal driving trajectories
• Personal identification of trajectories
• Digital Billboards
References

Varying β/α in NYC

(a) Influence

(b) Time
Varying ε in NYC

(a) Influence

(b) Time
Varying θ in NYC
Varying λ in NYC
Test on different cost setting strategies

(a) Influence

(b) Time
Varying the budget B
Varying the number of trajectories $|T|$