

Optimizing Impression Counts for Outdoor Advertising

Yipeng Zhang, Yuchen Li, Zhifeng Bao, Songsong Mo and Ping Zhang

RMIT University, Melbourne, Australia

Impression Counts for Outdoor Advertising

Input:

Trajectory Billboards Budget (1) Billboard database *U*; (2) Trajectory database *T*; (3) Budget constraint *B*; (4) Influence Measurement *I(S)* Output:

Subset $S \subseteq U$ that maximizes the overall influence of S such that the total cost of S does not exceed B.

 $\underset{cost(S) \leq B}{\operatorname{argmax}} I(S)$

2. Influence Measurement

 $\underset{cost(S) \leq B}{\operatorname{argmax}} I(S)$

$$I(S) = \sum_{t_j \in T} I(S, t_j) \quad (Ping \ et \ al., \ SIGKDD \ 2018 \ [1])$$

Is It enough for impressing a person only one time?

One-time impression is not enough (Gershon et al., 1985[2]; William et al., 2003 [3])

The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.

The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.

The logistic function (Advertising market and Customer behavior [4-7])

The effectiveness of advertisement repetition varies from one person to another.

Influence Measurement

1. Influence Measurement is not submodular

- No approximation ratio for a greedy-based algorithm

Upper-bound Estimation (submodular)

2. NP-hard to approximate within any constant factor Branch-and-Bound Framework

Challenges

Strategy 1

Branch-and-Bound Framework

Optimization

	Approximation Ratio	Effectiveness	Efficiency
BBS: Branch–and–Bound Framework	$\frac{1}{2}(1-\frac{1}{e})$	1X	1X
PBBS: Branch-and-Bound Framework with Progressive Bound-Estimation	$\frac{\theta}{2}(1-\frac{1}{e}-\epsilon)$	0.92X	50X

Experiment - Statistics of datasets

	$ \mathcal{T} ^{1}$	$ \mathcal{U} ^2$	AvgDistance	AvgTravelTime	AvgPoint
NYC	600k	1500	2.9km	569s	159
LA	250k	2500	2.7km	511s	138

¹ TLC; ² Lamar

Experiment - Algorithms

- Greedy: Maximum ratio of marginal influence gain to cost
- Top-k: Maximum number of trajectories
- **BBS**: Branch-and-bound framework
- PBBS: Branch-and-bound framework with progressive Bound Estimation
- LazyProbe: The best-performing method in [1]

Scalability test in NYC

Comparison with LazyProbe

Conclusion

- Real Problem
 - Meet more than one billboard in each travel (Impression Count)
 - Non-uniform cost of billboards
 - Budget
- Real Solution
 - While having the approximation guarantee
- Real-world Trajectory Dataset and Billboard Dataset

Takeaways

- Personal driving trajectories
- Personal identification of trajectories
- Digital Billboards

References

- [1] Ping Zhang, Zhifeng Bao, Yuchen Li, Guoliang Li, Yipeng Zhang, and Zhiyong Peng. 2018. Trajectory-driven Influential Billboard Placement. In SIGKDD. ACM, 2748–2757.
- [2] Feder, Richard E Just, and David Zilberman. 1985. Adoption of agricultural innovations in developing countries: A survey. *Economic development and cultural change* 33, 2 (1985), 255–298.
- [3] William H Greene. 2003. Econometric analysis. Pearson Education India.
- [4] Margaret C Campbell and Kevin Lane Keller. 2003. Brand familiarity and advertising repetition effects. *Journal of consumer research* 30, 2 (2003), 292–304.
- [5] Johny K Johansson. 1979. Advertising and the S-curve: A new approach. *Journal of Marketing Research* (1979), 346–354.
- [6] John DC Little. 1979. Aggregate advertising models: The state of the art. *Operations research* 27, 4 (1979), 629–667.
- [7] Julian L Simon and Johan Arndt. 1980. The shape of the advertising response function. *Journal of Advertising Research* (1980).
- [8] LAMAR. 2017. National Rate Card. http://apps.lamar.com/demographicrates/content/salesdocuments/nationalratecard.xlsx

Varying ϵ in NYC

33

Varying λ in NYC

Test on different cost setting strategies

Varying the budget *B*

Varying the number of trajectories |T|

