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ABSTRACT
In this paper we propose and study the problem of optimizing the

influence of outdoor advertising (ad) when impression counts are

taken into consideration. Given a databaseU of billboards, each of

which has a location and a non-uniform cost, a trajectory database

T and a budget B, it aims to find a set of billboards that has the

maximum influence under the budget. In line with the advertising

consumer behavior studies, we adopt the logistic function to take

into account the impression counts of an ad (placed at different

billboards) to a user trajectory when defining the influence mea-

surement. However, this poses two challenges: (1) our problem

is NP-hard to approximate within a factor of O(|T |1−ε ) for any
ε > 0 in polynomial time; (2) the influence measurement is non-

submodular, which means a straightforward greedy approach is

not applicable. Therefore, we propose a tangent line based algo-

rithm to compute a submodular function to estimate the upper

bound of influence. Henceforth, we introduce a branch-and-bound

framework with a θ -termination condition, achieving
θ
2
(1 − 1/e)

approximation ratio. However, this framework is time-consuming

when |U| is huge. Thus, we further optimize it with a progres-

sive pruning upper bound estimation approach which achieves

θ
2
(1 − 1/e − ϵ) approximation ratio and significantly decreases the

running-time. We conduct the experiments on real-world billboard

and trajectory datasets, and show that the proposed approaches

outperform the baselines by 95% in effectiveness. Moreover, the

optimized approach is around two orders of magnitude faster than

the original framework.
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1 INTRODUCTION
Outdoor advertising (ad) has been a market of 29 billion dollars

since 2017 and its revenue is expected to grow by 3% to 4% per year

to reach 33 billion dollars by 2021
1
. 74% of its growth comes from

the billboard segment [1]. The main audiences of billboards are

people moving along their trips, by vehicles, motorcycles, bikes, etc.

More than 80% drivers notice billboards when driving
2
. Enabled

by the prevalence of positioning devices, tremendous amounts of

trajectories have been generated and recorded [32]. Moreover, the

evidence in our experimental study shows that (Figure 4a), more

than 50% travellers are impressed by more than five billboards on

each trip.

The aforementioned opportunities motivate us to propose and

study a novel research problem, namely optimizing Impression

Counts for Outdoor Advertising (ICOA). Given a billboard database

U, a trajectory database T and a budget B, ICOA aims to find a set

of billboards that have the maximum influence under the budget.

Solving ICOA is imperative as it facilitates the decision making

of an advertiser to achieve the highest return on investment. For

example, the average cost of renting a billboard is $14,000/month

in New York City (NYC) [12]; the total cost of renting 50 billboards

is $700,000/month. That means we can save about $70,000/month

if we can improve the influence by 10%.

To the best of our knowledge, this is the first problem that draws

the inspiration from the intersection of (1) budget constraints, (2)

moving trajectories when impression counts are considered, and (3)

non-uniform costs of renting a billboard. As a result, the following

challenges are important to be addressed.

The first challenge is how to appropriately measure the influence

from a billboard to a user. Studies in consumer behavior report that,

in the real world, users are unlikely to take a meaningful action

when they receive only one message from an ad [7, 9, 13, 24, 28].

Meanwhile, there is evidence showing that the effect of ad repetition

should be measured as an S-shaped function [4, 19, 23, 26], which
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means the ad effectiveness will increase at low levels of repetition

and then decrease as ad repetition increases. The logistic function

has been widely adopted to measure the influence of an ad in many

domain [10, 16, 25, 27, 29], since it matches the above characteristic

of ad effectiveness. More importantly, as aforementioned, most

people pass through more than five billboards during one trip. It

is feasible for a company to rent multiple billboards to ingrain the

ads in the user’s mind. Therefore, we employ the logistic function

to measure the influence from the ads (i.e., a set of billboards) to a

user (i.e., a trajectory recording the user’s travel). The influence of

billboards is small when a user only saw the ad a few times, while

it will increase dramatically upon seeing more. However, when this

user has already seen a sufficient number of the same ad displayed

on different billboards, the effect of additional impressions will

decline as the effect of extra information diminishes.

The second challenge is posed by the property of the logistic

function. The influence model based on the logistic function is

non-submodular, which means any straightforward greedy-based

approach is not applicable to address the ICOA problem (as elabo-

rated in Section 3). Even worse, the non-uniform cost of different

billboards makes the optimization problem intricate. We show that

ICOA is NP-hard to approximate within any constant factor.

In order to address this algorithmic challenge, we propose an up-

per bound estimation method that tightly upper bounds the logistic

function value, by means of a tangent line that intersects with the

logistic S-curve. Based on the upper bound estimation method, we

propose a branch-and-bound framework (Section 4.1). However,

the efficiency and scalability of the branch-and-bound framework

is limited – there is a potential for an exponential search space

against the number of billboards and each upper bound estimation

may visit a large number of trajectories. Even in one city, there

are thousands of billboards and millions of trajectories (as evident

in the real-world datasets used in our experimental study). It is

thus time-consuming to explore all branches to get the optimal

placement plan. Therefore, to further improve the efficiency of our

framework, we devise a θ -termination method (Section 4.3) and a

progressive upper bound estimation method (Section 5) which can

provide a trade-off between efficiency and effectiveness.

The main contributions are summarized as below:

• We propose and study the ICOA problem for the first time,

and show that the influence model based on the logistic

function is non-submodular. We also prove that ICOA is

NP-hard to approximate (Section 3).

• We propose an upper bound estimation method by adap-

tively solving submodular optimization problems. Based on

the upper bound function, we propose a branch-and-bound

framework. We further introduce a θ -termination method to

achieve a trade-off between the efficiency and effectiveness.

It achieves
θ
2
(1 − 1/e) approximation ratio (Section 4).

• To further boost efficiency, we optimize this framework

with a progressive upper-bound estimation method, which

achieves
θ
2
(1 − 1/e − ϵ) approximation ratio and significant

reduction in running-time (Section 5).

• We conduct extensive experiments on real-world trajectory

and billboard datasets in the two largest cites of USA: NYC

and LA. The results validate the effectiveness, efficiency and

scalability of our methods (Section 6).

2 RELATEDWORK
In the following, we discuss the most relevant literature to this

paper: Trajectory-driven Influential Billboard placement (TIP), Site

Selection, and Location-aware IM (LIM). The main differences be-

tween existing works and ICOA are summarized in Table 1.

TIP [32] is closely related to our problem, which also studies bill-

board placement to achieve the best advertising outcome. The core

difference lies in the influence model. In particular, TIP assumes

that a user (i.e., trajectory) can be influenced so long as one bill-

board is close enough to the trajectory the user travels along. Under

such an influence model, when multiple billboards are close to a

trajectory, the marginal influence is reduced to capture the property

of diminishing returns. Therefore, TIP focuses on identifying and

reducing the overlap of the influence among different billboards to

the same trajectories, while keeping the budget constraint into con-

sideration. That is, TIP can maximize the number of distinct users

by impressing as many people as possible for one time. It does not

consider the relationship between the influence effect and counts

of impressions on one user because the model assumes one time

impression is enough. ICOA is built upon a logistic influence model

which has been widely adopted in consumer behavior studies. To

maximize the influence to users, we need to control the overlap to

some extent by impressing the same users several times. Unfortu-

nately, the logistic influence model is non-submodular. Adapting

the greedy approach to ICOA, which effectively solves TIP, could

lead to arbitrarily bad solutions due to the non-submodular of the

influence function.

The site selection problem has received lots of attention, due

to its importance in a wide spectrum of applications. For example,

the supply chain management problem involves a set of spatially

distributed customers and a set of facilities to serve customer de-

mands [2, 5, 15, 20, 21]. The potential locations of facilities and

customers are inputted as a set of fixed locations. The given metrics

are used to measure the distances, travel times or costs between

customers and facilities. Despite the different metrics used, their

goal is to minimize the objective function, e.g., the sum of the dis-

tance, time or cost. Another example is the Maximized Bichromatic

Reverse k Nearest Neighbor (MaxBRkNN) problem. It aims to find

an optimal location, where this location is a kNN of the maximum

number of users based on the spatial distance between this location

and users’ locations [6, 18, 30, 31, 33]. Although the supply chain

management problem, MaxBRkNN and ICOA fall under the gen-

eral category of the site location problem, they are different in the

following ways. ICOA aims to maximize the ad influence, whereas

the rest seek to minimize the objective function. In addition to

the differences in influence models, the supply chain management

problem and MaxBRkNN assume that each user remains at a fixed

location, whereas ICOA leverages moving trajectories to model the

influence between users and billboards when a user travels along a

trajectory and meets a number of billboards.

The Location-aware IM (LIM) problem [14, 17] is extended from

Influence Maximization (IM) problem, which aims to select a size-k
subset from a given social network. The difference is that LIM only

measures the spread of influence on users who are located in the

given search region. Although IM/LIM and ICOA share the same

ultimate goal, which is to maximize influence, they are different



Table 1: Related work
ICOA TIP Site Selection

Audience Moving trajectory Moving trajectory Fixed location

Influence Logistic One-time impression N.A.

|S| Budget Constrained Budget Constrained Predefined k -size

Table 2: Frequently used notations
Symbol Description
p(S , t ) (p↑(S , t )) The (upper bound) influence of S to t
I (S ) (I ↑(S )) The (upper bound) influence of S to T

∆(S2 |S1) The marginal influence of adding S2 into S1
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Figure 2: An example of
ICOA

in two aspects. First, influence models of IM/LIM are submodular,

whereas the logistic model is not. This implies that the simple

greedy approach is not suitable for ICOA. Second, in the IM problem,

the influence can be spread from a user to others. In our model, a

user can be only impressed by a billboard through which this user

passed under a range constraint.

3 PROBLEM FORMULATION
In this section, we introduce how billboards influence trajectories

and the formulation of the ICOA problem. The frequently used

notations are presented in Table 2.

3.1 Preliminary
A trajectory database is denoted as T = {t1, t2, ..., t |T |}, where
each trajectory t = {p1,p2, ...,p |t |} is a set of points generated

from the trajectory of a user. Point p consists of the latitude lat and

longitude lng. Given a billboard database U = {o1,o2, ...,o |U |},
each billboard o is a tuple {loc,w}, where loc is also a coordinate

andw is the cost of billboard o.
Although different ad companies use different strategies to set

the renting cost, the cost is usually proportional to the real impres-

sion. How to measure the impression depends on the application

needs, such as the panel size, the exposure frequency, the travel

speed or the travel direction. Herewe generate the cost of a billboard

based on the number of trajectories impressed by this billboard. The

detail is shown in Section 6.2. We also show that various strategies

of setting the cost do not affect the performance of our methods in

Appendix A.2.

We assume there are only two states of whether a user meets a

billboard. When the user meets a billboard, we say this billboard

impresses the user; otherwise, no impression is delivered. Therefore,

we use the Bernoulli random variable I (o, t) denoting the states

whether o impresses t , where I (o, t) = 1 denotes that o delivers an
impression to t , otherwise I (o, t) = 0.

Definition 3.1. We define that o impresses t , denoted as I (o, t) =
1, if ∃t .pi , such that dist(t .pi ,o.loc) ≤ λ, where dist(·) computes

the Euclidean distance between pi and o.loc , λ is a given distance

threshold.

Our influence model is based on the logistic function. We use

the following equation to compute the effective influence of an ad

placed at a billboard set S which can impress a trajectory t :

p(S, t) =

{
1

1+exp {α−β ·Σoi ∈S I (oi ,t )}
i f ∃oi ∈ S I (oi , t) = 1

0 otherwise
(1)

α and β are the parameters that control t ’s turning point for being

influenced, where α controls the overall influence of S to t and β
controls the incremental influence of o to t . The S-curve in Figure 1

shows the shape of the logistic influence model. When β is fixed,

with the increasing of α , it is hard to have any significant influence

with a small number of billboard impressions. In contrast, when α
is fixed, with the increasing of β , each billboard impression triggers

a noticeable influence impact.

Next, we define the influence of S to a trajectory database T as

follows:

I (S) =
∑
t ∈T

p(S, t) (2)

Example 3.1. Let S = {o3,o4} be a set of billboards chosen from

all billboards in Figure 2, and trajectories t1, t2 and t3 are influenced
by at least one billboard in S since there is at least one point p of

each trajectory, which is in the red circle of a billboard. The red

circle indicates the impression range of a billboard with its radius

controlled by λ. Assuming the parameters α = 3, β = 1, based on

Equation 1, we have p(S, t1) = 0.119, p(S, t2) = p(S, t3) = 0.269,

and p(S, t4) = 0, respectively. Hence, the overall influence of S is

I (S) = 0.119 + 0.269 + 0.269 = 0.657.

3.2 Problem Definition
We are now ready to formally introduce the ICOA problem.

Definition 3.2. (ICOA) Given a billboard databaseU, a trajec-

tory database T , a budget constraint B and the influence model I (S),
the ICOA problem is to find a subset S ⊆ U that maximizes the

overall influence of S such that the total cost of S does not exceed B.
Formally,

Ŝ = argmax

cost (S )≤B
I (S) (3)

Non-submodularity of ICOA. Given two sets of billboards S1 and

S2, the marginal influence of adding S2 into S1 is ∆(S2 |S1) = I (S1 ∪

S2) − I (S1). Then, we define the monotonicity and submodularity of

an influence function as follows. I (S) is monotone iff, I (S1) ≤ I (S2)

for all S1 ⊆ S2. Furthermore, I (S) is submodular iff, given any set

of billboards S∗, it satisfies ∆(S∗ |S1) ≥ ∆(S∗ |S2) for all S1 ⊆ S2. The

following presents a counterexample for the influence function to

be submodular.

Example 3.2. Assuming the same settings as in Example 3.1,

we choose three billboard sets S1 = {}, S2 = {o3}, S3 = {o4}. The

respective influence andmarginal influence values can be calculated

as I (S1) = 0, I (S2) = 0.3576, I (S3) = 0.2384, ∆(S3 |S1) = 0.2384,

∆(S3 |S2) = 0.657 − 0.357 = 0.2994. Since S1 ⊆ S2 and ∆(S3 |S1) <

∆(S3 |S2). We thus conclude I (S) is not submodular.

Due to the non-submodularity of ICOA, a greedy-based heuristic

method cannot guarantee any constant approximation ratio.



Algorithm 1: Branch-and-Bound
Input:U, T , B
Output: Ŝ

1.1 Ŝ ← ϕ, S ← ϕ, S̄ ←U

1.2 LG ← 0,UG ←∞

1.3 Initialize max heap H ← (S, S̄,U )

1.4 while LG < UG do
1.5 (S, S̄,U ) ← top of H

1.6 Select o ∈ S̄

1.7 if cost{S} + o.w ≤ B then
1.8 S̄ ← S̄\{o}

1.9 Sa ← S ∪ {o}

1.10 Sb ← S

1.11 (Sc , La,U a ) ← ComputeBound(Sa, S̄)
1.12 if La > LG then
1.13 LG ← La , Ŝ ← Sc

1.14 if U a > LG then
1.15 H ← H ∪ (Sa, S̄,U a )

1.16 Repeat Lines 1.11-1.15 for Sb

Theorem 3.1. The ICOA problem is NP-hard to approximate within

a factor of O(|T |1−ε ) for any ε > 0 in polynomial time.

Proof. Kindly refer to the proof in Appendix A.4. �

4 OUR FRAMEWORK
According to Theorem 3.1, there does not exist any efficient al-

gorithm with constant approximation ratio to ICOA. One naïve

solution is to enumerate all feasible billboard subsets and compute

their influence. However, this is not scalable against thousands of

billboards and millions of trajectories.

Thereby, we propose a branch-and-bound framework (Section 4.1).

It explores branches, which represent respective feasible billboard

sets that have not yet exhausted the budget and can be filled with

more billboards. In particular, we propose a novel bound estimation

technique for each branch under exploration by setting a submod-

ular function to tightly upper bound p(S, t) ∀t ∈ T (Section 4.2).

The estimation technique will obtain a candidate solution (i.e. the

billboard set which cannot be further expanded due to the budget

constraint) when calculating the upper bound score of a branch.

The exploration terminates when the upper bound of all remaining

branches does not exceed the influence value of the best candidate

solution. Theoretically, the branch-and-bound framework achieves

an approximation ratio of
1

2
(1 − 1/e).

4.1 Branch-and-Bound
Algorithm 1 depicts the pseudocode of the branch-and-bound frame-

work. We first initialize the global upper boundUG and global lower

bound LG , and a max heap H with each entry denoted as (S, S̄,U )
(Lines 1.1-1.3), where S is the set of billboards that have been se-

lected as a feasible set, S̄ is the set of billboards that have not been

considered yet, and U is the upper bound influence of the corre-

sponding search space. H is ordered by the upper bound value of

each S . While LG < UG , H will pop the top entry that has the

maximum upper bound influence (Lines 1.4-1.5). For each entry, as

long as it matches the budget constraint, it will generate two new

Algorithm 2: ComputeBound

Input: Sa ,S̄
Output: (Sc , La,U a )

2.1 S∗ ← ϕ

2.2 while cost(Sa ) + cost(S∗) ≤ B and |S̄ | , 0 do

2.3 Select o ∈ S̄ that maximize
∆↑({o } |Sa∪S∗)

o .w
2.4 if cost(Sa ∪ S∗) + o.w ≤ B then
2.5 S∗ ← S∗ ∪ {o}

2.6 S̄ ← S̄\{o}

2.7 Sc ← (Sa ∪ S∗), La ← I (Sa ∪ S∗),U a ← I ↑(Sa ∪ S∗)

branches (Sa and Sb ) based on S respectively (Lines 1.6 - 1.10). Sa

denotes a feasible set where a billboard o ∈ S̄ can be further added

into S , and Sb denotes a feasible set excluding o.

Based on Sa (or Sb ) and the corresponding S̄ , ComputeBound(·)

will return a triple, i.e., (Sc , La,U a ) or (Sc , Lb ,U b ), where Sc is a

candidate solution set returned by ComputeBound(·). La and U a

are the lower-bound influence and upper bound influence of Sc

respectively (Line 1.11). If La > LG , which means Sc is better

than the current best feasible solution Ŝ , then Ŝ will be replaced

by Sc , and the global LG is updated (Lines 1.12-1.13). If U a > LG ,
it is possible that Sa is a subset of the optimal solution. Therefore,

(Sa, S̄,U a ) will be pushed into H (Lines 1.14-1.15). We repeat the

search loop for all branches until LG ≥ UG .

4.2 ComputeBound
To estimate the upper bound of a branch w.r.t. a feasible set Sa , we

devise a submodular function (i.e., p↑(S, t) and S = Sa ∪ S∗ ) which
tightly upper bounds the non-submoular influence function p(S, t)
(Equation 1). Let x(S) denote the number of effective impressions to

t obtained by placing ads in billboard set S (i.e., x(S) = Σoi ∈S I (oi , t))
and f (x(S)) = 1/(1+exp{α −β ·x(S)}) = p(S, t). We draw a tangent

line l(x) to upper bound f (x). l(x) intersects f (x) at two points:

(x(Sa ), f (x(Sa ))) and (xS
a

t , f (x
Sa
t )) where the latter denotes the

tangential point (see Figure 1). Formally, we define the upper bound

function p↑(S, t) for S = Sa ∪ S∗ as follows
If l(x) exists:

p↑(S, t) =

{
l(x) if x(Sa ) ≤ x ≤ xS

a

t
f (x) if xS

a

t < x
(4)

Otherwise:

p↑(S, t) = f (x) (5)

As shown in Figure 1, p↑(S, t) is submodular as it concatenates

two submodular functions: l(x) and f (x) for different domains of

x . Furthermore, we define the following submodular function that

upper bounds the influence function I (S) for S = Sa ∪ S∗.

I ↑(S) =
∑
t ∈T

p↑(S, t) (6)

It is easy to see that I ↑(S) ≥ I (S) as p↑(S, t) ≥ p(S, t) for all S =

Sa ∪ S∗. Furthermore, I ↑(S) is submodular because it is a sum of

submodular functions. To ease our presentation, we define the

marginal influence I ↑(·) of adding S2 into S1 as below:

∆↑(S2 |S1) = I ↑(S1 ∪ S2) − I
↑(S1) (7)

Given the upper bound function I ↑(·), we introduce Algorithm 2

to estimate the upper bound of a branch. Sa is one of the two



……
S

S
U

{}

1 2 3 4{ , , , }o o o o


aS

aU

1{ }o

2 3 4{ , , }o o o

0.4768

bS
S

bU

{}

2 3 4{ , , }o o o

0.7657

1o

aS
S

aU

4{ }o

1 2 3{ , , }o o o

0.7657

bS

S
bU

{}

1 2 3{ , , }o o o

0.4768

4o

2o

3o

aS

S
aU

2{ }o

3 4{ , }o o

0.4768

bS

S
bU

{}

3 4{ , }o o
0.7657

aS

S
aU

4{ }o

2 3{ , }o o

0.7657

Step 1

Step 2

Step 3

Step 4

2o

4o

3o

Step 5

Step 6

Step 7 ……

S

bS

S
bU

{}

2 3{ , }o o

0.3576

UG

cS

LG 0

{}


Sa

0.4768

1 3{ , }o o


Sb

0.6571

3 4{ , }o o


Sa

0.6571

3 4{ , }o o


Sb

0.6571

3 4{ , }o o
 0.7657

Sa

0.6571

3 4{ , }o o
0.7657

Sb

0.6571

3 4{ , }o o
0.7657

Sa

0.6571

3 4{ , }o o
0.7657

Sb

0.6571

3 4{ , }o o

Step 1Step 0 Step 4 Step 5 Step 7

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 3: A running example of branch-and-bound frame-
work

branches under exploration in Algorithm 1. S̄ is the set of billboards

that have not yet been considered. S∗ is the set of billboards that
have been chosen from S̄ by using the cost-effective greedy heuristic
under the budget constraint. The algorithm terminates until adding

any remaining billboards will exceed the budget (Lines 2.3-2.6).

Then, a triple (Sc , La,U a ) is returned.

Since I ↑(·) is submodular, Sc achieves a constant approximation

ratio w.r.t. I ↑(·) for all candidate solutions containing Sa . It is noted

that the tangent line of p↑(S, t) for S = Sa ∪ S∗ will be adjusted
according to different Sa before the launch of Algorithm 2. The

adjustment of the tangent line ensures a tighter upper bound as

depicted in Figure 1. While the cardinality of Sa increases, the point

(x(Sa ), f (x(Sa ))) will move to the right. Therefore, the tangent line

will shift from Line 1 to Line 2. Since the distance from l(x) to f (x)
decreases, it achieves a tighter upper bound.

Example 4.1. Figure 3 shows the running example of the branch-

and-bound framework. The top part is the search tree. Each node

is an entry (S, S̄,U ). The table shows the values of Sc , UG and LU
for each search step. Let B = 50, o1.w = 10, o2.w = 30, o3.w = 30,

o4.w = 20. The rest of the parameters are the same as Example 3.1.

We first initializeH with an entry ({}, {o1,o2,o3,o4},∞) as the root

node of the searching tree. Next, at step 1, we pop this entry, and

invoke Algorithm 2 to generate two branches based on this entry,

and push them into H . Since U b > U a > LG and Lb > La > LG ,

we update Ŝ with Sc = {o3,o4} and set LG = Lb = 0.6571. Similarly,

at step 4, the branch Sa is pushed into H since U a > LG . Note

that, the branch Sb will be pruned since U b < LG . For now, all
branches based on the root node have been generated, and those

withU > LG have been pushed into H . Subsequently, the branch

with Sb = {} and S̄ = {o2,o3,o4} is popped because it has the

highest upper bound in H .UG will be replaced byU of this branch,

which meansUG = U = 0.7657. Six branches are generated with or

without o2, o3 and o4 respectively.

The branches which U > LG will be added into H , such as the

branch Sb of step 5 and the branch Sa of step 7. When LG is larger

thanUG , it means that, in the rest of branches in H , the one with

the highest U is worse than the optimal solution. The algorithm

thus terminates.

The upper bounding techniques lead to a constant approximation

ratio for the solution returned by the branch-and-bound framework.

Theorem 4.1. The branch-and-bound framework invoking Algo-

rithm 2 achieves an approximation factor of
1

2
(1 − 1

e ) for the ICOA

problem.

Proof. Let OPT denote the optimal solution. Let Ŝ denote the

solution set from Algorithm 1. S∗ = {o1, ...,on }. Let S
∗
denote the

feasible set returned from Algorithm 2. In each iteration, o will be
added into S∗. Let S∗n = {o1, ...,on } , where on is the last one added

into S∗n−1
within the budget constraint. on+1 is the first billboard

considered but not added to S∗n , because its addition would violate

the budget B.
It has been proven in the BMC work [11] that, based on the cost-

effective greedy method, ∆↑(S∗n |S
a ) + ∆↑({on+1}|S

a ) ≥ ∆↑(S∗n ∪

{on+1}|S
a ) ≥

(
1 − 1

e

)
· ∆↑(OPT |Sa ) holds. Therefore, at least one

of ∆↑(S∗n |S
a ) and ∆↑({on+1}|S

a ) is not smaller than
1

2
(1 − 1

e ) ·

∆↑(OPT |Sa ). While one of (S∗n ∪ S
a ) and {on+1 ∪ S

a } will be Ŝ , we

have∆↑(Ŝ) ≥ 1

2
(1− 1

e )·∆
↑(OPT |Sa ) based on all explored Sa . Hence,

I ↑(Ŝ) ≥ 1

2
(1 − 1

e ) · I
↑(OPT |Sa ). For any branch that has not been

searched, under the termination condition L < U , we have I (Ŝ) ≥
I ↑(S). Therefore, Algorithm 1 achieves I (Ŝ) ≥ 1

2
(1− 1

e ) · I (OPT ). �

4.3 Branch-and-bound with θ-termination
It is noted that the search space of the branch-and-bound frame-

work is exponential in the worst case. Although the upper bound

estimation technique can prune a large number of branches, it in-

herently overestimates the influence value. As a result, there could

be cases where the optimal solution has already been obtained but

the search cannot terminate, because there exists an unexplored

branch containing a solution which is also near optimal. In this

case, the unexplored branch will have a higher upper bound value

than the optimal influence value and the branch thereby cannot be

pruned. It is unnecessarily expensive for exploring all remaining

branches to reach other near-optimal solutions.

Therefore, we introduce a tunable early termination method.

In Algorithm 1 (Line 1.4), we utilize a parameter θ to control the

termination condition – instead of using LG < UG , we use LG <
θUG as the termination condition, where θ ∈ (0, 1]. When L and

U are close enough, the search process terminates. It can be easily

shown that the early termination technique achieves
θ
2
(1 − 1/e)

approximation ratio.

Theorem 4.2. The branch-and-bound framework invoking Al-

gorithm 2 with θ -termination achieves an approximation ratio of

θ
2
(1 − 1

e ) for the ICOA problem.

5 PROGRESSIVE BRANCH-AND-BOUND
The branch-and-bound framework heavily invokes Algorithm 2 for

bound estimations. For every search iteration in Algorithm 2 (Lines

2.3-2.6), the greedy selection needs to recalculate the marginal

gain ∆↑({o}|Sa ∪ S∗)/o.w for all o ∈ S̄ , and chooses the maximum.



Algorithm 3: Progressive-ComputeBound

Input: Sa ,S̄ ,ϵ
Output: (Sc , La,U a )

3.1 Reorder o ∈ S̄ by
∆↑({o } |Sa )

o .w

3.2 h ← maxo∈S̄
∆↑({o } |Sa )

o .w , r = B − cost(Sa )

3.3 S∗ ← ϕ

3.4 while cost(S) + cost(S∗) ≤ B do
3.5 for o ∈ S̄ do
3.6 if cost(Sa ∪ S∗) + o.cost ≤ B then
3.7 δ ({o}, S∗) = ∆↑(S∗ ∪ {o}|Sa ) − ∆↑(S∗ |Sa )

3.8 if δ ({o },S∗)
o .w ≥ h then

3.9 S̄ ← S̄\{o}

3.10 S∗ ← S∗ ∪ {o}

3.11 if δ ({o },S∗)
o .w < h then

3.12 Break

3.13 h ← h
1+ϵ

3.14 if h ≤ ∆↑(S∗ |Sa )
r · e−1

1−e−1
then

3.15 Break

3.16 Sc ← (Sa ∪ S∗), La ← I (Sa ∪ S∗),U a ← I ↑(S∗ ∪ Sa )

When |S̄ | is huge, such bound estimation approach incurs significant

computation overhead. Motivated by this, we propose a progressive

upper bound estimation method without traversing all billboards to

estimate the bound with an approximation ratio of
θ
2
(1 − 1/e − ϵ),

where ϵ is a tunable parameter that provides a trade-off between

efficiency with accuracy.

In particular, instead of exploring all billboards to find the one

with maximal δ ↑({o}|Sa )/o.w in each iteration, we sort them by

δ ↑({o}|Sa )/o.w first (Line 3.1). Then, we set a threshold h as the

maximal δ ↑({o}|S∗)/o.w (Line 3.2). We progressively decrease h
by a factor of (1 + ϵ) and add more o ∈ S̄ into S∗ (Lines 3.5-

3.13). The algorithm terminates when there is no billboard whose

∆↑({o}|Sa )/o.w ≥ h. As a result, we do not need to explore all

billboards in order to find the best one, and when h is small enough,

the algorithm can terminate early.

In the rest of this section, we analyze the approximation ratio of

Algorithm 3.

Lemma 5.1. Let r = B − cost(Sa ), which is the remaining budget.

In Algorithm 3, at the ith iteration of search loop, after oi has been
added into S∗i−1

, the following holds:

∆↑(S∗i |S
a ) − ∆↑(S∗i−1

|Sa ) ≥
oi .w

(1 + ϵ)r
· (∆↑(OPT |Sa ) − ∆↑(S∗i−1

|Sa ))

Proof. LetOPT denote the optimal S∗ returned from Algorithm

3. Let oi denote the billboard to be added into S
∗
i−1

at a given thresh-

old h. Since I ↑(·) is submodular, it holds that:

δ ({o}, S∗)

o.w

{
≥ h if o = oi
≤ h(1 + ϵ) if o ∈ OPT \(S∗ ∪ {oi })

(8)

where S∗ is the set of candidate billboards and δ ({o}, S∗) is defined
as Line 3.7 of Algorithm 3. From Equation 8 we can find that, for any

o ∈ OPT \S∗, δ ({oi }, S
∗)/oi .w ≥ δ ({o}, S∗)/o.w(1 + ϵ). Therefore,

we have δ ({oi }, S
∗) ≥

oi .w
(1+ϵ )(cost (OPT \S∗))Σo∈OPT \S∗δ ({o}, S

∗) ≥
oi .w
(1+ϵ )r Σo∈OPT \S∗δ ({o}, S

∗).

Let S∗i denote the feasible set that oi has been added into, i.e.,

S∗i = {o1, ...,oi }. Then we have:

δ ({oi }, S
∗
i−1
) ≥

oi .w

(1 + ϵ)r
Σo∈OPT \S∗i−1

δ ({o}, S∗i−1
)

≥
oi .w

(1 + ϵ)r
·
(
∆↑(OPT ∪ S∗i−1

|Sa ) − ∆↑(S∗i−1
|Sa )

)
≥

oi .w

(1 + ϵ)r
·
(
∆↑(OPT |Sa ) − ∆↑(S∗i−1

|Sa )
)

Then by the definition of δ ({o}, S∗), we have:

∆↑(S∗i |S
a ) − ∆↑(S∗i−1

|Sa ) ≥
oi .w

(1 + ϵ)r
· (∆↑(OPT |Sa ) − ∆↑(S∗i−1

|Sa ))

Thus, the lemma is proved. �

Theorem 5.2. The branch-and-bound framework invoking Algo-

rithm 3 achieves an approximation ratio of
θ
2
(1 − 1/e − ϵ).

Proof. Based on Lemma 5.1, it is easy to get:

∆↑(S∗n′+1
|Sa ) ≥

(
1 −

n+1∏
k=1

(1 −
ok .w

(1 + ϵ)r
)

)
· ∆↑(OPT |Sa )

≥

(
1 − e

−(n+1)

(1+ϵ )(n′+1) )

)
· ∆↑(OPT |Sa )

Therefore, we have:

∆↑(S∗n′ |S
a ) ≥

1

2

(
1 − e

−(n+1)

(1+ϵ )(n′+1) )

)
· ∆↑(OPT |Sa )

where n = |S∗n |, which is the number of billboards returned from

Algorithm 3 when the budget is exhausted, n′ is the number of

billboards when the budget is not exhausted. Because Algorithm 3

will be terminated when h ≤ ∆↑(S∗ |Sa )
r · e−1

1−e−1
, we have n′ ≤ n.

Case 1: when n′ = n, we have:

∆↑(S∗ |Sa ) ≥
1

2

(1 − e−1 − ϵ) · ∆↑(OPT |Sa )

Case 2: when n′ < n, n′ · o.w < r , we have:

∆↑(OPT |Sa ) ≤ ∆↑(OPT ∪ S∗ |Sa )

≤
∆↑(S∗ |Sa )

r
·

e−1

1 − e−1
· Σo∈OPT <S∗o.w + ∆

↑(S∗ |Sa )

≤
1

1 − e−1
∆↑(S∗ |Sa )

Therefore, ∆↑(S∗ |Sa ) ≥ 1

2
(1 − 1

e − ϵ) · ∆
↑(OPT |Sa ). Similar to the

proof of Theorem 4.2, we have: I ↑(S̄) ≥ θ
2
(1 − 1

e − ϵ) · I
↑(OPT ).

Theorem 5.2 is proved.

�
6 EXPERIMENT
6.1 Experimental Setup
Datasets.The real-world billboard datasets for the two largest cities
in the US (NYC and LA) are crawled from LAMAR [12], one of the

largest outdoor advertising companies worldwide. The real-world

trajectory datasets are obtained as follows. For NYC, we collect five

hundred thousand taxi trips from TLC trip record
3
. Each trip record

includes the pick-up and drop-off locations, time and trip distances.

We use Google Maps API
4
to generate the trajectories. Similar to

[32], we only keep the trajectory if (1) the distance of the generated

3
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

4
https://developers.google.com/maps/



Table 3: Statistics of datasets
|T | |U | AvgDistance AvgTravelTime AvgPoint

NYC 600k 1500 2.9km 569s 159

LA 250k 2500 2.7km 511s 138

Table 4: Parameter settings
Parameter Values

B 100k, 200k, 300k, 400k, 500k
|T | (NYC) 100k, 200k, 300k, 400k, 500k, (1m, ..., 5m)

|T | (LA) 50k, 100k, 150k, 200k, 250k
β/α 3/7, 3/8, 3/9, 3/10, 3/11
ϵ 10

−4
, 10
−3
, 10
−2
, 10−1, 1

θ 0.86, 0.88, 0.90, 0.92, 0.94
λ 25m, 50m, 75m, 100m
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Figure 4: Distribution of Datasets in NYC

trajectory is close to that of the trip record, and (2) the travel time

of the generated trajectory is close to that of the trip record (within

5% error rate). For LA, as there is no public taxi record, we collect

the Foursquare check-in data and generate the trajectories using

Google Maps API by randomly selecting the pick-up and drop-out

locations from the check-ins.

Figure 4a shows the distribution of trajectories according to the

number of billboards that a trajectory can pass over in NYC.We find

more than 50% trajectories can pass over more than 5 billboards,

which validates the motivation of this work as well as our use of

the logistic function for influence modelling. Figure 4b shows the

distribution of billboard cost.

6.2 Experiment Setting
Performance Measurement. For each method we evaluate the

runtime and the influence value of the selected billboards. Each

experiment is repeated ten times, and the average result is reported.

Billboard Costs. There is no exact leasing cost of billboard pro-

vided by any advertising companies. To the best of our knowledge,

they only provide a range of costs based on different areas. For

example, according to the LAMAR company, the cost of the most ex-

pensive billboard is about thirty times higher than the cheapest one.

Therefore, we generate the costs of billboard based on how many

trajectories this billboard can influence, o.w = ⌈kΣti ∈T I (o, ti )⌉,
where k is a factor chosen from 0.5 to 2 randomly to simulate vari-

ous ratio of influence to cost. Then we map the costs of billboards

to an interval from $2,000 to $60,000.

Experiment Environment. All codes are implemented in Java.

Experiments are conducted on a laptop with Intel Core i7-8550U

CPU and 16GB memory running Windows 10.

Parameter Settings. Table 4 shows the settings of all parameters,

and the default one is highlighted in bold. In all experiments, we

only vary one parameter and keep the rest by default. α and β are

the parameters in the logistic function that control t ’s turning point
for influence. We set β = 3, and vary α from 7 to 11. ϵ is used

in Algorithm 3 to trade efficiency with accuracy, and θ is used in

Algorithm 1 to control the termination condition. The methodology

on selecting the default settings is shown in Appendix A.

Metrics &Methods forComparison. In particular, wewould like
to evaluate the efficiency, effectiveness and scalability of our meth-

ods. To the best of our knowledge, this is the first work studying

how to optimize outdoor ad influence by considering the impres-

sion counts over moving trajectories. Despite that, we compare the

following baselines.

• Greedy: A basic greedy algorithm. In each iteration, it adds

o with the maximum ratio of marginal influence to cost (i.e.,

∆↑({o } |S∗)
o .w ) into S∗ until reaching the budget constraint.

• Top-k : In each iteration, it chooses o which can influence the

maximum number of trajectories until reaching the budget

constraint.

• BBS: The branch-and-bound framework with θ -termination

and Algorithm 2 for bound estimations.

• PBBS: The branch-and-bound frameworkwith θ -termination

and Algorithm 3 for bound estimations.

• LazyProbe: The best-performing method in the most recent

trajectory-driven billboard placement study [32]. Recall Sec-

tion 2, our work and [32] are developed based on different

influence models; LazyProbe can only work with a submodu-

lar influence function. Although it is not fair for our methods

to be compared with a submodular influence model, we still

compare our method with LazyProbe in Section 6.6, while

we neglect it in other experiments.

6.3 Varying the Budget B
Figure 5 shows the effectiveness and efficiency of all algorithms

when varying the budget B in NYC and LA, respectively.

Effectiveness. From Figure 5a and Figure 5c, we make the follow-

ing observations. First, when the budget raises from 100k to 500k,

both BBS and PBBS outperform Greedy, from 10% to 95%. Second,

PBBS is slightly worse than BBS by up to 8%. It is because Algorithm

3 may terminate early for some branches and miss some ideal selec-

tions. Third, Top-k has the worst performance, as it gives preference

to the billboard with the highest influence in each iteration, which

is usually the most expensive billboard in the real world. Hence, it

can only choose a few of billboards when the budget is fewer. A few

billboards are unlikely to overlap, which makes our solutions better

than it by at most 25 times in NYC, and 15 times in LA, respectively.

When the budget is big enough, the growing effectiveness is mainly

contributed from a growing number of billboards, which makes the

advantage of our solutions dwindle to about 3 times in NYC, and 1

time in LA, respectively. Last, the advantage of BBS and PBBS in LA

is less than that in NYC. One possible reason is that the distribution

of trajectories in LA is comparatively even, making it more possible

to have influence overlaps among billboards.

Efficiency. From Figure 5b and Figure 5d, we have three observa-

tions. First, the running time of BBS increases significantly w.r.t.

the budget B. This is because in every branch, BBS has to invoke

Algorithm 2, which needs to calculate the unit marginal influence

for all o ∈ S̄ in each iteration. When B increases, more billboards
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can be selected into S∗, and thus more iterations are needed. Second,

the running time of PBBS increases by 100% when B increases. The

reason is that, Algorithm 3 does not need to recalculate the unit

marginal influence for every o ∈ S̄ . Last, Top-k is the fastest one

since it only scans all billboards once.

6.4 Varying the Number of Trajectories |T |
Effectiveness. As shown in Figure 6a and Figure 6c, we have three

observations. First, the influence of all methods increase because

more trajectories can be influenced. Second, the effectiveness of

BBS and PBBS consistently outperform that of Greedy and Top-k by

up to 60% and 300%, respectively. Last, the advantage of efficiency

of BBS and PBBS in LA is less than that in NYC for similar reason

mentioned in Section 6.3.

Efficiency. From Figure 6b and Figure 6d, we have the following

observations. First, PBBS is about one order of magnitude faster

than BBS. Second, the running time of all methods increase almost
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linearly w.r.t. |T |, except for Top-k , because it chooses the billboards
that can influence the most number of trajectories, which can be

calculated off-line.

6.5 Scalability Test
To evaluate the scalability of our methods BBS and PBBS, we vary

|T | from 500k to 5M, and |U| from 1,500 to 15,000. As shown in

Figure 7a, the efficiency of BBS is more sensitive than that of PBBS

when varying |U|. With the increase of |U|, the growth rate of

running time of BBS is larger than that of PBBS. In particular, PBBS

is 15 times faster than BBS at |U| = 1, 500, while such performance

gap increases to almost two orders of magnitude at |U| = 6, 000.

Since BBS takes more than 10
4
seconds to complete when the num-

ber of billboards |U| exceeds 6,000, its result is omitted in Figure

7a. Varying |T | leads to a similar result. As shown in Figure 7b, the

results are omitted for BBS since the approach cannot terminate

within 10
4
seconds when |T | exceeds 3.5M.



6.6 Our methods vs. LazyProbe [32]
In this experiment, we try to compare our work with the related

work [32], although its goal is to maximize the influence while

reducing the influence overlap, which is different from ours. In par-

ticular, we choose the best-performing method in [32], LazyProbe,

and use the default setting as specified in [32]. Since LazyProbe

can only work with a submodular influence model while ours is

non-submodular, we have to adapt our influence model to be sub-

modular by adjusting α and β , although it is actually not fair for

our methods. It means if a trajectory is influenced by a billboard,

i.e., if ∃oi ∈ S , I (oi , t) = 1, then p(S, t) = 1.

Figure 8 shows the experiment result. LazyProbe has the best

effectiveness , which outperforms BBS, Greedy and PBBS by up to

3%, 3% and 6% respectively. It is because LazyProbe enumerates all

feasible billboard sets whose cardinality is no larger than 3, and

invokes a greedy-based dynamic computation function to get the

result, which makes it achieve (1 − 1/e) approximation ratio. In

contrast, BBS and PBBS aremuch faster than LazyProbe, around one

order of magnitude and two orders of magnitude respectively. The

reason lies in the influence function. As aforementioned, p(S, t) = 1

if ∃oi ∈ S , otherwise p(S, t) = 0. Therefore, the upper bound is

equal to the lower bound. The branch-and-bound framework does

not search for further, deeper branches. It will try to complete Sc

with or without a billboard and terminates after finishing the first

iteration. Hence, BBS is slightly better than Greedy, but worse

than LazyProbe on effectiveness. Since PBBS may miss some ideal

selections, it is slightly worse than the rest except Top-k .

7 CONCLUSION
We first introduced a non-submodular influence model, which is

widely adopted in many areas such as consumer behaviour and

advertising marketing, etc. Based on this influence model, we stud-

ied the ICOA problem and proved that it is NP-hard to approx-

imate. More importantly, a simple cost-effective greedy method

cannot work well since the logistic-based influence model is not

submodular. Then, we proposed a method to compute the upper

bound by using a dynamic tangent line to tightly bound the real

influence. By utilizing this upper bound computation method, we

built a branch-and-bound framework to solve ICOA problem. To

reduce the computational cost, we further proposed a θ -termination

method and a progressive bound computation algorithm. Lastly,

we conducted experiments on real-world datasets to verify the effi-

ciency, effectiveness adaptability, and scalability of our methods.
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A APPENDIX
A.1 Parameter Sensitivity Test
In this part, we conduct the sensitivity experiments of our methods

by varying parameters. We only vary one parameter and keep the

rest by default setting as shown in Table 4. The experimental results

will be explained, and we will describe how we choose the default

settings.

A.1.1 Varying β/α
As we mentioned in Section 3.2, α and β are the parameters that

control the turning point for the influence. The bigger the β/α
is, the more times of impression are needed to change a user’s

adoption. With the increase of β , the influence from one billboard

to one user becomes larger. A huge β leads to a sudden change of

a user’s adoption, whereas a small β makes the changing process

smooth.

Moreover, studies show that there is a high chance that a person

will change her adoption action after noticing a message more than

four times [4, 8, 19, 22]. Therefore, we make the parameter setting

satisfy the above assumption, which means that, when a trajectory

has been influenced more than four times, the influence is larger

than 0.95 (i.e., p(S, t) > 0.95 when Σoi ∈S I (oi , t) ≥ 4). Hence, we fix

β = 3 and vary α from 7 to 11. Based on Equation 1, β/α rises when

α drops, which increases the influence from o to t . It also leads to

higher overall influence.

Figure 9 shows the experimental results of varying β/α . We find

that with the increase of β/α , our solutions outperform baselines by

50% to 100%. Note that, varying β/α does not affect the efficiency

of all methods. Therefore, we choose α = 7 and β = 3 as the

default setting since our solutions have the smallest advantage of

effectiveness for the setting.

A.1.2 Varying ϵ
ϵ is used to adjust the step distance of decreasing threshold h in

Algorithm 3. Figure 10 shows the experimental results of varying

ϵ . When ϵ increases from 10
−4

to 1, our solutions decrease by at

most 9% in effectiveness, but speed up by two orders of magnitude.

We find that when ϵ > 10
−1
, the changing of effectiveness and

efficiency tends to be stable. Therefore, we choose ϵ = 10
−1

as the

default setting.

A.1.3 Varying θ
Recall Section 4.1, θ is the parameter controlling the termination

condition. A smaller θ leads to better efficiency with worse effec-

tiveness. Figure 11 shows the experimental results of varying θ .
When ϵ decreases from 0.94 to 0.86, the effectiveness of our solu-

tions decreases by at most 6%, while the performance is improved

at around one order of magnitude speed ups. Therefore, we choose

the median value 0.9 as the default setting, because it reaches an

ideal balance of efficiency and effectiveness.

A.1.4 Varying λ
Figure 12 shows the influence of changing λ on the effectiveness

and efficiency. Recall Section 3.1, λ is a given distance threshold.

A user is impressed by a billboard only if the distance between

them is smaller than λ (i.e., dist(t .pi ,o.loc) ≤ λ). We have the fol-

lowing observations. First, With the increase of λ, the effectiveness
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of all methods improves. The growing effectiveness is mainly con-

tributed from a growing number of trajectories that the billboards

can impress. Second, the advantage of our methods decreases, since

overlaps become easier with larger λ. Last, except for Top-k , the
running-time of all methods increases. The reason for this is similar

to that of the first observation.
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Figure 14: Test on different cost setting strategies

A.2 Different cost setting strategies
In this part, we study the effect of changing strategies of setting

cost. DC is the default strategy as we mentioned in Section 6.2. WI

is based on the weekly impression; that is, the impression statistic

data from LAMAR [12]. Similar to DC, we map the weekly impres-

sion to the cost interval (i.e., $2,000 to $60,000). TC1 and TC2 are

the trajectory-based strategies of setting cost. Under TC1, we first

calculate the square of the number of trajectories impressed by this

billboard, and then map this value to the cost interval. TC2 is similar

to TC1, the difference is that we use the square root of the number

of trajectories impressed by this billboard. As shown in Figure 13a,

we make three observations. First, in WI, the effectiveness of all

methods decreases. This is because in the LAMAR database, bill-

boards that impress a large number of trajectories have a very high

weekly impression. It leads to the consequence that, most billboards

have a higher cost compared with WI. Therefore, all methods afford

fewer billboards. Second, in TC1, the performance of Top-k is worse

compared with itself in other strategies since for all billboards, the

higher the cost, the worse the effectiveness. Last, in TC2, Greedy

is only worse than BBS by 8%. The reason is that, billboards that

have the higher impression is more cost-efficient. Therefore, both

Greedy and our methods achieve an ideal result easily. As shown

in Figure 13b, the different cost strategies do not affect efficiency.

A.3 Number of Influenced Audiences
In this part, instead of calculating the total influence by Equation

2, we study how many audiences are influenced by S . We define

an audience t to be influenced if p(S, t) ≥ φ, where φ ∈ (0, 1]. In
this case, we assume φ = 0.8, which means that an audience will be

influenced after meeting at least three billboards. Figure 14 shows

the experimental result. We have two observations. First, BBS and

PBBS have similar effectiveness comparedwith themselves in Figure

5a. Second, the effectiveness of Greedy and Top-k is worse than

themselves in Figure 5a. The reason is that, based on the influence

model, the marginal influence decreases when p(S, t) ≥ 0.8. Before

reaching the turning point of the influence model, our methods

prefer to impress the same trajectory multiple times. Therefore, the

influence areas of our methods are more concentrated, whereas

that of Greedy and Top-k are more dispersed.

A.4 Proof of Theorem 3.1
The NP-hardness of ICOA can be easily inferred by reducing the

set cover problem to ICOA. Next, we show it is in fact NP-hard

to approximate ICOA within any constant factor. To prove the

theorem, we reduce the biclique detection (BD) problem to ICOA.

Given a bipartite graph G = (U ∪ V , E) where U and V denote

the vertex sets while E denotes the edge set containing the edges

(u,v) ∈ E such that u ∈ U and v ∈ V ; an instance of BD asks

whether there exists vertex subsetsU ′ ⊆ U , V ′ ⊆ V with |U ′ | ≥ k ,
|V ′ | ≥ k ′ and the induced subgraph of U ′ and V ′ is a biclique. The
decision version of BD is equivalent to an optimization problem

where we fix |U ′ | = k and ask what is the maximum |V ′ | s.t. the
induced subgraph is a biclique. We reduce the optimization version

of BD to ICOA with the following process: (1) ∀u ∈ U of BD, we

create a billboard xu with a uniform cost of 1; (2) ∀v ∈ V of BD,

we create a trajectory xv as the trajectory set T ; (3) ∀(u,v) ∈ E of

BD, we make sure xu is close to xv so that dist(xu , xv ) ≤ λ; (4) We

set the budget of ICOA as k , which is the same as the input of the

optimization version of BD; (5) We set α = k · |T | and β = |T |.
Clearly, the reduction can be done in polynomial time. We establish

the following relationship between BD and ICOA.

Lemma A.1. Let OPTB and OPTI denote the optimal values of BD

and the instance of ICOA that BD is reduced to, respectively. We have

2 ·OPTI −
1

|T |
≤ OPTB ≤ 2 ·OPTI .

Proof. We show the second inequality first. Let U ′ such that

|U ′ | = k represents the vertex set selected to achieve the largest

biclique inG w.r.t. the size of |V ′ |. We choose the corresponding xu
∀u ∈ U ′ as the selected billboards. The influence achieved is thus

lower bounded byOPTB/2. We can then concludeOPTI ≥ OPTB/2.
We now show the first inequality. Suppose S is selected such that

|S | = k as the billboards to place the ad on, we identify a trajectory

set TS ∈ T where all trajectories in TS meet all billboards in S . The
following inequality holds:

I (S) =
∑
t ∈TS

p(S, t) +
∑

t ∈T\TS

p(S, t) ≤
OPTB

2

+
|T | − |TS |

1 + e |T |
≤

OPTB
2

+
1

2|T |

which completes the proof for the lemma. �

Finally, we are ready to prove the hardness of ICOA by a gap

preserving reduction: let a constant θ ≥ 1, if OPTB ≥ θ then

OPTI ≥ θ/2, and if OPTI ≤ θ/|T |1−ε for any ε > 0, then OPTB ≤
1

1

2
|T |1−ε

θ
2
. Thus, if one can approximate ICOA in polynomial time

within
1

2
|T |1−ε factor, then BD can be approximated within a factor

of |V |1−ε , which leads to a contradiction [3].
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