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Input:

(1) Billboard database U; (2) Trajectory database T; (3) Budget

constraint B; (4) Influence Measurement I(S)

Output:

Subset S ⊆⊆⊆⊆ U that maximizes the overall influence of S such that

the total cost of S does not exceed B.
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1. How a billboard impresses an audience?
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2. Influence Measurement
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Is It enough for impressing a person only one time?Is It enough for impressing a person only one time?Is It enough for impressing a person only one time?Is It enough for impressing a person only one time?

One-time impression is not enough (Gershon et al., 1985[2]; William et al., 2003 [3])

(Ping et al., SIGKDD 2018 [1])
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2. Influence Measurement

I see it!
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2. Influence Measurement
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2. Influence Measurement
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The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.
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The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.
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Influence Measurement
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Challenges

1. Influence Measurement is not submodular
- No approximation ratio for a greedy-based algorithm

2. NP-hard to approximate within any constant factor

Upper-bound Estimation (submodular)

Branch-and-Bound Framework 
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Upper-bound Estimation
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Upper-bound Estimation
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Upper-bound Estimation

Strategy 1
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Branch-and-Bound Framework 

Branch

22



Optimization

Approximation 

Ratio

Effectiveness Efficiency

PBBS: Branch-and-Bound 

Framework with Progressive 

Bound-Estimation

1
2 (1 − 1

�)

0.92X 50X

BBS: Branch−and−Bound 

Framework
1X 1X

"
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Experiment - Statistics of datasets
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Experiment - Algorithms

• Greedy: Maximum ratio of marginal influence gain to cost

• Top-k: Maximum number of trajectories

• BBS: Branch-and-bound framework

• PBBS: Branch-and-bound framework with progressive Bound Estimation

• LazyProbe: The best-performing method in [1]

25Ping et al., SIGKDD 2018 [1]



Varying the budget $

Figure 1: Influence in NYC Figure 2: Influence in LA
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Varying the number of trajectories |&|

Figure 3: Influence in NYC Figure 4: Influence in LA
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Scalability test in NYC
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Comparison with LazyProbe
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Conclusion
• Real Problem
• Meet more than one billboard in each travel (Impression Count)

• Non-uniform cost of billboards

• Budget

• Real Solution
• While having the approximation guarantee

• Real-world Trajectory Dataset and Billboard Dataset

Takeaways
• Personal driving trajectories

• Personal identification of trajectories

• Digital Billboards
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Varying '/) in NYC
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Varying # in NYC

33



Varying " in NYC
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Varying � in NYC
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Test on different cost setting strategies
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Varying the budget $
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Varying the number of trajectories |&|
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