
Finding Temporal Influential Users over Evolving Social
Networks

1

Shixun Huang, Zhifeng Bao, J.Shane Culpepper and Bang Zhang

Introduction
Viral Marketing

2

Information Diffusion

http://multimediamarketing.com/mkc/viralmarketing/

https://medium.com/the-megacool-blog/how-to-generate-word-of-mouth-buzz-for-your-mobile-game-50408e209df0

Introduction
Given (1) an integer k, (2) a diffusion model, the Influence Maximization (IM)
problem aims to find a seed set of k target nodes that have the greatest influence
spread in the network.

3

Introduction
Given (1) an integer k, (2) a diffusion model, the Influence Maximization (IM)
problem aims to find a seed set of k target nodes that have the greatest influence
spread in the network.

4

Introduction
Given (1) an integer k, (2) a diffusion model, the Influence Maximization (IM)
problem aims to find a seed set of k target nodes that have the greatest influence
spread in the network.

The IM problem is NP-hard and has two cases:
- The static case and dynamic case.

App: find influential users at a specific timestamp.

5

Introduction
Some limitations have not been considered in evolving networks:

1. Limited coverage of distinct users.

2. Difficulty of deploying personalized advertising messages.

3. Difficulty of achieving effective user exposures to advertisements.

6

Introduction
We study the Distinct Influence Maximization (DIM) problem to find a fixed
seed set of k target users to maximize the expected number of distinct users
influenced by the target users in an evolving social network.

7

Introduction
We study the Distinct Influence Maximization (DIM) problem to find a fixed
seed set of k target users to maximize the expected number of distinct users
influenced by the target users in an evolving social network.

8

Introduction
We study the Distinct Influence Maximization (DIM) problem to find a fixed
seed set of k target users to maximize the expected number of distinct users
influenced by the target users in an evolving social network.

9

For finding the top-1 target users:
1.Previous studies: select users a, b or c in different snapshots.
2.Our solution: selects user e among all snapshots. (App: find influential users over a period.)

Overview of Our Solutions
We approximate distinct influence spread by averaging distinct reachability (via
BFS) on the subgraphs via Monte-Carlo (MC) simulations.

10

Overview of Our Solutions
We approximate distinct influence spread by averaging distinct reachability (via
BFS) on the subgraphs via Monte-Carlo (MC) simulations.

Our contributions are:

1. The quality of solutions is theoretically bounded.

2. We propose two compression techniques VCS and HCS.

3. Extensive experiments show that:

(1) for the DIM problem, our solutions significantly outperform baselines w.r.t.
memory costs.

(2) for the IM problem, our solutions provide good trade-offs between running
time and memory costs.

11

Preliminaries
1. The influence diffusion model – Independent Cascade (IC) model [1].

2. The greedy strategy with theoretical guarantees [2].
Iteratively selects node with maximum marginal gain.

3. The subgraph strategy with theoretical guarantees [3].
Keeps each edge (u,v) with prob as the normalized edge weight p(u,v) .

[1] D. Kempe, et al. “Maximizing the spread of influence through a social network,” in SIGKDD, 2003.

[2] G. L. Nemhauser, et al. “An analysis of approximations for maximizing submodular set functions,” in Mathematical programming, 1978.

[3] N. Ohsaka, et al. “Fast and accurate influence maximization on large networks with pruned monte-carlo simulations,” in AAAI, 2014.

12

Problem Formulation

13

Suppose we have:

1. A sequence of snapshots ()

2. A common node set .

3. A positive integer (budget) k.

4. denotes the distinct influence spread of S in D.

The Distinct Influence Maximization (DIM) problem aims to find a seed set of size k

such that

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

14

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

15

Framework

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

16

Framework

denotes the j-th subgraph
generated from .

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

17

Framework

denotes the j-th subgraph
generated from .

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

18

Framework

denotes the j-th subgraph
generated from .

Our Solutions
We propose two methods HCS
and VCS to efficiently compute

. (Averaging the distinct
reachability on subgraphs
generated from snapshots.)

19

Framework

Seed set S

VCS or HCS

denotes the j-th subgraph
generated from .

Our Solutions

Suppose denotes the j-th
subgraph generated from ,
and denotes the set
of nodes reached by S in .

20

Framework

Seed set S

VCS or HCS

The Horizontal-Compression-Based Strategy (HCS)

21

Framework

Seed set S

HCS

• The naïve has high memory costs
and is inefficient.

• HCS
Compress each horizontal
instance
into a single graph.

The Horizontal-Compression-Based Strategy (HCS)

• The naïve has high memory costs
and is inefficient.

• HCS
Compress each horizontal
instance
into a single graph.

22

Framework

Seed set S

HCS

The Horizontal-Compression-Based Strategy (HCS)

23

• Horizontal Compression

The Horizontal-Compression-Based Strategy (HCS)
• Three Data Structures:

1. Containment bitset (for every edge/node).
Which subgraphs contain this node/edge.

2. Traversal bitset (for node u which travels reside at).
Which subgraphs can continue traversals from the current node.

3. Local containment bitset (for every node).
Initialized as the and stores info about which subgraphs contain this node but

have not visited this node yet.

• Traversal Rules:
Node u can traverse to neighbor w iff the result of AND among
and is not 0.

1. : can proceed the traversal.
2. : contains edge .
3. : contains w and has not visited w yet.

24

The Horizontal-Compression-Based Strategy (HCS)

25

Traversal Bt Bl

a to c Bt & (a,c).Bc & c.Bl

111&111&111=111
Bt⨁ c.Bl

c.Bl : 111⨁111=000

Example of edge traversals. Bitsets with underscore

refers to the updated traversal bitset.

The Horizontal-Compression-Based Strategy (HCS)

26

Traversal Bt Bl

a to c Bt & (a,c).Bc & c.Bl

111&111&111=111
Bt⨁ c.Bl

c.Bl : 111⨁111=000

c to d Bt & (c,d).Bc & d.Bl

111&110&111=110
Bt⨁ d.Bl

d.Bl : 110⨁111=001

Example of edge traversals. Bitsets with underscore

refers to the updated traversal bitset.

The Horizontal-Compression-Based Strategy (HCS)

27

Traversal Bt Bl

a to c Bt & (a,c).Bc & c.Bl

111&111&111=111
Bt⨁ c.Bl

c.Bl : 111⨁111=000

c to d Bt & (c,d).Bc & d.Bl

111&110&111=110
Bt⨁ d.Bl

d.Bl : 110⨁111=001

d to e 110&100&111=100 e.Bl : 100⨁111=011

Example of edge traversals. Bitsets with underscore

refers to the updated traversal bitset.

The Horizontal-Compression-Based Strategy (HCS)

28

Traversal Bt Bl

a to c Bt & (a,c).Bc & c.Bl

111&111&111=111
Bt⨁ c.Bl

c.Bl : 111⨁111=000

c to d Bt & (c,d).Bc & d.Bl

111&110&111=110
Bt⨁ d.Bl

d.Bl : 110⨁111=001

d to e 110&100&111=100 e.Bl : 100⨁111=011

e to q 100&010&100=000 No update to q.Bl

Example of edge traversals. Bitsets with underscore

refers to the updated traversal bitset.

The Vertical-Compression-Based Strategy (VCS)

29

Observation:
More node/edge overlaps exist
among subgraphs generated
from the same snapshot.

Vertically processing:
Process graphs by columns.

The Vertical-Compression-Based Strategy (VCS)

30

• The naïve has high memory costs
and is inefficient.

• VCS
Compress each vertical instance

into a single
graph.

The Vertical-Compression-Based Strategy (VCS)

31

VCS
Compresses each vertical instance

into a single graph.

Requires additional bitsets and new
traversal rules.

Experiment

32

1. Datasets 2. Baselines

(1) SGDU [1] (subgraph-based)
(2) PMC [2] (subgraph-based)
(3) IMM [3] (Sketch-based)
(4) EasyIM [4] (Heuristic)
(5) IMRank [5] (Heuristic)
(6) CELF [6] (Simulation-based)

[1] S. Cheng, et al, “Staticgreedy: solving the scalability-accuracy dilemma in influence maximization,” in CIKM, 2013.

[2] N. Ohsaka, et al, “Fast and accurate influence maximization on large networks with pruned monte-carlo simulations,” in AAAI, 2014.

[3] Y. Tang, et al, “Influence maximization in near-linear time: A martingale approach,” in SIGMOD, 2015.

[4] S. Galhotra, et al, “Holistic influence maximization: Combining scalability and efficiency with opinion-aware models,” in SIGMOD, 2016.

[5] S.Cheng, et al,“IMrank: influence maximization via finding self-consistent ranking,” in SIGIR, 2014.

[6] J. Leskovec, et al, “Cost-effective outbreak detection in networks,” in SIGKDD, 2007.

Experiment Results for the IM Problem

33

*

*

* The y-axes in these graphs are in log scale.

Experiment Results for the DIM Problem

34

* The y-axes in these graphs are in log scale.

*

*

Thanks!

35

