
The VLDB Journal
https://doi.org/10.1007/s00778-020-00623-8

REGULAR PAPER

Incremental preference adjustment: a graph-theoretical approach

Liangjun Song1 · Junhao Gan2 · Zhifeng Bao1 · Boyu Ruan3 · H. V. Jagadish4 · Timos Sellis5

Received: 8 September 2019 / Revised: 11 May 2020 / Accepted: 19 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Learning users’ preferences is critical to personalized search and recommendation.Most such systems depend on lists of items
rank-ordered according to the user’s preference. Ideally, we want the system to adjust its estimate of users’ preferences after
every interaction, thereby becoming progressively better at giving the user what she wants. We also want these adjustments
to be gradual and explainable, so that the user is not surprised by wild swings in system rank ordering. In this paper, we
support a rank-reversal operation on two items x and y for users: adjust the user’s preference such that the personalized
rank of x and y is reversed. We emphasize that this problem is orthogonal to the preference learning and its solutions can
run on top of the learning outcome of any vector-embedding-based preference learning model. Therefore, our preference
adjustment techniques enable all those existing offline preference learning models to incrementally and interactively improve
their response to (indirectly specified) user preferences. Specifically, we define the Minimum Dimension Adjustment (MDA)
problem, where the preference adjustments are under certain constraints imposed by a specific graph and the goal is to adjust
a user’s preference by reversing the personalized rank of two given items while minimizing the number of dimensions with
value changed in the preference vector. We first prove that MDA is NP-hard, and then show that a 2.17-approximate solution
can be obtained in polynomial time provided that an optimal solution to a carefully designed problem is given. Finally, we
propose two efficient heuristic algorithms, where the first heuristic algorithm can achieve an approximation guarantee, and
the second is provably efficient. Experiments on five publicly available datasets show that our solutions can adjust users’
preferences effectively and efficiently.

Keywords Incremental preference adjustment · Rank reversals · Network flows · Graph theory · Algorithms

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-020-00623-8) contains
supplementary material, which is available to authorized users.

B Junhao Gan
junhao.gan@unimelb.edu.au

Liangjun Song
liangjun.song@rmit.edu.au

Zhifeng Bao
zhifeng.bao@rmit.edu.au

Boyu Ruan
b.ruan@uq.edu.au

H. V. Jagadish
jag@eecs.umich.edu

Timos Sellis
tsellis@swinburne.edu.au

1 RMIT University, Melbourne, Australia

2 University of Melbourne, Melbourne, Australia

3 University of Queensland, Brisbane, Australia

1 Introduction

Users are gaining access to numerous datasets nowadays.
Search and recommendation systems become increasingly
important as a way for users to explore data in an unfamiliar
dataset. These systems usually need to develop ranked lists
of items in the dataset that are relevant to the user’s need and
tailored to the user’s individual preference [26].

In the past decades, numerous preference learning models
have been developed, such as Bayesian Personalized Rank-
ing (BPR) [22], Weighted Approximate-Rank Pairwise Loss
(WARP) [29] and Adversarial Personalized Ranking for rec-
ommendation (APR) [14]. All thesemodels require historical
data for a user in the training phase [15]. Unfortunately, his-
torical data is often unavailable. This is always the case when
the systems are open for new users without any historical

4 University of Michigan, Ann Arbor, USA

5 Swinburne University of Technology, Melbourne, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00623-8&domain=pdf
http://orcid.org/0000-0001-9101-1503
https://doi.org/10.1007/s00778-020-00623-8

L. Song et al.

data. As a result, preference learning should never be a one-
shot process. Instead, it should be a continuous and ongoing
evolution.

Consider real estate search as an example. Our goal is
to develop a system that behaves like a personal real estate
agent, who helps customers to find their candidate properties
progressively: At first, users may have preferences on some
attributes of the house (e.g. price, location) and interact with
the system; then the system returns a ranked list according
to users’ specified criteria; users may give feedback to the
system, indicating their preferences; through the interaction,
the system learns and evolves, trying to provide a more per-
sonalized and better-ranked list in the next round. We refer
readers to a detailed case study over real-world real estate
data conducted in Sect. 2.

Motivated by this, in this paper, we study the problem
of “post-learning” adjustments on user preferences. Specifi-
cally, our goal is to update the preferences learned by a static
(or offline) model based upon new feedback from users. We
emphasize that our aim is neither to propose a new rank-
ing model, nor to improve the subjective recommendation
quality of any existing model. Instead, the problem we study
here is in a completely orthogonal direction (as discussed in
the next paragraph). Moreover, our proposed techniques can
be applied to any vector embedding based preference learn-
ing model, where (i) both the preferences of the users and
the items are represented by vectors, and (ii) the extent of a
user being fond of an item is computed by the dot-product
between the user’s preference vector and the vector of the
item.

In particular, consider a preference learning model and a
vector embedding that the model learned, our primary inten-
tion is to support a “rank-reversal” operation on two items
x and y specified by users: adjust the user’s preference such
that the (personalized) rank of x and y is reversed. Among the
explicit feedback that a user can provide [12], we argue that a
usermay naturally be curious about “why itemy is not ranked
higher than item x”. For example, it is usually easy for a user
to tell which house she likes more (between two houses), but
it may be difficult for them to tell how toweight each attribute
of a house they prefer. From all such rank-reversal operation
requests, more and more information about a user’s personal
preference is revealed, and hence, the preference vector of
the user can be adjusted to meet her subjective preference
(under the specified preference learning model).

For this purpose, we define the Minimum Dimension
Adjustment (MDA) rank-reversal problem, where the adjust-
ments on users’ preference vectors are under certain con-
straints and the goal is to adjust a user’s preference vector by
reversing the personalized rank of two given itemswhilemin-
imizing the number of dimensions with their value changed
in the preference vector.

As we will see shortly in Sect. 2, although there can be
multiple adjustments on the preference vector to have the
rank order between two given items reversed, unrestricted
adjustments will be problematic. Restrictions (or say, con-
straints) on the adjustments on the weights of attributes (i.e.,
the coordinate values in the corresponding dimensions) in
the preference vectors are necessary. For this reason, we pro-
pose to adopt a weight transition graph to limit the changes
happening on different attributes.

Interestingly, as we will see in the problem definition in
Sect. 3, the weight transition graph in the MDA problem
is reminiscent of the propagation probability graph in the
Influence Maximisation (IM) problem [18] which has been
widely studied in recent years [20,24,25]. In the IM problem,
knowledge from domain experts is required to assign the
propagation probabilities to each edge in the graph, while
such graph is widely considered as an input and assumed to
be known a priori in all the existing related work. Likewise,
in the MDA problem, we adopt the same assumption and
treat the weight transition graph as an input. Nonetheless, we
introduce an alternative algorithm (in Sect. 8.1) to construct
weight transition graphs from the training data only, which
allows users to enjoy our techniques even though they may
not have domain expertise.

Furthermore, the importance of the role of theweight tran-
sition graph, constructed by our algorithm without domain
knowledge, has been evident in our empirical study (See
Sect. 9.3). The results show that the weight transition graph
constructed by our simple algorithm is highly effective.
Therefore, it is reasonable that the effectiveness can be
improved when domain knowledge is available to tune the
weight transition graph. Moreover, the experimental results
show that the weight transition graph is critical in prefer-
ence adjustments, without which the adjusted preferences
are extremely unstable.

To this end, it is worth emphasizing the following high-
lights of this work. (1) The MDA rank-reversal problem is
independent of the choice of the preference learningmodel in
search and recommendation systems. (2) Our solutions can
run on top of the learning outcome of any (user and item)
vector embedding based preference learning model. There-
fore, our preference adjustment techniques can be applied
to enable all those existing offline preference learning mod-
els to incrementally and interactively improve their users’
preferences. (3) As a side product, our solutions can be used
to support the cold-start scenario, which itself is a kind of
preference model.

Finally, our contributions in this paper are as follows.

– We conduct a case study over a real-world real estate
dataset, to justify why rank-reversal suffices to represent
user’s preference adjustment, how MDA may provide to

123

Incremental preference adjustment: a graph-theoretical approach

the user some insights behind the adjustment, and why
the rank reversal under constraints are necessary.

– We formally define the MDA rank-reversal preference
adjustment problem.

– We show the NP-hardness of MDA with a non-trivial
proof connecting theMaximumCoverage problem [2] to
the MDA via the notion of flows.

– We show that a 2.17-approximate solution can be
obtained in polynomial time using an optimal solution
to a carefully designed problem called the F-problem.
Though the F-problem is also NP-hard, a local opti-
mum can be computed efficiently by existing popular
optimization techniques such as the Lagrange multipli-
ers method [4] and the gradient descent [11].

– We propose two efficient heuristic algorithms for solving
the MDA problem: (i) ItrLP and (ii) ItrSSP. In particular,
we show an approximation guarantee for the ItrLP, while
we prove that the running time complexity of the ItrSSP
is the same as the well-known Successive Shortest Path
(SSP) algorithm [9].

– We conduct experiments on five real datasets and three
well-adopted preference learning models, and evaluate
our methods in terms of (1) number of dimensions
changed, (2) incremental adjustment effectiveness, and
(3) interactive speed. The results show that our methods
are both effective and efficient.

Paper organization Table 1 introduces the notations which
are frequently used in the paper. In Sect. 2, we present a case
study. In Sect. 3, we define the rank-reversal problem and its
special variant, the minimum dimension adjustment (MDA)
problem. Section 4 introduces preliminaries about flows and
reveals a subtle connection between the MDA problem and
min-cost flows. Section 5 shows theNP-hardness of theMDA
problem and Sect. 6 proposes a 2.17-approximate algorithm.
We propose two heuristic algorithms in Sect. 7. To facilitate
experiment illustration, in Sect. 8 we present a method to
construct the weight transition graph G when it is not avail-
able in hand. Section 9 describes experiments and Sect. 10
gives a literature review. We conclude the paper in Sect. 11.

2 Motivation and case study

Before we formally define theMDA problem, in this section,
we first conduct a case study on an example in a real estate
scenario. Our work in this paper indeed is inspired by our
observations gained from HomeSeeker,1 a real estate data
exploration system [19] developed by one of the authors.

1 http://civilcomputing.com/HomeSeeker

Table 1 Frequently used notations

Notation Description

[n] the set of integers in [1, n]
i, j two index variables in [n]
w a preference vector

Δw a weight adjustment on w

x, y two item vectors

v[i] the i th coordinate in a vector v

G = 〈V , E〉 a weight transition graph

Gext(S, T ,w) an extended weight transition graph w.r.t. S
and T

Gcost
ext (S, T ,w) a cost-associated extended weight transition

graph

S(Δw) {i ∈ [n] | Δw[i] < 0}
T (Δw) {i ∈ [n] | Δw[i] > 0}
Sδ(Δw) {i ∈ [n] | Δw[i] ≤ −δ}
Tδ(Δw) {i ∈ [n] | Δw[i] ≥ δ}

Background and basic settings HomeSeeker has collected
data for over 1.5 million properties in Australia, where each
property has 72 dimensions (i.e., attributes). The dimensions
are categorized into five unique profiles: education profile
(e.g., school zones and ranks), transportation profile (e.g.,
distance to the nearest train station, travel time to city cen-
ter), facility profile (e.g., number of supermarkets and general
practitioners (GP’s) within 1 km), suburb profile (e.g., cen-
sus data), and in-house profile (e.g., landsize and number of
bedrooms).

To facilitate readers’ understanding, we select six dimen-
sionswhich are ofmost interestswith our domain knowledge:
(1) Price (in thousand AUD); (2) Bed, the number of bed-
rooms; (3) Size, the land size (in square meter); (4) SRank,
the rank of the school zone; (5) Dist, the distance to the
nearest train station (in meter); and (6) Tran, which is the
transportation time of the train to city (in minute). Further-
more, each of these attributes is normalized to a value in the
range of [−1, 1] such that the larger value is more preferable.
In other words, each house is represented by a 6-dimensional
vector in [−1, 1]6. Likewise, each user is represented by a
6-dimensional vectorw in the same space indicating her pref-
erence on the corresponding attributes. Thus, the score of a
house x with respect to w is measured by w · x, and higher
scores are preferred by the user. The ranked list returned to
the user is essentially the list of the houses sorted by their
scores in descending order.
Why are pair-wise rank reversals sufficient? In Home-
Seeker, an important yet fine-grained operation is to reverse
the ranks of a pair of twohouses by “adjusting” the preference
vectorwof a user.An adjustment is conducted by transferring
weights inw fromdimensions to dimensions. For instance, as
shown in Table 2, to reverse the ranks of the two houses x and

123

L. Song et al.

Table 2 Two houses x and y and the preference vector w

ID Price Bed Size SRank Dist Tran

x 0.4 1 1 0.6 0.2 1

y 0.2 1 1 0.4 0.4 1

x − y 0.2 0 0 0.2 −0.2 0

w 0.1 0.1 0.1 0.4 0.1 0.1

y under the preference vector w, one can transfer 0.2 weight
from SRank toDist, that is, the adjusted w becomes to have a
weight of 0.2 on SRank and 0.3 onDist.We call it as the pair-
wise rank reversal operation. We note that the pair-wise rank
reversals are without loss of generality, as reversing the ranks
of any two groups of houses can often be broken down into a
certain sequence of pair-wise rank reversals.With such (pair-
wise) rank reversal operations, HomeSeeker can accordingly
adjust the preference vector for the user and hence, improve
the quality of its ranked list.
Whyareminimumdimensionadjustmentshelpful? When
adjusting a preference vector w, it is important for Home-
Seeker to keep the number of such weight transitions as small
as possible, i.e., to adjustwwith aminimumnumber of dimen-
sions changed. There are two intuitive reasons.

First, in addition to reversing houses’ ranks, HomeSeeker
also aims to explain to the user what attributes play a cru-
cial role in the reversal. On the one hand, a large number
of dimensions changed in the preference adjustment often
requires a big effort from the user to identify which attributes
are essentially the key. On the other hand, a concise explana-
tion would be easier for users to learn their own preference
on the attributes.

Second, HomeSeeker aims to provide meaningful recom-
mendations, such that it can retain short-term preference
while being flexible enough to capture long-term interest
drift (if any). The minimum dimension adjustments can
largely retain a user’s preference on the attributes and hence,
the ranked list would not change dramatically under short-
term reversals. Meanwhile, such adjustments are still general
enough to handle long-term interest drifts (after a certain
number of rank reversals). For example, users’ preferences
on houses would not change frequently in a short term, but
they may do over a long term due to the changes of users’ cir-
cumstances, such as the increases of incomeand thegrowthof
a family, in which case, a user may prefer a larger house with
more bedrooms and can afford a higher price than before. For
this reason, as we will see shortly in the formal problem defi-
nition, there is no explicit constraint on keeping the previous
feedback in the rank reversal. Nonetheless, the objective of
minimizing the number of dimensions adjusted can largely
(in some sense) keep the short-term preference implicitly.
The effectiveness of the adjustments under this objective is
supported by the experimental results in Sect. 9.3.

Price

SRank

Dist
0.2

Price
0.3

0.1

(a) Pair-wise Constraints

Price

SRank

Dist0.2

0.3
0.1

(b) Flow-like Constraints

Fig. 1 The weight transition constraints in Example 1 (the number on
each arrow indicates the cap of weight transition)

Why are rank reversals under constraints necessary?
With no restrictions, a rank reversal operation always admits
a “greedy” adjustment, that is, transferring the weights
between the most “effective” pair of dimensions for revers-
ing the ranks. Unfortunately, this kind of greedy adjustments
sometimes are less meaningful. This is simply because the
changes of preferences on the attributes should be limited
within a certain tolerance, as earlier illustrated in Sect. 1 and
later evident in our empirical study (Sect. 9.3). For example,
it is rare that a user can afford unlimited increase in the price
for a better school rank.
Flow-like weight transition constraints In general, it is natu-
ral to specify a “cap” on the weight adjustment between any
two possible pairs of attributes; and all these constraints nat-
urally constitute a complete bipartite graph on the attributes.
An example is shown in Fig. 1a, where all the other edges
are with zero cap and thus omitted for simplicity. Since each
of these constraints specifies the cap for a pair of dimen-
sions,we call themaspair-wiseweight transition constraints.
When performing a rank reversal, the weight transition in an
adjustment on w has to comply with the caps specified by the
pair-wise constraints, and transferweights from the attributes
on the left side to the right in the corresponding complete
bipartite graph. As the resulted adjustment is produced in this
one-step manner, this kind of adjustment is called a one-step
adjustment. However, an adjustment onwcanbe produced by
more than one step. We call it as a multiple-step adjustment,
which is obtained by performing multiple one-step weight
transfers. We use Example 1 to show the superiority of the
multiple-step adjustments over the one-step counterpart.

Example 1 Consider the two houses x, y and the preference
vector w shown in Table 2; clearly, w · x − w · y = 0.08
and hence, the user prefers x to y. Suppose that we want
to reverse their ranks by adjusting w under the pair-wise
weight transition constraints given in Fig. 1a. There is only
one feasible one-step adjustment: transferring at least 0.2
weight from Price → Dist. The resulting preference vector
w has 0.1−0.2 = −0.1 weight on Price and 0.1+0.2 = 0.3
weight on Dist. On the other hand, the adjustment, obtained
by first transferring 0.2 weight from SRank to Price, and
then transferring 0.2 weight from Price toDist, is a multiple-

123

Incremental preference adjustment: a graph-theoretical approach

step (more specifically, two-step) adjustment. Therefore, the
adjusted w has 0.2 weight on SRank and 0.3 weight on Dist,
and interestingly, the weight on the intermediate attribute
Price is unchanged.

Although both adjustments can be used to reverse the
ranks of x and y and have just two dimensions changed, the
two-step adjustment looksmore reasonable than the one-step
adjustment. This is because the latter has a negativeweight on
Price which seems less common as it indicates that the user
prefers higher prices. In contrast, the two-step adjustment is
more explainable — it indicates the user prefers shorter dis-
tance to public transport than having a higher school rank,
implying that the user is possibly an elder person with no
school child.

In general, multi-step adjustments can catch more pos-
sibilities and produce more reasonable preference vectors.
This capability is of great importance to those systems that
aim to provide explainable results to users, like HomeSeeker.
Astute readers may have noticed that the process of pro-
ducing multiple-step adjustments is reminiscent of network
flows. Indeed, for multiple-step adjustments, the pair-wise
constraints in a complete bipartite graph are essentially
equivalent to the flow-like constraints as shown in Fig. 1b
in a flow network. In particular, multiple-step adjustment in
Example 1 is a flow from SRank → Price → Dist with a
flow value of 0.2.

Motivated by the above, we aim to produce multi-step
adjustments and adopt the flow-like weight transition con-
straints. The corresponding flow network is called a Weight
Transition Graph, as formally defined in Sect. 3.

2.1 A case study

In this section, we use real estate data to present a case
study, explaining (1) how MDA can help the user incremen-
tally shape her preference especially when exploring data
she is unfamiliar with, and (2) user’s (degree of) preference
between a certain pair of dimensions might also change w.r.t.
the results obtained after every adjustment, reflecting her per-
sonalized tolerance on the importance of the dimensions.
Setup To avoid overwhelming the readers, we pick 10 rep-
resentative houses (i.e., the property type is house) from the
713 houses sold in a suburb of Melbourne in 2016, out of
the total 69, 862 ones traded Australia-wise in the same year.
Again, we focus on the aforementioned six attributes of the
house. The raw attribute values of these 10 houses are shown
in Table 3. The corresponding normalized values are shown
in Table 4, which are obtained by dividing the maximum
value among the 713 houses in the corresponding dimension
(shown in the first row of Table 3) and assigning signs (either
positive or negative) to ensure the larger values are the better
for the users.

Table 3 The 10 representative houses (raw data) ranked by the initial
w

ID Price Bed Size SRank Dist Tran

Max Value 1700 11 1600 128 4000 72

1 1090 4 728 40 516 40

2 800 4 600 80 500 35

3 1080 4 769 80 400 50

4 1430 4 1020 75 520 50

5 1460 3 780 72 1100 30

6 1320 3 600 80 1000 20

7 1480 3 1010 76 1400 27

8 1680 4 722 60 2000 22

9 1230 3 500 72 1200 40

10 1120 4 678 60 1252 55

Initial w 0.5 0.5 0.5 0.5 0.5 0.5

Table 4 The 10 representative houses (normalized data) ranked by the
initial w

ID Price Bed Size SRank Dist Tran

1 −0.641 0.364 0.455 −0.313 −0.129 −0.556

2 −0.471 0.364 0.375 −0.625 −0.125 −0.486

3 −0.635 0.364 0.481 −0.625 −0.1 −0.694

4 −0.841 0.364 0.638 −0.586 −0.13 −0.694

5 −0.859 0.273 0.488 −0.563 −0.275 −0.417

6 −0.776 0.273 0.375 −0.625 −0.25 −0.278

7 −0.871 0.364 0.631 −0.594 −0.35 −0.375

8 −0.988 0.364 0.451 −0.469 −0.5 −0.306

9 −0.724 0.273 0.313 −0.563 −0.3 −0.556

10 −0.659 0.364 0.424 −0.469 −0.313 −0.764

The initial weight in the preference vector w is set as
uniform, i.e., w = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5}. The weight
transition graph G, constituted by the flow-like weight tran-
sition constraints, is set by our domain knowledge and is
shown in Fig. 2.

In a weight transition graph G, the value associated with
each directed edge indicates the cap of weight transition
(i.e., capacity) via one dimension to another. For example,
the capacity of link Price → Dist is 0.12, indicating in a
rank-reversal operation, it can transfer at most 0.12 weight
from any other dimensions via Price to Dist. If a cheaper
house is favored than a house with many bedrooms, there
will be a weight transition process from Bed to Price. The
change of the weight value in the preference vector w indi-
cates to which extent one dimension could be sacrificed for
another. Moreover, some edges for two dimensions are not
balanced, such as Bed and SRank. The weight from Bed to
SRank (0.15) is larger than that from SRank to Bed (0.06). It
reflects a commonly adopted principle in practice: it is com-

123

L. Song et al.

Price

SRank

Size

Bed Tran

Dist

.11

.1

.1

.02

.05

.15

.12 .08

.12

.08

.06

.12
.10

.1
.07

.1

.05

.04.03

.1

.15

.16

.08

.04

.15

.1
.04

.05

.05

.08

Fig. 2 The weight transition graph G in the case study: The capacity
of each edge is shown near to its starting node with the same colour

Table 5 Ranking after each step (R1 means Rank 1, etc.)

Step R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

1 1 2 6 5 7 3 4 8 10 9

2 1 2 8 7 6 5 10 4 3 9

3 1 7 2 8 4 5 6 10 3 9

4 1 2 7 3 6 4 5 10 8 9

5 1 2 7 4 6 3 5 8 10 9

mon that the number of bedrooms can be sacrificed for better
education quality, but it is rare the education quality can be
sacrificed to gain more bedrooms.

So long as within the cap specified in the weight transition
graphG, theweight transferred fromone to another somehow
reflects the extent of user’s (relative) tolerance. For example,
if 0.07 is transferred from Price to Bed, it means the user
would prefer a house with more bedrooms even it is more
expensive; if only 0.02 is transferred from Price to Bed, then
the user may not have a strong preference over a house with
many bedrooms.

Next we show a sequence of steps, each of which indi-
cates the user’s interaction with the system. In each step, two
houses are selected for rank-reversal and accordingly, how
the preference vector is adjusted. We record the weight tran-
sitions on each dimension and present the updated ranked list
as a result of each interaction.

Upon the results obtained from the initial preference
vector in Table 3, the user called Alice will invoke the
rank-reversal operation in the following steps.

Step 1: Alice selects House 4 and House 7 for rank-reversal.
The resulted rank under the adjusted preference vec-
torw and the detailed adjustmentΔwonware shown
in rows of Step 1 in Tables 5 and 6, respectively. After
the adjustment, the weight on Bed decreases 0.05, on
Dist decreases 0.05 and the weight on Tran increases
0.1. It means Alice prefers houses with fewer bed-
rooms and longer distance to train station, but shorter

Table 6 Adjusted preference vector w after each step

Step Price Bed Size SRank Dist Tran

Initial w 0.5 0.5 0.5 0.5 0.5 0.5

1 Δw −0.05 −0.05 +0.1

w 0.5 0.45 0.5 0.5 0.45 0.6

2 Δw +0.2 −0.15 −0.05

w 0.5 0.45 0.5 0.7 0.3 0.55

3 Δw −0.1 +0.2 −0.1

w 0.5 0.35 0.7 0.6 0.3 0.55

4 Δw +0.15 −0.1 −0.05

w 0.65 0.35 0.6 0.55 0.3 0.55

5 Δw −0.08 +0.08

w 0.57 0.35 0.68 0.55 0.3 0.55

travel time to city center. Now her selected House 7
is ranked at the 5th position.

Step 2: Alice further specifies a rank-reversal operation
between House 3 and House 10. Afterwards, the
House 10’s rank lifts from 9th to 7th (see Step 2
in Tables 5 and 6), and the preference vector is
adjusted to w = {0.5, 0.45, 0.5, 0.7, 0.3, 0.55}. That
tells Alice can sacrifice the distance to train station
and the travel time to city for gaining a better educa-
tion zone.

Step 3: Alice selects House 5 and House 4 and performs a
rank-reversal operation. See the results in Step 3 in
Tables 5 and 6. The updated preference vector is w =
{0.5, 0.35, 0.7, 0.6, 0.3, 0.55}. This means the land
size gains more preference, while the education and
bedroom number become less important to Alice.

Step 4: Alice selects House 4 and House 6 for rank-reversal,
the result after which is in Step 4 in Tables 5 and 6.
We can see that the House 6 previously ranked 7th

becomes 5th , and the preference vector is updated
to w = {0.65, 0.35, 0.6, 0.55, 0.3, 0.55}. From this
step, it indicates that Alice somehow prefers houses
with a cheaper price, and she can sacrifice the land
size and/or the school rank to gain so.

Step 5: However, Alice’s such tolerance (in Step 4) is just to
a limited extent. Thus, instead of blindly choosing
a cheaper and cheaper house, Alice wants a fur-
ther adjustment with reversing the ranks of House 3
and House 4. After the rank-reversal operation, the
results are in Step 5 inTables 5 and 6.Now theweight
is w = {0.57, 0.35, 0.68, 0.55, 0.3, 0.55}, and we
can see a small weight dropdown on the price (-0.08),
indicating her tolerance on lower price is only valid
within a certain extent.

123

Incremental preference adjustment: a graph-theoretical approach

This whole process (Step 1 – Step 5) reveals Alice’s pref-
erences adjustment on houses while she may not have a clear
idea at the beginning, or her preference can also vary depend-
ing on the results obtained or new insights gained from the
updated results.

3 Problem formulation

We first introduce some useful notations (see Table 1) and
then formally define theRank-Reversal problemand theMin-
imum Dimension Adjustment (MDA) problem.
Notation For an integer n, we use [n] to denote the set of
integers in the range of [1, n]. Consider an n-dimensional
vector w; we use w[i] to denote the i th coordinate value
of w by for i ∈ [n]. Without explicit statements, in this
paper, the index variables i, j are understood to be integers
in [n]. Given a vector w, the l p-norm of w is computed as

‖w‖p = (
∑n

i=1 |w[i]|p) 1
p , where p ∈ [0,∞). Specifically,

‖w‖0 is the number of dimensions with nonzero coordi-
nates. Furthermore, since each dimension corresponds to an
attribute, we use the term “dimension” and “attribute” inter-
changeably.
Problem definition Consider a recommender system run-
ning with a vector embedding learned by a specified prefer-
ence learning model on a set of users and a set of items.More
specifically, in the embedding, each item has n attributes and
is represented by an n-dimensional vector in [−1, 1]n . Each
user has an n-dimensional preference vector w ∈ [−1, 1]n ,
wherew[i] is called theweight on the i-th dimension. Define
the preference score of a user (with a preference vector w) on
an item x as the dot-product betweenw and x, i.e., w·x,which
represents the extent of the user being fond of the item.

To provide recommendations to a user, the system returns
a recommended list of items ordered by the preference scores
under the user’s preference vector w. Meanwhile, the system
supports a typeof rank-reversaloperations for the user,where
the system can be asked to reverse the relative order of a pair
of items x and y in the recommended list having w ·x > w ·y,
if such a pair does not meet the user’s true subjective pref-
erence (i.e., the user’s true personal preference). The system
performs the rank-reversal operation by adjusting w to a new
preference vector w′ satisfying w′ · x ≤ w′ · y with a goal
to minimize the l p-norm of Δw = w′ − w, i.e., ‖Δw‖p, for
some p ∈ [0,∞).

In order to keep the weights stable in the preference vector
and avoid short-term interest drifts [12,28], purely aiming to
minimize ‖Δw‖p is not sufficient and the system may not
wish to allow arbitraryΔw’s. Rather, it may limit the amount
(i.e., how many) of weights that can be transferred from one
attribute to another. For this purpose, the system maintains
a set of global constraints on the weight transitions between

1 3

2 4 5

0.6

1
0.8

0.6 0.4

0.6

0.6

0.4

0.6 0.4

Fig. 3 A weight transition graph G = 〈V , E〉. Each node in V rep-
resents a distinct dimension in a 5-dimensional space. The capacities
are shown aside each edge in E specifying the maximum amount of
weights that can be transferred from its left endpoint to the right

attributes. These constraints constitute a Weight Transition
Graph defined as below.

Definition 1 (Weight Transition Graph) The weight transi-
tion graph is defined as a weighted directed graph G =
〈V , E〉, where:

(i) V = [n] and a node i ∈ V corresponds to the i-th dimen-
sion (attribute);

(ii) each directed edge (i, j) ∈ E is associated with a
non-negative capacity ci, j which specifies the maxi-
mum amount of weight that can be transferred from
Dimension-i to Dimension- j through the edge (i, j).

��

As shown in Fig. 3, the capacity of (4, 5) is 0.6 indicating
that Dimension-4 can transfer weight with an amount at most
0.6 to Dimension-5 via this edge. Likewise, the capacity of
(5, 4) imposes a constraint that the weight transferred from
Dimension-5 to Dimension-4 via the edge (5, 4) is with an
amount at most 0.4.

Definition 2 (Weight Transition) A weight transition in a
weight transition graph G = 〈V , E〉 is a value assignment
{ei, j }(i, j)∈E to the edges of E such that the capacity con-
straint holds: 0 ≤ ei, j ≤ ci, j for all (i, j) ∈ E . ��

It is worth pointing out that the directed edge (i, j) is not
the onlyway forDimension-i to affect Dimension- j . Instead,
Dimension-i can transfer weights to Dimension- j through
other dimensions. For example, in Fig. 3, in addition to the
edge (4, 5), Dimension-4 can transfer weights to Dimension-
5 via a path consisting of the edges: (4, 2), (2, 3), (3, 5).

In fact, the weight transition graphs and the weight transi-
tions are reminiscent of the flow networks and flows in graph
theory. As we will see in the next section, there is indeed a
subtle connection between these concepts.

For simplicity, in the rest of this paper, when the context
is clear, we may simplify the following notations:

– G = 〈V , E〉 by G,
– Dimension-i by i , and
– {ei, j }(i, j)∈E by {ei, j }.

123

L. Song et al.

Definition 3 (LegalWeightAdjustment)Aweight adjustment
Δw on w is legal if it satisfies:

(i) w + Δw ∈ [−1, 1]n ,
(ii) Δw can be represented by a weight transition {ei, j } in G,

where:

Δw[j] =
∑

(i, j)∈E
ei, j −

∑

(j,k)∈E
e j,k for all j ∈ [n].

Δw[j] is the difference between the sum of all “incoming”
weights transferred to j and the sumof all “outgoing”weights
transferred from j in the weight transition {ei, j }. ��
The Rank-Reversal problem is defined as follows:

Definition 4 (Rank-Reversal Problem) Given a weight tran-
sition graph G = 〈V , E〉, a preference vector w, a pair of
two items x, y satisfying w · x − w · y > 0 and a specified
value of p ∈ [0,∞), the goal of the rank-reversal problem
is to compute a legal weight adjustment Δw on w such that:

(i) (w + Δw) · (x − y) ≤ 0, and
(ii) ‖Δw‖p is minimized.

If such a Δw does not exist, then return NOT EXISTS. ��
Theminimumdimensionadjustment (MDA)Rank-Reversal
problem In order to make the system comprehensible and
avoid confusing the users with an excessive number of
attributes changed, a desirable goal is to minimize the
total number of dimensions whose weights are changed in
the adjustment. For this purpose, we set p = 0 in the
Rank-Reversal problem, and we call it as the MDA prob-
lem for short. In other words, the aim of the MDA problem
is to minimize the l0 norm of Δw.

The MDA problem can be formulated as a minimization
programming as follows:

minimize ‖Δw‖0
subject to

Δw[j] =
∑

(i, j)∈E
ei, j −

∑

(j,k)∈E
e j,k ∀ j ∈ [n] (1)

− 1 ≤ w[i] + Δw[i] ≤ 1 ∀i ∈ [n] (2)

0 ≤ ei, j ≤ ci, j ∀(i, j) ∈ E (3)

Δw · (x − y) ≤ −w · (x − y) (4)

It is easy to verify that Constraints (1)(2)(3) ensure Δw to
be a legal weight adjustment, and Constraint (4) guarantees
that the rank order of x and y is reversed.

In the MDA problem, the effect of preserving some of
user’s previous feedback is implicitly achieved by minimiz-
ing the number of dimensions changed when performing a

rank-reversal operation. This is because from our observa-
tions in the motivated application, HomeSeeker in real estate
scenario, users’ preference would not change frequently in
a short term, but they do over a long period. This is often
due to the change of their circumstance. For example, they
can afford a more expensive house thanks to the increase of
their income, or they prefer a house with more bedrooms as
the growth of their family. Therefore, it is important to have
the flexibility of supporting such kind of long-term inter-
est drifts, while at the same time, the system should also be
able to largely retain users’ recent preference. For this pur-
pose, theMDAproblemminimizes the number of dimensions
changed, instead of explicitly imposing restrictive constraints
in the rank reversal.

Remark It is worth mentioning that the case that a legal
adjustment does not exist is not an issue, yet it is of great
importance to the system. The potential causes to this can
be: (i) the user is an adversary and trying to mislead the sys-
tem to rank a much better item lower than the worse one;
(ii) the underlying weight transition graph is too restrictive.
In either case, such information can help the system to resist
attacks and improve its model.

4 Preliminaries and a connection to flows

We first introduce some preliminaries about flows and its
related notions, e.g., maximum flows. Then we show a subtle
relation between legal weight adjustments and flows.

4.1 Flow preliminaries

Flows A flow network (for short, a network) is defined as a
directed weighted graph G = 〈V ∪ {s, t}, E〉 where: (i) s
and t are two distinguished nodes called the source and the
sink, respectively; and (ii) each directed edge (u, v) ∈ E is
associated with a non-negative capacity, denoted by cu,v . A
flow in G = 〈V ∪ {s, t}, E〉, is a value assignment to the
edges of E , denoted by f = {eu,v}(u,v)∈E . A flow f is valid
if it satisfies two constraints:

(i) Capacity Constraint: The value assigned to an edge
cannot exceed the capacity of the edge, i.e., 0 ≤ eu,v ≤
cu,v,∀(u, v) ∈ E .

(ii) Conservation Constraint: Except the distinguished
nodes s and t , for any node v ∈ V , the sum of the
values assigned to v’s in-edges must be equal to the
sum of the values assigned to v’s out-edges, namely,
∑

(u,v)∈E eu,v = ∑
(v,k)∈E ev,k,∀v ∈ V .

For a valid flow f , by the conservation constraint, equality
∑

(s,u)∈E es,u−∑
(v,s)∈E ev,s = ∑

(v,t)∈E ev,t−∑
(t,u)∈E et,u

123

Incremental preference adjustment: a graph-theoretical approach

always holds, and the value of the either side of this equality
is defined as the flow value of f . In a flow network, a valid
flow with the maximum value is called a maximum flow.

Consider two nodes a, b ∈ V , a flow from a to b, denoted
by fa→b, is a flow where s can pass flow values via the edge
(s, a) only, and t can receive flow values via the edge (b, t)
only. That is, fa→b is a value assignment {eu,v}(u,v)∈E such
that: (i) es,k = 0 for all (s, k) ∈ E with k �= a, and (ii)
ek,t = 0 for all (k, t) ∈ E with k �= b. Furthermore, we
extend this notion for a node a and a set S of nodes. For a
node a ∈ V and S ⊆ V with a /∈ S, fa→S is a flow from a to
S, where s can pass flows via a only and t can receive flows
via the nodes in S only. Analogously, fS→a is a flow from S
to a.

Consider two valid flows f = {eu,v}(u,v)∈E and f ′ =
{e′

u,v}(u,v)∈E in G; the flow f ′ is a sub-flow of f if the value
assignment obtained by subtracting f ′ from f , computed as
{eu,v − e′

u,v}(u,v)∈E and denoted by f − f ′, is a valid flow.
Moreover, if a sub-flow f ′ of f is also a flow from a to b,
thenwe say f ′ is a sub-flow from a to b in f , and f − f ′ is the
resulted flow by removing the sub-flow f ′ from a to b in f .
Again, the notion of sub-flow also applies to fa→S and fS→a .
Finally, in addition to the capacity, if each edge (i, j) ∈ E in
a flow network G = 〈V ∪ {s, t}, E〉, is also associated with a
cost αi, j . The cost of a valid flow f = {ei, j }(i, j)∈E , denoted
by cost(f) is computed as: cost(f) = ∑

(i, j)∈E αi, j · ei, j .

4.2 A connection betweenMDA and flows

Weight transitions inG (and hence, legalweight adjustments)
are reminiscent of the notionofflows.Our crucial observation
is that, legal weight adjustments Δw on w are essentially
equivalent to flows in the graph (flow network) defined as
follows.

Definition 5 (Extended Weight Transition Graph) Given a
weight transition graph G, a preference vector w and two
sets of dimensions S, T ⊆ [n], the extended weight tran-
sition graph is defined as a flow network, denoted by
Gext(S, T ,w) = 〈V ∪ {s, t}, Eext〉, constructed by adding
to G:

– a source node s and a sink node t ,
– for each i ∈ S, a directed edge (s, i) with capacity of
1 + w[i],

– for each i ∈ T , a directed edge (i, t) with capacity of
1 − w[i]. ��

See Fig. 4 for an example, where the capacities of (s, 1)
and (s, 2) are 1+w[1] = 1.6 and1+w[2] = 1.2 respectively,
and the capacities of (3, t) and (5, t) are 1−w[3] = 1.6 and
1 − w[5] = 0.6 respectively.

Algorithm 1: Construction from Δw to a flow
Input: A weight transition graph G = 〈V , E〉 and a legal weight

adjustment Δw on w
Output: A flow f low(Δw) on Gext(S(Δw), T (Δw),w)

1 Let {ei, j }(i, j)∈E be the weight transition representing Δw. By
Definition 3, such a weight transition must exist;

2 For each j ∈ S(Δw), set es, j = −Δw[j];
3 For each j ∈ T (Δw), set e j,t = Δw[j];
4 Return f low(Δw) = {ei, j }(i, j)∈Eext =

{ei, j }(i, j)∈E ∪ {es, j } j∈S(Δw) ∪ {e j,t } j∈T (Δw) ;

1 3

2 4 5

s t

w[1]=0.6

w[2]=0.2

w[3]=-0.6

w[4]=0.5 w[5]=0.4

0.6 / 1.6

0.2 / 1.2

0.2 / 1.6

0.6 / 0.6
0.4 / 0.6

0.2 / 0.6

0 / 0.4
0.4 / 1

0.2 / 0.8

0 / 0.6

0.4 / 0.6

0 / 0.4

0.2 / 0.4

0.2 / 0.6

Fig. 4 An extended weight transition graph Gext(S, T ,w) of G
with respect to w = (0.6, 0.2,−0.6, 0.5, 0.4) with S = {1, 2} and
T = {3, 5}. In addition to the capacity, a flow value through each
edge is shown in grey and in the form of “flow value / capacity”.
The flow in the figure represents a legal weight adjustment Δw =
(−0.6,−0.2, 0.2, 0, 0.6) on w

For a legal weight adjustment Δw, we define S(Δw) =
{i | Δw[i] < 0} as the set of dimensions whose weights have
been decreased by Δw, and T (Δw) = {i |Δw[i] > 0} as
the set of dimensions whose weights have been increased by
Δw.

Observation 1 The flow, f low(Δw), constructed by Algo-
rithm 1 is valid on Gext(S(Δw), T (Δw),w).

Proof It suffices to show that f low(Δw) satisfies both the
Capacity Constraint and the Conservation Constraint.

Capacity Constraint. First, since Δw is legal, by Defini-
tion 3, 0 ≤ ei, j ≤ ci, j for all (i, j) ∈ E . Second, for
j ∈ S(Δw), we have: (i) Δw[j] < 0, and (ii) −1 ≤
w[j] + Δw[j] ≤ 1 because Δw is legal. Thus, 0 ≤ es, j =
−Δw[j] ≤ 1 + w[j] = cs, j satisfying the Capacity Con-
straint. Analogously, we can show that 0 ≤ e j,t ≤ c j,t for
all j ∈ T (Δw). Therefore, f low(Δw) = {ei, j }(i, j)∈Eext sat-
isfies the Capacity Constraint for all (i, j) ∈ Eext.

Conservation Constraint. For j /∈ S(Δw) ∪ T (Δw), we
have Δw[j] = 0. Furthermore, by Definition 3 and since j
has no edge with either s or t , Δw[j] = ∑

(i, j)∈E ei, j −∑
(j,k)∈E e j,k = ∑

(i, j)∈Eext
ei, j − ∑

(j,k)∈Eext
e j,k = 0.

Thus, theConservationConstraint is satisfied for all the nodes
j in this case.
For j ∈ S(Δw), in {ei, j }(i, j)∈Eext ,wehave:

∑
(i, j)∈Eext

ei, j
− ∑

(j,k)∈Eext
e j,k = (

∑
(i, j)∈E ei, j − ∑

(j,k)∈E e j,k) +
es, j = Δw[j] − Δw[j] = 0. Therefore, the Conservation
Constraint ismet for all j ∈ S(Δw). Again, by symmetry, we
can show that for all j ∈ T (Δw), j satisfies the Conservation
Constraint.

123

L. Song et al.

Algorithm 2: Construction from a flow to Δw
Input: A valid flow f = {ei, j }(i, j)∈Eext on Gext(S, T ,w)

Output: A weight adjustment Δw with S(Δw) ⊆ S and
T (Δw) ⊆ T

1 For each i ∈ S, set Δw[i] = −es,i ;
2 For each i ∈ T , set Δw[i] = ei,t ;
3 For each i /∈ S ∪ T , set Δw[i] = 0;
4 Return Δw;

Putting everything together, f low(Δw) is valid on
Gext(S(Δw), T (Δw),w). ��

Observation 2 The weight adjustment Δw constructed by
Algorithm 2 is legal on G with respect to w, and satisfies
S(Δw) ⊆ S and T (Δw) ⊆ T .

Proof Since f = {ei, j }(i, j)∈Eext is a valid flow on
Gext(S(Δw), T (Δw),w), ei, j ≥ 0 for all (i, j) ∈ Eext.
Thus, S(Δw) ⊆ S and T (Δw) ⊆ T hold. Furthermore, as f
satisfies the Capacity Constraint, the assignment {ei, j }(i, j)∈E
is a weight transition in G. Moreover, since 0 ≤ es,i =
−Δw[i] ≤ cs,i = 1 + w[i] for i ∈ S, we have −1 ≤
w[i] + Δw[i] ≤ 1. Similarly, −1 ≤ w[i] + Δw[i] ≤ 1 for
all i ∈ T . Therefore, w+Δw ∈ [−1, 1]n . Finally, as f satis-
fies the Conservation Constraint, Δw[j] = ∑

(i, j)∈E ei, j −∑
(j,k)∈E e j,k for all j ∈ [n]. Thus by Definition 3, Δw is a

legal weight adjustment. ��
From Observations 1 and 2, we know that a legal weight

Δw and a valid flow in Gext(S(Δw), T (Δw),w) are essen-
tially convertible from each other.

For example, in Fig. 4, the weight adjustment Δw =
(−0.6,−0.2, 0.2, 0, 0.6) on w = (0.6, 0.2,−0.6, 0.5, 0.4)
is legal. This is because: (i) w + Δw = (0, 0,−0.4, 0.5, 1)
is a preference vector, i.e., in [−1, 1]n , and (ii) it can be
interpreted as a weight transition in G by the flow values in
grey assigned to the edges of E . With S(Δw) = {1, 2} and
T (Δw) = {3, 5}, Δw can be further interpreted as a flow
in Gext(S(Δw), T (Δw),w) (as constructed in the proof of
Observation 1), which is the value assignment to the edges
of Eext as shown in grey in Fig. 4.

Our next lemma further reveals a subtle connection
between the MDA problem and the cost of flows.

Definition 6 (Cost Associated Gext(S, T ,w)) Given
Gext(S, T ,w) and two items x, y, the cost associated
extended weight transition graph, denoted by Gcost

ext (S, T ,w)

(with respect to x and y), is constructed by associating a cost
to each edge by the following rules:

– αs,i = y[i] − x[i] for all i ∈ S,
– αi,t = x[i] − y[i] for all i ∈ T ,
– αi, j = 0 for all other edges of Eext. ��

Lemma 1 Consider a valid flow f = {ei, j }(i, j)∈Eext in
Gcost

ext (S, T ,w) and the legal weight adjustment Δw con-
structed from f by Algorithm 2. Then we have:

cost(f) = Δw · (x − y).

Proof

cost(f) =
∑

(i, j)∈Eext

αi, j · ei, j

=
∑

i∈S(Δw)

αs,i · es,i +
∑

i∈T (Δw)

αi,t · ei,t

=
∑

i∈S(Δw)

(y[i] − x[i]) · (−Δw[i])

+
∑

i∈T (Δw)

(x[i] − y[i]) · Δw[i]

=Δw · (x − y). (5)

The second equality follows from the fact that αi, j = 0 for
all edges neither s = i nor t = j by the cost assignment in
Definition 6. The third equality holds by the cost assignment
and the construction of Δw from f by Algorithm 2. The last
equality is established by the fact that Δw[i] = 0 for all
i /∈ S(Δw) ∪ T (Δw). Therefore, the lemma follows. ��
Remark The connection between the MDA problem and the
cost of valid flows on Gcost

ext (S, T ,w) is based on an assump-
tion that both S and T are provided; they respectively specify
the dimensions that will be decreased and increased when
computing a legal weight adjustmentΔw. Specifically, if one
can specify S and T such that: (i) a feasible legal Δw exists
for the MDA problem (w.r.t., w, x and y) conditioned on S
and T , i.e., only the dimensions in S (resp., T) are decreased
(resp., increased); and (ii) |S| + |T | is minimized, then one
can construct an optimal Δw by finding a valid flow with
minimum cost on Gcost

ext (S, T ,w). Interestingly, as we show
in the next section, finding such “optimal” S and T actually
makes the problem NP-hard.

5 NP-hardness

In this section, we give a proof sketch to show the NP-
hardness of the MDA problem. For this purpose, we define
the following problems.

Definition 7 (MCDecision)Given a collection ofm setsS =
{S1, . . . , Sm} with a universe U = ∪Si∈S Si , two integers
k ≤ m and τ ≤ |U |, theMCdecision problem is to determine
whether there exists a collection S ′ ⊆ S such that |S ′| ≤ k
and | ∪Si∈S ′ Si | ≥ τ . ��
It is known that the MC decision problem is NP-complete.

123

Incremental preference adjustment: a graph-theoretical approach

MC decision
on any input instance (S, k, τ)

Max-Flow MDA decision
on the input instance (G,w,x,y,k′)

constructed from (S, k, τ)

Max-Flow MDA
on the input instance (G,w,x,y)

MDA
on the same input instance

(G,w,x,y)

solves

solves

solves

1

2

3

Fig. 5 A roadmap for the proof of Theorem 1. As the MC decision
problem is known to be NP-complete, Arrow (1) implies the Max-Flow
MDA problem is NP-complete as well. Arrow (2) indicates that the
Max-Flow MDA problem is NP-hard. Finally, the NP-hardness of the
MDA problem follows from Arrow (3)

Consider twon-dimensional vectors x andy.Define the set
of x-dominant dimensions (w.r.t., y) as xDom = {i | x[i] >

y[i],∀i ∈ [n]}; and similarly, the set of y-dominant dimen-
sions (w.r.t., x) as yDom = {i | y[i] > x[i],∀i ∈ [n]}.
Moreover, define the set of equal dimensions between x and
y as eqDom = [n] \ (xDom ∪ yDom).

Definition 8 (Max-Flow MDA) Given a weight transition
graphG, a preference vector w and two items x, y, the goal of
the Max-Flow MDA problem is to find two sets S ⊆ xDom
and T ⊆ yDom such that: (i) the maximum flow value in
the extended weight transition graph Gext(S, T ,w) of G is
≥ 1/2 · w · (x − y) and (ii) |S| + |T | is minimized . If such
a solution (S, T) does not exist, return NOT EXISTS. ��
Definition 9 (Max-Flow MDA Decision) The Max-Flow
MDA decision problem is to decide whether there exists a
feasible solution (S, T) to theMax-FlowMDAproblem such
that |S| + |T | ≤ k′ for an additional input integer k′. ��

Theorem 1 The MDA problem is NP-hard.

Proof (Sketch) Below we give a proof sketch for Theorem 1,
for which the detailed proof can be found in the supplemental
materials. A roadmap of our proof is as shown in Fig. 5. Since
Arrow (2) in Fig. 5 is obvious, our proof mainly focuses on
proving Arrow (1) and Arrow (3), and hence, there are two
main steps:

(i) Showing arrow (1) Given an input instance (S, k, τ) to
the MC decision problem, we construct a specific input
instance (G,w, x, y, k′) to the Max-FlowMDA decision
problem.We show that the answer to theMax-FlowMDA
decision problem on (G,w, x, y, k′) is YES if and only if
the answer to MC decision problem on (S, k, τ) is YES.
[Shown in Lemma 1 in the Supplementary Material]

(ii) Showing arrow (3) Consider the input instance (G,w, x,
y, k′) to the Max-Flow MDA decision problem con-
structed in Step (i). Clearly, such a decision problem
can be answered by the Max-Flow MDA problem. Let
(G,w, x, y) be the corresponding input instance (ignor-
ing k′) to the Max-Flow MDA problem. On this specific

input instance (G,w, x, y), an optimal Max-Flow MDA
solution can be constructed in polynomial time by any
optimal solution to the MDA problem on the same input
instance (G,w, x, y). [Shown in Lemmas 2 and 3 in the
Supplementary Materil]

Step (i) implies that the Max-Flow MDA decision problem
is NP-complete and hence, the Max-Flow MDA problem is
NP-hard. Step (ii) shows that the MDA problem is “no eas-
ier” than the Max-Flow MDA problem, because the former
can answer the hard instance (i.e., the input instance that
makes the problemNP-hard) of the latter. Therefore, the NP-
hardness of the MDA problem follows. ��

6 A 2.17-approximate algorithm

Theorem 1 eliminates the hope of seeking a polynomial-time
algorithm for solving the MDA problem. Even worse, as the
objective function in theMDAproblem is discontinuous (and
hence, not differentiable), most existing methods for solving
optimization problems such as the Gradient Descent [3] and
the Lagrange Multiplier Method [4] are not applicable to
obtain “local optima”. To remedy this, in this section, we
design a new problem called the F-problem, in which the
objective function is continuous, differentiable and mono-
tone.Moreover, we show that, under a mild assumption, with
an optimal solution to the F-problem, we can construct a
2.17-approximate solution to the MDA problem in polyno-
mial time. Although solving the F-problem is still NP-hard
due to the concavity of its objective [27], existing optimiza-
tion techniques are sufficiently efficient to obtain a “fairly
good” result.

6.1 Amild assumption

Assumption 1 (Discretizable Assumption). There exists a
sufficiently large fixed value M ≥ 1, whose value is known
a priori and by multiplying which all the coordinate values
in w, x, y as well as the edge capacities in G can be scaled
to integers.

It should be noted that Assumption 1 holds in most of
the applications in practice. For one thing, the values in an
input instance (G,w, x, y) are often represented in the form
of rational numbers. For the other thing, the input numbers
usually have limited precision. In either case, the input values
canbe scaled to integers by a proper fixedvalueM .Moreover,
Assumption 1 is equivalent to assuming that the coordinates
in w, x, y as well as the edge capacities in G are integer
multiples of 1

M . Finally, a real value is said to be 1
M -multiple

if and only if it is an integer multiple of 1
M .

123

L. Song et al.

Remark The MDA problem is still NP-hard under Assump-
tion 1, as our proofs apply to this case as well.

6.2 The F-problem

Our basic idea is to define another objective that can closely
approximate the behaviours of ‖Δw‖0,while it is continuous,
differentiable and monotone.

Consider a 1
M -multiple input instance (G,w, x, y); let

L = maxi∈[n] |x[i] − y[i]| be the maximum absolute dif-
ference between the coordinates of x and y on the same
dimension. We define the minimum quantity unit as: δ =
min{ 1

2n·M2·L , 1
M2 }. Furthermore, we define a function z(u)

on u ∈ (−∞,∞), z(u) = (u
δ
)2, and a function g(z(u)) on

z(u) ∈ [0,∞), g(z(u)) = γ · 1−e−z(u)

1+e−z(u) , where γ = 1+e−1

1−e−1 .

Observation 3 The function g(z(u)) ismonotonically increas-
ingwith z(u) ∈ [0,∞) and has the following characteristics:

– g(0) = 0 and g(1) = 1;
– g(z(u)) ≥ 1, for all z(u) ≥ 1, that is, |u| ≥ δ;
– g(z(u)) ≤ γ , for all z(u) ∈ [0,∞).

Proof All these characteristics can be verified easily. ��
Finally, for an n-dimensional vector u ∈ R

n , define

F(u) =
n∑

i=1

g(z(u[i])).

Definition 10 (The F-problem) Consider the same input
instance (G,w, x, y) to the MDA problem, the F-problem
aims to find a legal weight adjustment Δw minimizing
F(Δw) subject to exactly the same constraints in the MDA.

Return NOT EXISTS if a feasible Δw does not exist. ��
Hardness of the F-problem The F-problem aims to min-
imize a concave function F(Δw) over a set of convex
constraints, equivalently, to maximize a convex objective.
Unfortunately, this optimization falls into the class of prob-
lems called Sigmoidal Programming which is known to be
not only NP-hard, but also NP-hard to approximate to an
arbitrary precision [27]. In other words, in general, there
is no constant approximate algorithm for the Sigmoidal Pro-
gramming unless N P = P . Nonetheless, as shown in [27],
there exists a polynomial algorithm for Sigmoidal Program-
ming with an additive error depending only on the number
of active constraints and the non-convexity of the sigmoid
functions in the objective. As the discussion on this result is
out of the scope of this paper, interested readers may refer to
[27] for more details.

Moreover, local optima to the F-problem can be efficiently
obtained by various existing optimization techniques such as

theGradientDescent [3] and theLagrangeMultiplierMethod
[4] implemented in a number of popular publicly available
frameworks like Tensorflow [1] and PyTorch [7], which have
significantly reduced the effort required to tackle the prob-
lem.

Fact 1 [27] The F-problem is NP-hard.

6.3 The approximate algorithm

An overview of the algorithm Recall that, as mentioned in
Sect. 4.2, deciding optimally which dimensions should have
their weight increased and which should have their weight
decreased makes the MDA problem NP-hard. To circumvent
this issue, we seek guidance from the optimal solutions to
the F-problem on the same input instance (G,w, x, y). In
particular, given an optimal solution Δw to the F-problem,
we first “remove” the adjustments on the dimensions whose
absolute values are less than the minimum quantity unit δ,
i.e., those Dimension-i with |Δw[i]| < δ. The rationale here
is that the changes on those dimensions are small enough to
be discarded, without which we should still be able to find a
feasible solution. As such, the next step in our algorithm is
to construct a specific feasible solution to the MDA problem
by only adjusting the dimensions with |Δw[i]| ≥ δ.

We extend the notions of S(Δw) and T (Δw), and define
Sδ(Δw) = {i | i ∈ [n] ∧ Δw[i] ≤ −δ} and Tδ(Δw) =
{i | i ∈ [n] ∧ Δw[i] ≥ δ}. As a result, |Δw[i]| ≥ δ for
all i ∈ S(Δw) ∪ T (Δw). The crucial idea in our approx-
imate algorithm is to construct a specific feasible solution
Δw∗ to the MDA problem such that S(Δw∗) ⊆ Sδ(Δw) and
T (Δw∗) ⊆ Tδ(Δw).
The algorithmOur 2.17-approximate algorithm is as simple
as follows:

– Step (1). Solve the F-problem. If the F-problem is not
feasible, return NOT EXISTS. Otherwise, let Δw be an
optimal solution.

– If |Δw[i]| ≥ δ for all Δw[i] �= 0, then return
Δw∗ = Δw as a 2.17-approximate solution to the
MDA problem.

– Otherwise, go to Step (2).

– Step (2). Construct Gcost
ext (Sδ(Δw), Tδ(Δw),w) accord-

ing to the cost assignment rules in Definition 6.
– Step (3). Compute a valid flow f ∗ = {e∗

i, j }(i, j)∈Eext on

Gcost
ext (Sδ(Δw), Tδ(Δw),w) with cost(f ∗) minimized.

– Step (4). Construct the weight adjustment Δw∗ from f ∗
by Algorithm 2.

– Step (5). Return Δw∗ as a 2.17-approximate solution to
the MDA problem.

123

Incremental preference adjustment: a graph-theoretical approach

Correctness The correctness of the above algorithm follows
from the three claims below:

– Claim (1): The F-problem is infeasible if and only if the
MDA problem returns NOT EXISTS.

– Claim (2): Δw∗ is a feasible solution to the MDA prob-
lem.

– Claim (3): ‖Δw∗‖0 ≤ 2.17 · ‖Δwopt‖0, where Δwopt is
an optimal MDA solution.

Proof of Claim (1) It follows immediately from the fact that
the F-problem shares exactly the same constraints with the
MDA problem.
Proof of Claim (2) There can be only two possibilities that
the approximate algorithm returns a solution Δw∗. The first
happens at Step (1), and the second occurs at Step (5).

For the first case, as Δw∗ is a feasible solution to the F-
problem, it is also a feasible solution to the MDA problem
because the problems share exactly the same constraints.

For the second case, as Δw∗ is constructed from a valid
flow f ∗ = {e∗

i, j }(i, j)∈Eext in Gcost
ext (Sδ(Δw), Tδ(Δw),w) by

Algorithm 2, according to Observation 2, Δw∗ is a legal
weight adjustment onw, and hence, it satisfiesConstraints (1)
(2) and (3). Next, we show thatΔw∗ also satisfies Constraint
(4), namely, Δw∗ · (x − y) ≤ −w · (x − y). Furthermore,
since by Lemma 1, we know that cost(f ∗) = Δw∗ · (x− y),
it thus suffices to show:

Lemma 2 cost(f ∗) ≤ −w · (x − y).

Proof In the following, we construct a valid flow f on
Gcost

ext (Sδ(Δw), Tδ(Δw),w) such that cost(f) ≤ −w · (x −
y). By the fact that cost(f ∗) is minimized, we thus have
cost(f ∗) ≤ cost(f) and the lemma follows.

There are three main steps to construct such a valid flow
f on Gcost

ext (Sδ(Δw), Tδ(Δw),w):

– Step (i). Construct a valid flow f (Δw) = {ei, j }(i, j)∈Eext

on Gext(S(Δw), T (Δw),w) from Δw by Algorithm 1,
where Δw is the optimal solution to the F-problem
obtained in Step (1) in the 2.17-approximate algorithm.

– Step (ii). Utilise f (Δw) to construct a valid flow f ′ on
Gcost

ext (Sδ(Δw), Tδ(Δw),w). In particular, define Srm =
S(Δw) \ Sδ(Δw), that is, Srm is the set of all the nodes i
such that Δw[i] < 0 and Δw[i] > −δ. Likewise, Trm =
T (Δw) \ Tδ(Δw) is the set of all the nodes i such that
Δw[i] > 0 and Δw[i] < δ. Then f ′ = {e′

i, j }(i, j)∈Eext

is obtained by subtracting all the valid sub-flows passing
through the nodes in Srm ∪ Trm from f (Δw). Since f ′
is still a valid flow in Gext(S(Δw), T (Δw),w) and it has
no flows passing through the nodes in Srm ∪ Trm , f ′ is
also valid in Gcost

ext (Sδ(Δw), Tδ(Δw),w).
– Step (iii). Round the flow f ′ to a flow f = {ei, j }(i, j)∈Eext

such that: (a) f is a valid flow in Gcost
ext (Sδ(Δw), Tδ

(Δw),w), (b) all the values ei, j in f are multiples of
1
M , and (c) cost(f) ≤ cost(f ′). As shown in [17], under
Assumption 1, such a flow f must exist.

Next we claim that cost(f ′) < −w · (x−y)+ 1
M2 . Before

we prove this argument, suppose that it is true. By Property
(c) of the flow f obtained in Step (iii), we have cost(f) ≤
cost(f ′) < −w · (x − y) + 1

M2 , equivalently, cost(f) + w ·
(x− y) < 1

M2 . Moreover, by Assumption 1 and Property (b)

of f , cost(f) + w · (x − y) is a multiple of 1
M . Therefore,

M2 · (cost(f) + w · (x − y)) is an integer. As a result, M2 ·
(cost(f) +w · (x− y)) < 1 is equivalent to M2 · (cost(f) +
w · (x − y)) ≤ 0. Therefore, cost(f) ≤ w · (x − y) and the
lemma follows.

Nowweprove the lastmissing piece: cost(f ′) < −w·(x−
y) + 1

M2 , and then complete the whole proof of Lemma 2.
Recall that f ′ is obtained by subtracting the sub-flows

passing through all the nodes in Srm ∪ Trm from f (Δw).
During the subtraction, observe that for each time, the sub-
flow fi→T (Δw) passing through a node i ∈ Srm is removed,
that is, es,i becomes 0, Δw[i] is increased by less than δ. At
the same time, some of e j,t for j ∈ T (Δw) are decreased, but
the sum of them is also less than δ, because fi→T (Δw) is valid
and hence satisfies the Conservation Constraint. Therefore,
removing fi→T (Δw) can increase the value of Δw · (x − y)
by less than 2 · δ · L , where L = maxi∈[n] |x[i] − y[i]|. By
an analogous argument, removing a sub-flow fS(Δw)→ j for
a node j ∈ T (Δw) can increase the value of Δw · (x− y) by
less than 2 · δ · L .

Furthermore, since |Srm ∪ Trm | ≤ n, there can be at most
n such sub-flows removed. Thus, the total increment on the
value of Δw · (x − y) for obtaining the flow f ′ is less than
2 · n · δ · L . In other words, Δw′ · (x − y) − Δw · (x − y) <

2 · n · δ · L ≤ 1
M2 , where Δw′ is the weight adjustment

constructed from f ′ byAlgorithm2. Therefore, by Lemma 1,
cost(f ′) = Δw′ · (x−y) < −w · (x−y)+ 1

M2 , and the proof
is thus complete. ��

Proof of Claim (3) Define a function h(v) on v ∈ R such
that h(v) = 0 for v = 0 and h(v) = 1 for v �= 0.Note that if
Δw∗ is returned at Step (1) in the algorithm, thenΔw∗ = Δw
and ‖Δw∗‖0 = |Sδ(Δw) ∪ Tδ(Δw)|. Otherwise, Δw∗ is
constructed from the flow f ∗ in Gcost

ext (Sδ(Δw), Tδ(Δw),w),
and thus, only the dimensions in Sδ(Δw) ∪ Tδ(Δw) of Δw∗
can have nonzero values. Therefore, in either case, we have:

‖Δw∗‖0 ≤ |Sδ(Δw) ∪ Tδ(Δw)|. (6)

By the definition of Sδ(Δw) and Tδ(Δw), we know that
|Δw[i]| ≥ δ for all i ∈ Sδ(Δw) ∪ Tδ(Δw). Thus, by the
second bullet in Observation 3,

123

L. Song et al.

|Sδ(Δw) ∪ Tδ(Δw)| ≤
n∑

i=1

F(Δw[i]). (7)

Furthermore, since Δwopt is also a feasible solution to the
F-problem, by the optimality of Δw (with respect to the F-
problem) and the third bullet in Observation 3, we have:

n∑

i=1

F(Δw[i]) ≤
n∑

i=1

F(Δwopt[i]) ≤ γ ·
n∑

i=1

h(Δwopt[i]).

(8)

Combining Inequalities (6) (7) and (8), we have:

‖Δw∗‖0 ≤ γ ·
n∑

i=1

h(wopt[i]) = γ · ‖Δwopt‖0.

The lemma follows from the fact that γ = 1+e−1

1−e−1 < 2.17. ��
Therefore, by Claims (1), (2) and (3), we have:

Theorem 2 (Correctness) Our algorithm is a correct 2.17-
approximate algorithm for solving the MDA problem.

Here, it is worth noting that a crucial step (i.e., Step 1)
in our 2.17-approximate algorithm is to compute an optimal
solution to the F-problem. Unfortunately, as aforementioned,
the F-problem itself is NP-hard. Except for Step 1, each step
in our algorithm can be performed in polynomial time. We
thus have the last theorem as below.

Theorem 3 (Efficiency) Given an optimal solution to the F-
problem, we can obtain a 2.17-approximate solution to the
MDA problem in polynomial time.

7 Efficient heuristic algorithms

Though there are plenty of handy tools to find local optima for
the F-problem, those optimization techniques are efficient in
the sense of polynomial time versus NP-hardness. However,
they may not be efficient enough when aiming to support on-
line queries in practice. Motivated by this, in this section, we
proposed two simple, efficient, yet effective heuristic algo-
rithms for solving the MDA problem. The first algorithm is
called Iterative Linear Programming (ItrLP), and the sec-
ond one is a variant of the known Successive Shortest Path
(SSP) algorithm [9], called Iterative Successive Shortest Path
(ItrSSP) algorithm.

7.1 Iterative linear programming algorithm

Linearprogramming (LP)Perhaps one of themost straight-
forward heuristic algorithms is to relax the optimization

problem from minimizing ‖Δw‖0 to minimizing ‖Δw‖1
subject to exactly the same constraints. Specifically, as a
heuristic, we can consider:

minimize
n∑

i=1

|Δw[i]|

subject to Constraints (1) (2) (3) and (4).

In order to eliminate the absolute value operator in the
objective function, we introduce n variables qi and 2 · n con-
straints: Δw[i] ≤ qi and −Δw[i] ≤ qi for i ∈ [n]. As a
result, the optimization problem is written as a linear pro-
gramming:

minimize
n∑

i=1

qi

subject to

Constraints (1) (2) (3) (4)

Δw[i] ≤ qi i ∈ [n]
− Δw[i] ≤ qi i ∈ [n]

Clearly, the last two constraints enforce qi to be non-negative
and equal to |Δw[i]| for all i ∈ [n]. Thus, ∑n

i=1 qi =
‖Δw‖1.Moreover, asΔw satisfies Constraints (1) (2) (3) and
(4), Δw is a feasible solution to the MDA problem. Further,
if the above LP is infeasible, neither is the MDA problem.

Interestingly, though the idea of linear programming is
simple, as we show next, it can achieve an approximation
guarantee depending on theminimumnonzeroweight adjust-
ment on some dimension in an optimal LP solution.

Consider an input instance (G,w, x, y) to the MDA prob-
lem (and hence, its LP variant); and let Δw be a feasible
MDA solution. We define:

σ(w) = 1 + max
i∈[n] |w[i]| and γ (Δw) = min

i :Δw[i]�=0
|Δw[i]|.

Since both w and Δw + w are in [−1, 1]n , we have:

max
i∈[n] |Δw[i]| ≤ 1 + max

i∈[n] |w[i]| = σ(w) ≤ 2.

Observation 4 Let Δw be any feasible solution to the MDA
problem. Then we have:

γ (Δw) · ‖Δw‖0 ≤ ‖Δw‖1 ≤ σ(w) · ‖Δw‖0.

Proof Recall that the function h(v) = 1 for v �= 0, and
h(v) = 0 for v = 0. Thus, ‖Δw‖0 = ∑

i∈[n] h(|Δw[i]|).
Moreover, by the definitions of σ(w) and γ (Δw), it is easy
to verify that:

γ (Δw) · h(|Δw[i]|) ≤ |Δw[i]| ≤ σ(w) · h(|Δw[i]|)

123

Incremental preference adjustment: a graph-theoretical approach

holds for all i ∈ [n]. The observation follows by summing
up the above inequality for all i ∈ [n]. ��
Theorem 4 Consider an input instance (G,w, x, y) to both
theMDA problem and its LP variant. LetΔw∗

lp be an optimal
LP solution and Δw∗

mda an optimal MDA solution. We have:

‖Δw∗
lp‖0 ≤ σ(w)

γ (Δw∗
lp)

· ‖Δw∗
mda‖0.

Proof Since both Δw∗
lp and Δw∗

mda are feasible solutions to
the MDA problem and its LP variant, by Observation 4, we
have:

γ (Δw∗
lp) · ‖Δw∗

lp‖0 ≤ ‖Δw∗
lp‖1,

and

‖Δw∗
mda‖1 ≤ σ(w) · ‖Δw∗

mda‖0.

Moreover, combining the fact that ‖Δw∗
lp‖1 ≤ ‖Δw∗

mda‖1,
we have:

γ (Δw∗
lp) · ‖Δw∗

lp‖0 ≤ σ(w) · ‖Δw∗
mda‖0.

Therefore, the theorem follows. ��
FromTheorem4,while σ(w) is independent toΔw∗

lp and can
be upper bounded by 2, the approximation ratio of an optimal
LP solution Δw∗

lp actually depends on its smallest absolute
nonzero coordinate γ (Δw∗

lp). When γ (Δw∗
lp) is large, e.g.,

γ (Δw∗
lp) ≥ 1, then the approximation ratio of Δw∗

lp is no
more than σ(w) ≤ 2. Unfortunately, γ (Δw∗

lp) can be small
in general, making Δw∗

lp as an MDA solution not satisfy-
ing. To remedy this issue, next we propose a method called
Iterative Linear Programming to further refine Δw∗

lp.
Iterative linear programming (ItrLP) Given a feasible
MDA solution Δw, let P(Δw) = {i | Δw[i] = 0} be
the set of dimensions with zero adjustment in Δw, and
P̄(Δw) = [n] \ P(Δw), i.e., the set of dimensions with
nonzero adjustment in Δw.

The basic idea of ItrLP is as follows. When Δw = Δw∗
lp

is obtained, we try to “remove” the smallest nonzero abso-
lute adjustment on Dimension-i , by: (i) keeping all the
dimensions in P(Δw) unchanged, and (ii) just utilizing the
dimensions in P̄(Δw) \ {i} to obtain a new feasible LP solu-
tionΔw′. IfΔw′ exists, then we have ‖Δw′‖0 = ‖Δw‖0 −1
because the adjustment on Dimension-i is saved. Repeat this
process on Δw′ until no feasible solution can be obtained,
and then return the last feasible LP solution. As a result, a
refined solution based on Δw∗

lp is obtained.
Although the ItrLP can refine an optimal LP solutionΔw∗

lp
gradually, the computational cost of repeatedly solving the
LP’s may be expensive. Moreover, if ‖Δw∗

lp‖0 is very large,

the refinement quality may be limited. In the next subsec-
tion, we propose another algorithm which, as shown in the
experiment, is more efficient than the ItrLP and often can
achieve a better MDA solution.

7.2 Iterative successive shortest path algorithm

In the following, we propose an algorithm, called Itera-
tive Successive Shortest Path (ItrSSP) algorithm, which is
an extension of the known Successive Shortest Path (SSP)
algorithm [9] for solving theMin-Cost Flowproblem. Specif-
ically, the input to the Min-Cost Flow problem consists of:

– a cost associated flow-network G = 〈V ∪ {s, t}, E〉,
where each edge (i, j) ∈ E has capacity ci, j ≥ 0 and is
associated with a cost αi, j ,

– a specified flow value K .

The goal of the problem is to find a valid flow f =
{ei, j }(i, j)∈E such that: (i) the flow value of f , denoted by
value(f), is K , and (ii) the cost of f , denoted by cost(f) =
∑

(i, j)∈E ei, j · αi, j , is minimized; or decide such a flow f
with value(f) = K does not exist.

7.2.1 Preliminaries: successive shortest path algorithm

As a first step, we introduce the following notions:
Pre-flows Consider a flow f = {ei, j }(i, j)∈E . If f satisfies
the Capacity Constraint, then f is called a pre-flow. Note that
a pre-flow is not necessarily a valid flow as it is allowed to
violate the Conservation Constraint.
Residual networks Without loss of generality, we assume
that G = 〈V ∪ {s, t}, E〉 has no parallel edges with reversed
directions, because otherwise, we can avoid the parallel
edges by adding intermediate vertices. Given a pre-flow
f = {ei, j }(i, j)∈E on a cost associated flow-network G,
the residual network of G with respect to f , denoted by
G f = 〈V f , E f 〉, is constructed as follows:

– V f = V ∪ {s, t},
– Initialize E f = ∅; and for each edge (i, j) ∈ E ,

– if ei, j < ci, j , add an edge (i, j) to E f with (residual)
capacity ri, j = ci, j − ei, j and cost ᾱi, j = αi, j ;

– if ei, j > 0, add a reversed edge (j, i) to E f with
(residual) capacity r j,i = ei, j and cost ᾱ j,i = −αi, j .

Potential assignment to vertices A potential assignment to
the vertices is a value assignment π = {πi } to each vertex
i ∈ V ∪ {s, t}.
Reduced costsGiven a pre-flow f and a potential assignment
π , the reduced cost of each edge (i, j) ∈ E f with respect to
f and π , is defined as ᾱπ

i, j = ᾱi, j − πi + π j . A potential

123

L. Song et al.

assignment π is valid with respect to f if ᾱπ
i, j ≥ 0 for all

(i, j) ∈ E f . The detailed steps of the Successive Shortest
Path algorithm are shown in Algorithm 3:

Algorithm 3: Successive Shortest Path Algorithm
Input: G = 〈V ∪ {s, t}, E〉 and a flow value K
Output: A valid min-cost flow fout with flow value equal to K ,

or fout being a min-cost maximum flow.
1 fout ← {ei, j = 0}(i, j)∈E ;
2 π ← {πi = 0}i∈V∪{s,t};
3 G fout ← the residual network of G w.r.t. fout;
4 while value(fout) < K do
5 Compute the shortest distance dist(s, v) from s to each

vertex v in G fout with the reduced costs ᾱπ = {ᾱπ
i, j } being the

edge weights;
6 Q ← the shortest path from s to t computed;
7 if Q does not exist then
8 Return fout as a min-cost maximum flow;
9 else

10 Increase the values in fout assigned to the edges on Q
with value

min{c fout (Q), K − value(fout)},
where c fout (Q) is the smallest (residual) capacity among
the edges on Q;

11 πi ← πi − dist(s, i) for all i ∈ V fout (and thus, ᾱπ is
updated);

12 G fout ← the (new) residual network of G with respect to
(the new) fout;

13 end
14 end
15 Return fout as a min-cost flow with flow value equal to K ;

The rationale of Algorithm 3 is to “push” a flow from s to
t with the most cost-effective path Q and repeat this process
until a flow can be returned. Consider the flow fout returned
by Algorithm 3 with input G, K . If value(fout) = K , then
fout is amin-cost flowwith flow value equal to K . Otherwise,
fout is a min-cost maximum flow. In other words, by setting
K = ∞, we can always obtain a min-cost maximum flow by
Algorithm 3.
Complexity analysis The running time of Algorithm 3 is
dominated by the overall cost within the While-Loop from
Line 3–12. The cost of each iteration in the While-Loop is
bounded by the cost of computing the shortest distances from
s to each other vertex in the residual network. By applying
the Dijkstra algorithm with a Fibonacci heap, this cost is
bounded by O(|E | + |V | · log |V |).

It remains to bound the number of iterations in the While-
Loop. When ci, j and αi, j for all (i, j) ∈ E are integers,
then in each iteration, the value of the flow gets increased
by at least 1 unit. Therefore, the total number of iterations
is at most value(fout), and the overall cost of Algorithm 3 is
O(value(fout) · (|E | + |V | · log |V |)).

Known properties Below we give three known invariants
maintained in Algorithm 3 without proofs as they can be
derived from the standard correctness proof of the SSP algo-
rithm [9]. They will be useful when analysing our algorithm
proposed next.

– Invariant 1. At the end of each iteration in the While-
Loop of Algorithm 3, after updating fout and π by the
shortest path Q in the residual network, π is always valid
with respect to fout. Namely, ᾱπ

i, j ≥ 0 for all (i, j) ∈
E fout .

– Invariant 2. At the end of each iteration in the While-
Loop of Algorithm 3, fout is valid and the cost of fout
is the smallest among all the valid flows with flow value
value(fout).

– Invariant 3. The shortest path from any u ∈ V fout to
any other v ∈ V fout in the residual network G fout with
the reduced costs being edge weights is always the most
cost-effective when pushing flows from u to v. That is,
pushing flow from u to v along this shortest path can
incur the least cost of the flow.

Remark 1 In fact, there is a heuristic way to improve the
efficiency in each iteration in theWhile-Loop ofAlgorithm3.
That is, in each iteration, we can stop the Dijkstra algorithm
as soon as the shortest path from s to t is found. It is known
that the potential assignment π can be updated to ensure
Invariant 1 holds.

For the sake of simplicity, we skip the discussion about it
as the running time bound is the same anyway.

Remark 2 While Algorithm 3 is a general algorithm for solv-
ing the Min-cost Flow problem, interestingly, as we will see
shortly, for the cost associated network in our application,
we even don’t need to maintain the potential assignment π

and can stop the Dijkstra algorithm as soon as the shortest
path from s to t is found in each iteration. As a result, the
efficiency is considerably improved.

7.2.2 The ItrSSP algorithm

For two items x and y, recall that xDom = {i | x[i] > y[i]},
yDom = {i | y[i] > x[i]} and eqDom = [n] \ (xDom ∪
yDom). Let S = xDom ∪ eqDom and T = yDom ∪
eqDom. Consider an input instance (G = 〈V , E〉,w, x, y) to
the MDA problem. We construct a cost associated extended
graph, denoted by G̃cost

ext = 〈V ∪ {s, t}, Ẽext〉, by adding to
G:

– a source node s and a sink node t ;
– an edge (s, i) with capacity cs,i = 1 + w[i] and cost

αs,i = y[i] − x[i] for each i ∈ S;

123

Incremental preference adjustment: a graph-theoretical approach

– an edge (i, t) with capacity ci,t = 1 − w[i] and cost
αi,t = x[i] − y[i] for each i ∈ T ;

– αi, j = 0, for all (i, j) ∈ E with neither i = s nor j = t .

By the definitions of S and T , we haveαi, j ≤ 0 for all (i, j) ∈
Ẽext. Thus, the flow with the minimum cost among all valid
flows in G̃cost

ext must be a maximum flow. This is because
otherwise, one can always decrease the cost by increasing
the flow value.

By Lemma 1, the cost of any valid flow f (Δw) in G̃cost
ext is

equal toΔw·(x−y), whereΔw is the legalweight adjustment
constructed from f (Δw) by Algorithm 2. Moreover, for the
same reason as in the proof of Lemma 2, removing any valid
sub-flow with value q from f (Δw) will increase the value
of Δw · (x − y) by at most 2 · q · L .

The basic idea of our algorithm is that we start with a
min-cost maximum flow f (Δw) in G̃cost

ext , and try to subtract
some sub-flows from f (Δw) to reduce the value of ‖Δw‖0
yet ensuring the condition Δw · (x− y) ≤ −w · (x− y) still
holds. For this purpose, following a similar idea of the ItrLP
algorithm, we try to “remove” the changes on the dimensions
with small absolute nonzero adjustments.

Below are the detailed steps of the ItrSSP algorithm:

– Step (1). Let G = G̃cost
ext and set K = ∞. Run a sim-

plified variant2 of Algorithm 3 with input G and K . Let
fout be the returned min-cost maximum flow and π the
valid potential assignment w.r.t. fout when the algorithm
terminates.

– If cost(fout) > −w · (x− y), return NOT APPLICA-
BLE. In this case, only decreasing (resp. increasing)
the dimensions in S (resp. T) is not sufficient to obtain
a feasible MDA solution. Thus, the algorithm is not
applicable here.

– Step (2). Let f = fout and Δw be the legal weight
adjustment corresponding to f . Delete from G, the edges
(s, i) for all i ∈ S \ S(Δw), and the edges (i, t) for all
i ∈ T \ T (Δw). Observe that all these deleted edges are
“unused” in the flow f . Namely, the values in f assigned
to these edges are 0. Let G̃ be the resulted graph after
these edge removals. Note that π is still a valid potential
assignment w.r.t. f , as removing edges will not violate
the requirement ᾱπ

i, j ≥ 0 for all (i, j) ∈ G̃. Therefore, f

is a valid min-cost maximum flow in G̃.

2 As mentioned earlier in Remark 2 in the previous subsection, in our
application, only the edges adjacent to either s or t in G have nonzero
costs. Therefore, it is sufficient to set πs = πt = mini=s∨ j=t |αi, j | and
πi = 0 for all i other than s and t . It can be verified that π is always
valid for any valid flow in G, and hence, there is no need to update it at
the end of each iteration in the While-Loop of Algorithm 3. As a result,
it suffices to stop the Dijkstra algorithm as soon as the shortest path
from s to t is found and skip the maintenance of π in each iteration.

Algorithm 4: Sub-flow Removal Procedure

Input: G̃, a min-cost maximum flow f in G̃, two vertices a and
b in G̃, and a flow value K to remove

Output: A min-cost flow f ′ with flow value value(f) − K .
1 f ′ ← f ;

2 G′
f ← the residual network of G̃ w.r.t. f ′;

3 costmin ← mini=s∨ j=t |αi, j |;
4 πs ← costmin , πt ← costmin ;
5 πi = 0 for all i ∈ V f \ {s, t};
6 ᾱπ

i, j = ᾱi, j − πi + π j for all (i, j) ∈ E f ;

7 while TRUE do
8 excess(a) ← K ;
9 Compute the shortest path from a to b in G f ′ , denoted by Q;

10 Increase the values in f ′ assigned to the edges on Q with
value

Δ = min{c f ′ (Q), excess(a)},
where c f ′ (Q) is the smallest (residual) capacity among the
edges on Q;

11 G f ′ ← the (new) residual network of G̃ with respect to (the
new) f ′;

12 excess(a) ← excess(a) − Δ;
13 if excess(a) = 0 then
14 Return f ′;

– Step (3). Consider i = argmini :Δw[i]�=0 |Δw[i]|, that is,
Dimension-i is the dimension with the smallest absolute
nonzero weight adjustment in Δw.

– If i ∈ S(Δw), remove the edge (s, i) from G̃ and sub-
tract from f the sub-flow fi→T (Δw) with flow value
es,i by calling Algorithm 4 with input: G̃, f , a = t ,
b = i and K = es,i .

– If i ∈ T (Δw), remove the edge (i, t) from G̃ and sub-
tract from f the sub-flow fS(Δw)→i with flow value
ei,t by calling Algorithm 4 with input: G̃, f , a = i ,
b = s and K = ei,t .

Let f ′ be the min-cost flow returned. (The correctness
of Algorithm 4 follows from the facts that (i) the input
flow f is a min-cost flow; and (ii) Algorithm 4 maintains
exactly the same invariant as Invariant 3 of Algorithm 3.)

– Step (4). Run the While-Loop in (the simplified variant
of)Algorithm3with G̃ and K = ∞ startingwith the state
of f ′ being fout. Thus, when theWhile-Loop terminates,
fout is a min-cost maximum flow in G̃. (This follows
from the fact that both Invariants 1 and 2 are maintained
in during this process.)

– Step (5). If cost(fout) > −w · (x − y), return Δw as an
MDA solution. Otherwise, let f = fout and update Δw
to be the legal weight adjustment corresponding to f and
then repeat from Step (3).

Correctness of the overall ItrSSP algorithm When the
ItrSSP algorithm is applicable, the correctness follows from
the facts that: (i) f is valid at the beginning; (ii) every sub-

123

L. Song et al.

flow subtracted from f in Algorithm 4 is valid; (iii) every
flow pushed in the While-Loop of Algorithm 3 is also valid;
and (iv) cost(f) = Δw ·(x−y) ≤ −w ·(x−y) always holds.
As a result, it ensures that the legal weight adjustment Δw
corresponding to f satisfies Constraints (1) (2) (3) and (4),
and thus, Δw is a feasible solution to the MDA problem.
Running time complexity analysis Recall that by Assump-
tion 1, all the input values are 1

M -multiple. Let C be the
running cost of the Dijkstra algorithm on the residual net-
work G f . It is easy to know that C = O(|E |+ |V | · log |V |),
because |V f | = |V | and |E f | = O(|E |). Since in the ItrSSP
algorithm, the cost of each iteration in the While-Loop of
Algorithm 3 and Algorithm 4 is bounded by O(C), it is suf-
ficient to bound the total number of iterations of the overall
ItrSSP algorithm.

First, since in Step (1), we run Algorithm 3 to obtain a
min-cost maximum flow fout, the cost is bounded by O(M ·
value(fout)·C) = O(M ·n·C). Second, Step (2) takes atmost
O(|E |) time.Third, inStep (3),we runAlgorithm4 to remove
a sub-flow with value |Δw[i]|. Notice that each iteration in
Algorithm 4 removes a sub-flowwith value at least 1

M . There
can be at most O(M · |Δw[i]|) = O(M) iterations, since
|Δw[i]| ≤ 2. Observe that at the beginning of Step (3), f is
a maximum flow on G̃, and fout obtained in Step (4) is a flow
on G̃ after removing an edge. Thus, value(fout) ≤ value(f).
Moreover, after the sub-flow removals in Step (3), we have
value(f ′) = value(f) − |Δw[i]|.

Therefore, in Step (4), value(fout)−value(f ′) ≤ |Δw[i]|.
As a result, there can be at most O(M · |Δw[i]|) = O(M)

iterations. Finally, Step (5) can only repeat Step (3) and Step
(4) at most 2n times, since each time it removes an edge
adjacent to either s or t and there are at most 2n such edges.
Therefore, the total number of iterations is bounded by O(M ·
n).

Combining the cost of the Dijkstra algorithm, the overall
running time complexity of our ItrSSP is bounded by O(M ·
n · (|E | + |V | · log |V |)).

Remark 1 Although the ItrSSP needs to perform multiple
iterations, unlike the ItrLP which has a blow-up of the num-
ber of iterations in the time complexity, the running time
complexity of the ItrSSP algorithm remains the same as the
bound of the SSP algorithm. In other words, the algorithm
only incurs a constant factor overheadwhen refining themin-
cost maximum flow for the MDA problem.

Remark 2 In practice, the value M of the input is often small,
and at each time, the algorithm can push a flow value far
larger than the worst-case amount 1

M . As a result, both Algo-
rithms 3 and 4 can stop with a small number of iterations in
the While-Loop. Moreover, since each repeat of Step (3) and
Step (4) decreases ‖Δw‖0 by 1, in general, the total number
of repeats is far smaller than n. Therefore, in practice, the

ItrSSP algorithm can run very fast. This is also observed in
our experiment (see Fig. 10).

8 The weight transition graph

The weight transition graph G is an important input in the
rank-reversal problem. However, in general, it may not be
easy to obtain it directly due to limited or even no access to
commercial real-world personalized ranking systems, not to
mention thatG varies fromone domain to another. To remedy
this, we first describe an alternative algorithm to construct G
with no domain knowledge required. While this algorithm is
just one of many possible ways to construct a weight tran-
sition graph G, it may hint some insight of the construction
rationale. Next, we further study how the feasibility of the
problem is under different instances of G (under different
settings of key parameters in the algorithm), which depends
on the capability and the density of the edges in G specified
by different parameters.

Remark Although different G can affect the rank-reversal
results, the focus of this paper is to propose effective algo-
rithms for incremental preference adjustment when G is
given; and our methods are indeed orthogonal to the problem
of how G is obtained.

8.1 An alternative construction algorithm of G

An overview of the algorithm The basic idea of the con-
struction algorithm is to perform a certain sequence of
rank-reversal operations by solving linear programmings,
i.e., the LP algorithm, on a weight transition graph G ′ which
is a complete graph and of which the capacity of each edge
is 2, the maximum capacity. In other words, G ′ imposes no
flow-like constraints on the reversals, and thus, the LP is
always feasible under G ′.

Recall that each weight adjustmentΔw onw is essentially
a flow-value assignment, {ei, j }i �= j , to the edge (i, j) in G ′.
Let μi, j and σi, j be the mean and standard deviation of
the flow values assigned to edge (i, j) in G ′ over all the
rank-reversal operations in the sequence, respectively. The
rationale of constructing a weight transition graph G (not
the G ′) is that if the capacity ci, j , for each edge (i, j) in G,
is set to μi, j + β · σi, j for some β (say β = 3), then the
flow-like constraints (i.e., ci, j ’s) imposed by G are likely to
admit feasible solutions for the rank-reversal operations. In
particular, the parameter β controls the “strictness” of the
constraints imposed by G.

Another natural way to control the strictness of the con-
straints is to control the number of edges in G. If only nρ

edges are randomly picked and kept in G from the n · (n−1)

123

Incremental preference adjustment: a graph-theoretical approach

Table 7 The percentages of feasible operations versus different parameter settings for G

β (with ρ = 1.5) ρ (with β = 0.5)

Datasets 0 0.1 0.2 0.5 0.8 1.0 1.0 1.25 1.5 1.75 2.0

Amz 55% 73% 81% 89% 93% 100% 61% 70% 89% 95% 99%

Fsq 45% 65% 84% 90% 95% 99% 65% 73% 90% 96% 100%

Nfl 40% 66% 80% 85% 92% 100% 55% 68% 85% 91% 97%

Mvl 44% 72% 80% 90% 100% 100% 60% 72% 90% 95% 99%

Rtb 20% 34% 60% 81% 90% 98% 51% 68% 81% 88% 95%

possible edges, the larger ρ, the more likely of G to admit
feasible solutions for the rank-reversal operations.

Finally, the sequence of rank-reversal operations are gen-
erated with the given training data and the vector embedding
of the items learnt by a specified preference learning model
(see details about the models in Sect. 9.1.2). More specifi-
cally, the training data is a list of user log records, each of
which is a user-item pair with chronological order preserved,
e.g., the purchase history of the users on Amazon, the movie
rating history of the users on Netfix. With the vector embed-
ding of all the items learnt by the model, a list L of all the
user-item pairs can be extracted from the training data, with
chronological order preserved.Eachpair in the listL, denoted
by (u, y), represents the record that user u has purchased item
y in the corresponding time stamp. Furthermore, the prefer-
ence vector wu of each user u is initialized as a randomvector
in [−1, 1]n .

For a pair (u, y) in L, consider the ranking list of all the
items obtained by wu . If there is an item x such that x is
ranked higher than y but the pair (u, x) does not occur before
(u, y) inL, then the rank order of x and y should be reversed.
This is because such a rank order contradicts with the fact
that the user u has bought y at this time stampwhile u has not
chosen x before. Based on this idea, a rank-reversal operation
is generated by randomly choosing such an itemx (ifmultiple
x’s exist) for each (u, y) ∈ L.
The algorithm For a specified preference learning model
and a given training set, we construct G as follows.

– Step 1: Extract the list L in the aforementioned manner.
– Step 2: Initialize wu as a random vector in [−1, 1]n for
each user u.

– Step 3: For l = 1, 2, . . . , |L|, process the lth user-item
pair (u, y) in L by the following procedure:

– Sort all the items with wu .
– Randomly pick an item xwhich is ranked higher than
y (i.e., wu ·x > wu ·y) and whose corresponding pair
(u, x) does not occur before (u, y) in L. If no such x
exists, skip and process the next pair.

– Perform a rank-reversal operation with the complete
graph G ′, wu , x and y by the algorithm LP.

– Let {ei, j }i �= j be the flowvalue assignment of the legal
weight adjustment of the optimal LP solution. Record
ẽli, j = ei, j for each edge (i, j).

– Step 4: Compute themeanμi, j and the standard deviation
σi, j over all the |L| recorded values ẽli, j for each edge
(i, j), where l = 1, . . . , |L|.

– Step 5: The desired weight transition graphG is obtained
from G ′ with two parameters: (i) the edge density ρ and
(ii) the standard deviation factor β in the edge capacities.
The detailed steps are as follows:

– The edge set E ofG is generated by picking nρ edges
uniformly at random from the edges in G ′.

– The capacity ci, j for each (i, j) ∈ E is computed by
μi, j + β · σi, j .

As a result, with different combinations of ρ and β,
we can control the “strictness” of the constraints on the
rank-reversal operations imposed by G.

8.2 Feasibility of Gwith different� andˇ

As mentioned earlier, the problem of performing a
rank-reversal operation can be infeasible if G is too restric-
tive. The causes for this can be either G being too sparse or
the edge capacities being too small. We define the feasibility
of G as the percentage of feasible rank-reversal operations
under the constraints imposed by G with a specified pref-
erence learning model and a user with a preference vector
initialized by a random vector. We examine the feasibility of
G with the following steps:

– Select WARP (detailed descriptions can be found in
Sect. 9.1.2) as the reference preference learning model.

– Consider the userwith the richest information in the train-
ing data, namely, the user occurs the most in L in the
corresponding specified dataset.

– Initialize w as a random vector in [−1, 1]n .
– Construct G with different parameter settings: ρ =

1.0, 1.25, 1.5, 1.75, 2.0 andβ = 0, 0.1, 0.2, 0.5, 0.8, 1.0.

123

L. Song et al.

– Simulate 100 actions from the user withG by using LP to
perform 100 rank-reversal operations one by one (gen-
erated by the method as described in Sect. 9.1.6).

– The feasibility ofG is measured by the percentage of fea-
sible rank-reversal operations out of the 100 user actions.

Two sets of settings are shown in Table 7: ρ = 1.5 with
varying β and β = 0.5 with varying ρ. With a fixed ρ,
the percentage of feasible operations gets increased w.r.t. β.
Similarly, with a fixed β, as the number of edges in G grows,
the feasible percentage increases. This is becausemore edges
can be used to find a feasible solution. By default, we set
æ = 1.5 and fi = 0.5 in our experiments.

9 Experiments

In this section, we aim to evaluate the effectiveness and effi-
ciency of our incremental preference adjustment algorithms,
as per user’s action(s) to the ranking result initially by a cer-
tain reference preference learning model. We highlight the
following key questions as well as the section number used
to clarify or answer it.

– Q1: What reference preference learning models shall we
use that are widely adopted for personalized ranking?
(see Sect. 9.1.2)

– Q2: In our MDA problem setting, how to:

– obtain the ground truth of the ranking results (w.r.t.
a certain reference preference learning model) that is
used to measure the effectiveness of our incremental
adjustment techniques (see Sect. 9.1.2).

– initialize the preference vector, w, of the user (see
Sect. 9.1.4),

– construct the weight transition graph G without
domain knowledge (see Sect. 8).

– Q3: How do we select users and simulate their action(s)
when interactingwith the ranking system? (seeSect. 9.1.6)

– Q4: Given the ground truth, what is an appropriate choice
of measurement on effectiveness? (see Sects. 9.1.5 and
9.2)

– Q5: What are the baseline methods to be used for com-
parison purpose with our approaches? (see Sect. 9.1.3)

9.1 Experiment setup

9.1.1 Datasets and experiment environment

Datasets We conduct experiments on five real datasets that
have been widely used in personalized ranking [28].

– Amazon3(Amz) is a dataset that contains 584,000 reviews
of 427,000 users on 24,000 Amazon instant videos.

– FourSquare4(Fsq) is constructed based on 16 million rat-
ings on 9,185 places that 348,000 users have visited.

– Netflix5(Nfl)
contains over 22 million ratings from 363,000 users on
14,000 movies.

– MovieLens6(Mvl)
contains 900,000 rating records of 6,011 users on 3,678
movies.

– RateBeer7(Rtb) contains 2,592 users and 2,732 products
(i.e., beers), with in total 125,000 user ratings.

Experiment environmentAll experiments are conducted on
a Windows 10 machine equipped with a 2.4GHz Intel CPU
and 8GB RAM, and all our algorithms are implemented by
C++ and compiled byMinGW(a variant of gcc forWindows)
with O3 flag turned on.

9.1.2 Ground truth formation and reference models

Ground-truth formation
In the context of neural networks, embeddings are low-

dimensional, learned continuous vector representations of
discrete variables. In our case, embeddings offer us accu-
rate information of user preferences, as they are trained over
long-term user-item interaction data. Thus, for a specified
reference preference learning model and a specified user,
embedding (i.e., the preference vector) learned by the model
is considered as the true preference of the user. Hence, we
treat such a preference vector as the “ground-truth prefer-
ence” of the user (under the preference learning model),
which is used to measure the effectiveness of the preference
vector adjusted by performing rank-reversal operations with
our proposed methods. More details are in Sect. 9.1.5.
Reference preference learning models We adopt the fol-
lowing three representative models:

– Bayesian Personalized Ranking (BPR) [22].
– WeightedApproximate-RankPairwiseLoss (WARP) [29].
– Adversarial Personalized Ranking for Recommendation
(APR) [14].

Among the three, BPR and WARP are widely used in the
community [22,29], while APR [14] is a recent method.

3 http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/
ratings_Amazon_Instant_Video.csv.
4 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
5 http://academictorrents.com/browse.php?search=Netflix.
6 https://grouplens.org/datasets/movielens/.
7 https://snap.stanford.edu/data/web-RateBeer.html.

123

http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Amazon_Instant_Video.csv
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings_Amazon_Instant_Video.csv
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
http://academictorrents.com/browse.php?search=Netflix
https://grouplens.org/datasets/movielens/
https://snap.stanford.edu/data/web-RateBeer.html

Incremental preference adjustment: a graph-theoretical approach

Model training Each of the above three models embeds
each user into a preference vector (hence, it is the ground-
truth preference for the user) and each item into a vector;
all the vectors are of n dimensions. These embeddings are
trained in the same way and on the same datasets as in
their original papers. Specifically, LightFM8 is used to train
BPR and WARP embeddings, and APR is trained using the
code provided by the original author.9 Moreover, we consider
n = 100 in all embeddings.

9.1.3 Methods for comparison

We compare the performance of six algorithms:

– LP: The algorithm solving the MDA problem by lin-
ear programming with l1-norm rather than l0-norm as
the objective while subject to the same conditions. The
returned results are feasible solutions to the MDA.

– ItrLP: This is the algorithm which refines optimal LP
solutions by solving LPs iteratively.

– ItrSSP: The Iterative Successive Shortest Paths algorithm
(proposed in Sect. 7).

– Approx: A heuristic implementation of our approximate
algorithm (proposed in Sect. 6) for solving the MDA
problem, where an optimal LP solution is treated as an
optimal solution to the F-problem.

– Hybrid: This is a hybrid algorithm combining the
ItrSSP and LP algorithm. The basic idea is to further
reduce the number of dimensions changed via removing
small changes on certain dimensions from the optimal
solution returned from LP. That is to say, hybrid takes
the solution of LP as a starting point to run ItrSSP.

– Greedy: This method performs rank-reversal operations
without the constraints imposed by the weight transi-
tion graph G. As a result, it always greedily chooses
the “most effective” dimensions to adjust the preference
vector to reverse the item pair.Greedy is only used in the
experiments of effectiveness evaluation, to illustrate the
importance of the role played by G in the rank-reversal
operations.

9.1.4 Initializing the preference vectors

The preference vector w for each user is initialized by a
Random Initialization. Specifically, each coordinate of w is
chosen uniformly and independently from the range [−1, 1].
We note that the random initialization makes no assumption
on the users’ preference vectors, which nicely shows how a
preference adjustment method can effectively support new
(i.e., cold-start) users.

8 https://github.com/lyst/lightfm.
9 https://github.com/hexiangnan/adversarial_personalized_ranking.

9.1.5 Measurement of effectiveness

Consider a preference learning model, a preference adjust-
ment method and a specified user. Let w be the initial
preference vector of the user. Afterward, w is adjusted by
performing a certain number of rank-reversal operationswith
the specifiedmethod. Let Tk be the list of top-k recommended
items obtained with the adjusted w (after the operations), and
T ∗
k the list of the top-k recommended items obtained by the

ground-truth preference w∗ of the user (under the selected
model). The effectiveness of w (and hence, the effectiveness
of the specified method) is measured by the overlap ratio of

Tk and T ∗
k , which is defined as

|Tk∩T ∗
k |

k . In all our experiments,
the default value of k is 100 unless stated otherwise.

9.1.6 User behaviour simulation

Given a selected preference learning model and a user with
a preference vector w as an input, we simulate the action(s)
of the user with requests for rank-reversal operations, where
the items x and y are generated as follows.

As defined earlier, T ∗
k is the top-k list under the ground-

truth preference w∗ of the user, while Tk is the top-k list of
the input preference vector w. The item x is picked uniformly
at random from Tk \ T ∗

k , and the item y is chosen in the same
way from T ∗

k \ Tk .
The rationale here is that the ground-truth preference w∗

indicates that the user prefers y more than x, while w ranked
x better than y. Therefore, a rank-reversal operation for x
and y is needed.

9.2 Measurement on the numbers of dimensions
changed

Next, we measure the numbers of dimensions changed when
performing rank-reversal operations for each competitor
(described in Sect. 9.1.3). The experiment setup is as fol-
lows:

– Consider a preference learning model, a dataset and their
corresponding G constructed with default parameters.

– Fix the user with the richest information in the training
data, and initialize w by a random vector.

– Perform rank-reversal operations (which are generated
by the method in Sect. 9.1.6) one by one with a spec-
ified algorithm until 100 feasible operations have been
performed.

– Output the average number of dimensions changed over
these 100 feasible operations.

The results of the methods on the BPR, WARP and APR
model over all datasets are shown in Fig. 6. Overall, Hybrid is

123

https://github.com/lyst/lightfm
https://github.com/hexiangnan/adversarial_personalized_ranking

L. Song et al.

Fig. 6 The average number of dimensions changed on five datasets

the best on minimizing the numbers of dimensions changed.
Detailed observations are as follows. (1) LP performs the
worst because it aims to minimize the l1-norm instead of
l0-norm. (2) The performance of ItrSSP, Approx and ItrLP
are similar, because they all try to refine a feasible solution
to reduce the l0-norm. (3) ItrLP is slightly better than LP,
because the iterative process can further reduce the num-
ber of dimensions changed. (4) Hybrid performs better than
ItrSSP over most datasets, which indicates that choosing a
proper start point for ItrSSPmethodmay lead to better results.
Moreover, Hybrid is always better than LP as it refines based
on an LP optimal solution.

9.3 Measurement on the effectiveness of
adjustments

Next,we study the effectiveness score (defined inSect. 9.1.5).
In the following, for each dataset, we consider a representa-
tive group of users who have the richest user-item interaction
history (i.e., the training data): top-5 most active users. The
portions of the logs of the top-5 active users over the total
user logs are: Amazon (0.17%), Netflix (0.05%), FourSquare
(0.07%), Movielens (0.92%), RateBeer (5.16%). Since the
group of users have relatively rich information in the training
data, their ground-truth preference vectors are considerably
accurate to users’ real-world preference. As a result, these
ground-truth preference vectors serve as good indicators for
measuring our methods’ effectiveness. These experiments
are conducted as follows:

– For each of the top-5 users, perform 100 feasible
rank-reversal operations with the same experiment setup
as in Sect. 9.2, except for the last bullet point, where we
output the average effectiveness (defined in Sect. 9.1.5)
for every 10 feasible rank-reversal operations. Denote
the average effectiveness of the i th batch of 10 feasible
operations of the j th user by τi, j , where i = 1, . . . , 10
and j = 1, . . . , 5.

– Output the overall average of the effectiveness τi, j over
all the 5 users on the corresponding i th batch of 10 fea-
sible rank-reversal operations, i.e., 1

5

∑5
j=1 τi, j .

The results of the top-5 users over BPR, WARP, and APR
are shown in Figs. 7, 8, and 9 respectively. Note that we take
the average among the top-5most active userswhen reporting
the result. We report our observations from different angles
as follows.
Orthogonality to the preference learning models As shown
in Figs. 7, 8, and 9, the Adjustment Effectiveness of our
methods are all monotonically increasing with respect to the
number of rounds over all three different embedding mod-
els, across all five datasets. The adjusted w consistently
tends to the ground-truth preference w∗ in the correspond-
ingmodel quickly from a random initialization. It shows that
our proposed methods can cooperate with different reference
preference learning models and provide effective incremen-
tal adjustment to each of them. Moreover, the effectiveness
of the adjustments by our methods dramatically increases
after only the first one or two rounds, that is, only 10 or 20
rank-reversal operations are processed.
Overall observations across datasets and modelsWefirst pro-
vide a summary of the overall observations on all methods:
(1) Over all datasets at the end of 10 rounds, ItrSSP has the
best performance, followed by Hybrid, ItrLP , and Approx.
For example over the BPRmodel and theMovieLens dataset,
ItrSSP, Hybrid, ItrLP, Approx, LP, and Greedy reach 0.6,
0.48, 0.46, 0.45, 0.4, and 0.08 respectively at the end of the
last round. ItrSSP performs the best, because it iterates and
runsMin-Cost-Max-Flowmany times. (2) ItrLP and LP have
similar results where ItrLP is slightly better. It is because they
both start with LP, but ItrLP further iterates this process. (3)
Approx is slightly better than LP, because it uses the results
from LP as input. (4) As the number of rounds increases,
all methods except for Greedy show an increasing trend on
the effectiveness, indicating that these methods indeed help
incrementally adjust the preference vector to what the user’s
real intention. The highest effectiveness of Greedy is 0.3,
which is far from the average effectiveness (0.42) of the
second worst LP. The reason is: greedy changes significant
weights in one single rank-reversal operation, while the rest
adjust the weights smoothly to cater for users’ preferences.

Over the BPR model (Fig. 7), it is almost consistent
that ItrSSP outperforms Hybrid which in turn outperforms

123

Incremental preference adjustment: a graph-theoretical approach

(a)Amazon (b)FourSquare (c)MovieLens (d)NetFlix (e)RateBeer

Fig. 7 Effectiveness test of incremental adjustment over BPR (Top-5 active users)

(a)Amazon (b) FourSquare (c)MovieLens (d)NetFlix (e) RateBeer

Fig. 8 Effectiveness test of incremental adjustment over WARP (Top-5 active users)

(a)Amazon (b)FourSquare (c)MovieLens (d)NetFlix (e) RateBeer

Fig. 9 Effectiveness test of incremental adjustment over APR (Top-5 active users)

Approx. This is because iterations in ItrSSP can improve the
effectiveness. Moreover, by comparing ItrSSP and Hybrid,
we find that different start points of the iterations in ItrSSP
can affect the effectiveness: the min-cost maximum flow (as
the start point in ItrSSP) works better than the solution of LP
(adopted as the start point in Hybrid) here.

Over the WARP model (Fig. 8), the effectiveness from
high to low is ItrSSP, Hybrid, Approx, LP, and the Greedy.
This is because both Hybrid and Approx adopt the LP as
the start point, and hence improve the performance of LP.
Hybrid adopts an iterative strategy, making its performance
better than Approx. Similarly, over the APR model (Fig. 9),
the order of these algorithms’ effectiveness remains for the
same reason as described over the BPR model.
Importance of G From Figs. 7, 8, and 9, we can also find
that Greedy has the worst performance across all datasets
and reference preference learning models; in most cases its
effectiveness score is about 0.1 only. As aforementioned in
Sect. 9.1.3,Greedyworkswithout theweight transition graph
G. In contrast, the remaining methods which enforce the
constraints imposed by G have a much better performance.

Therefore, it indicates that the role played by G in the MDA
problem is important and significant.
Observations across datasets (1) All methods except for
Greedy (0.28) and ItrLP (0.6) have similar performance (0.7)
on Amazon. (2) ItrSSP, Approx and Hybrid have significant
differences on the remaining datasets. For example, on Rate-
Beers over APR, ItrSSP outperforms Hybrid by 55%, which
in turn outperforms ItrLP by 10%, which in turn outperforms
Approx by 12%, which in turn outperforms LP by 40%,
which in turn outperforms Greedy by 150%. (3) Approx and
ItrLP have similar performance, because they both use the
results of LP as the start point of their methods. (4) The per-
formance of LP sometimes is as bad as Greedy (e.g., on the
RateBeer dataset). That is becauseLP sometimesmay change
many dimensions and totally replace the top-k results, while
ItrLP performs better as it adopts an iterative strategy to avoid
such cases.
Observations across the preference learning modelsHere,we
compute the average performance gap over all reference pref-
erence learning models. On Netflix, ItrSSP outperforms the
second best method Hybrid by 21%, which in turn out-
performs ItrLP by 11%, which in turn beats Approx by

123

L. Song et al.

n(a) Efficiency w.r.t. dimension (b) Efficiency w.r.t. Capacity (c) Efficiency w.r.t. Number of
Edges

Fig. 10 Efficiency test

6%, which in turn beats LP by 13% . On the Movielens
dataset, ItrSSP outperforms Hybrid by 17%, which in turn
outperforms ItrLP by 24%. The performance curves of the
competitors in the same dataset are similar, probably because
the distribution of the item groups has no significant change
when the items are embedded.

9.4 Efficiency evaluation

At last, we test the computation efficiency of the five meth-
ods with respect to the problem size. The five of them are in
the scalability test, while the Greedy is omitted in the Capac-
ity and Sparsity test as it is not constrained by the weight
transition graph. Particularly, we conduct the experiment on
the Amazon dataset with APR being the reference prefer-
ence learning model, because the dataset does not impact the
efficiency much. We vary the parameter n with the values
in {50, 100, 200, 500}, β in {0, 0.1, 0.2, 0.5, 0.8, 1.0}, and ρ

in {1, 1.25, 1.5, 1.75, 2.0}, where the default values for each
parameter have been highlighted in bold. When varying one
parameter, the other two are set to default values.

From Fig. 10a, we have several observations. (1) The run-
ning time of all methods increases sub-linearly when the
number of dimensions increases, and Greedy is the most
efficient one. (2) The ItrLP is the worst among all of the
efficiency tests, because it takes multiple rounds of LP. (3)
Approx is slightly slower than LP, but slightly faster than
Hybrid. (4) When increasing the capacities of G by vary-
ing β (Fig. 10b), ItrSSP is the most efficient one followed
by LP and Hybrid over all cases except for β=0.5. This is
because that with the increase of edge capacities, the item
pairs can be reversed more easily, and thus, less processing
time is required. However, as Hybrid and LP need to solve
linear programming, their efficiency is affected. (5) When
the number of edges increases (Fig. 10c), the performance
of ItrSSP is affected the most, while the performance of LP,
Approx, and ItrLP is not impacted too much. This is because
it takes more time for ItrSSP to find the flows when the num-
ber of edges increases.

Remark Overall, ItrSSP is recommended, because it achieves
the best effectiveness without losing too much efficiency and
dimension change inmost cases, over all the five real datasets
and under all the three preference learning models, as com-
pared to all other competitors.

10 Related work

The most related work is preference learning [8,13–16,22,
28,35], which is the core part of all personalized systems and
aims to learn users’ preferences over different objects. This
process often requires a large amount of user feedback data,
either explicit [23] or implicit [13,14,22,28], and it maps a
user to a latent feature space, modeling users’ preferences.
Existing literature can be broadly divided into three cate-
gories: (i) offline preference learning [5,10,13,14,21–23], (ii)
preference adjustment [12,15,16,28,31,32], and (iii) interac-
tive preference elicitation [8,30,35]. Preference elicitation
aims to address the cold start problem, which is a special
case of preference adjustment. Thereby we will describe the
first two in more details.
Offline preference learning The idea of using pair-wise
ranking optimization for personalized searching and recom-
mendation is first proposed by Rendle et al. [22], and the
method BPR (Bayesian Personalized Ranking) is still one of
the most widely used models in the area of preference learn-
ing. The idea of BPR is to learn users’ pair-wise preference
from historical implicit feedback. APR (Adversarial person-
alized ranking for recommendation) [14] applies an adver-
sarial regularizer to BPR, and thereby largely improves the
model’s robustness. Recent advance in deep learning moti-
vates researchers to model users’ preferences directly from a
latent space,which showspromisingperformance [13].How-
ever, all these methods require a large training set available,
for the purpose of modelling users’ preferences effectively.
Preference adjustment As the offline trained model often
lacks the flexibility to be adapted into a real-time recommen-
dation system, recent studies concentrate on the dynamic

123

Incremental preference adjustment: a graph-theoretical approach

adaptation of users’ preferences [12,28,31]. These studies
often model users’ short-term preferences based on users’
real-time interaction data, which are of high velocity. There-
fore, usually a window-based streammodel is used, in which
way themodel only updates users’ preferences at certain time
points. It is challenging to learn users’ preferences in real
time, in the sense that short-term interest can be unstable
and leads to interest drift. In order to improve the robust-
ness, researchers [12,28] often consider users’ offline learned
preferences in addition to short-term interest. A different
stream-based model is proposed [15], which incrementally
updates users’ preferences. As the sparse feedbackmay be an
issue in an online learning setting, the authors propose to use
a popularity-based preference, and also design an efficient
Matrix Factorization updating strategy. While stream-based
preference learning algorithms achieve a reasonable trade-
off between effectiveness and efficiency, they often update
users’ short-term interests after a fixed time window. Model
performance may be affected if the window size is too large
or too small. Instead, we consider the incremental learning
approach, which updates users’ preference model interac-
tively.

Learning users’ preferences in an interactive manner can
also be addressed using the deep reinforcement learning
(DRL) methods [6,33,34]. DRL-based preference learning
methodsmainly benefit from the “trial-and-error” style. Zhao
et al. [34] propose the DEER framework that captures users’
short-term interests based on the click information. Deep-
Page [33] can perform a whole-page optimization according
to users’ real-time interactions. However, all these methods
require a large number of user interaction logs in the offline
training process in order to achieve a high performance. If
only limited interaction data is available, it is difficult for the
DRL framework to learn an optimal policy.

To summarize, compared to existing methods, our tech-
nique in this paper is orthogonal to the choice of preference
learning models, and can incrementally adjust every individ-
ual user’s preference on-the-go.

11 Conclusions

In this paper, we formalized the rank-reversal operation into
the Minimum Dimension Adjustment (MDA) problem. We
first proved that the MDA problem is NP-hard, and then we
showed that a 2.17-approximate solution can be obtained in
polynomial time, provided that an optimal solution to a care-
fully designed problem is given. Moreover, we developed
two heuristic algorithms: (i) Iterative Linear Programming
(ItrLP) and (ii) Iterative Successive Shortest Path (ItrSSP).
While the ItrLP can achieve an approximation guarantee, the
ItrSSP is proven to be efficient. Finally, we conducted exten-

sive experiments to study the efficiency and effectiveness of
our solutions.

Acknowledgements This work is supported in part by ARC under
Grants DP200102611, DP180102050, DE190101118, and a Google
Faculty Award.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow:
a system for large-scale machine learning. In: OSDI, vol. 16 (2016)

2. Ageev,A.A., Sviridenko,M.I.: Approximation algorithms formax-
imum coverage and max cut with given sizes of parts. In: IPCO
(1999)

3. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods.
IMA J. Numer. Anal. 8(1), 141–148 (1988)

4. Bertsekas, D.P.: Constrained Optimization and Lagrange Multi-
plier Methods. Academic Press, Cambridge (2014)

5. Bhargava, A., Ganti, R., Nowak, R.: Active algorithms for
preference learning problems with multiple populations. CoRR
arXiv:1603.04118 (2016)

6. Chen, S.Y., Yu, Y., Da, Q., Tan, J., Huang, H.K., Tang, H.H.:
Stabilizing reinforcement learning in dynamic environment with
application to online recommendation. In: SIGKDD (2018)

7. Chintala, S.: An overview of deep learning frameworks and an
introduction to pytorch (2017)

8. Das, M., Morales, G.D.F., Gionis, A., Weber, I.: Learning to ques-
tion: leveraging user preferences for shopping advice. In: SIGKDD
(2013)

9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorith-
mic efficiency for network flow problems. J. ACM 19(2), 248–264
(1972)

10. Ganti, R., Rao, N.S., Balzano, L., Willett, R., Nowak, R.D.: On
learning high dimensional structured single index models. In:
AAAI (2017)

11. Gardner, W.A.: Learning characteristics of stochastic-gradient-
descent algorithms: a general study, analysis, and critique. IEEE
Trans. Signal Process. 6(2), 113–133 (1984)

12. Grbovic, M., Cheng, H.: Real-time personalization using embed-
dings for search ranking at airbnb. In: SIGKDD (2018)

13. He, X., Chua, T.S.: Neural factorization machines for sparse pre-
dictive analytics. In: SIGIR (2017)

14. He,X.,He,Z.,Du,X.,Chua,T.S.:Adversarial personalized ranking
for recommendation. In: SIGIR (2018)

15. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factoriza-
tion for online recommendation with implicit feedback. In: SIGIR
(2016)

16. Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: TencentRec: real-
time stream recommendation in practice. In: SIGMOD (2015)

17. Kang, D., Payor, J.: Flow rounding. arXiv:1507.08139 (2015)
18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of

influence through a social network. In: SIGKDD. ACM (2003)
19. Li, M., Bao, Z., Sellis, T., Yan, S., Zhang, R.: Homeseeker: a visual

analytics system of real estate data. J. Vis. Lang. Comput. 45, 1–16
(2018)

20. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on
social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10),
1852–1872 (2018)

21. Qian, L., Gao, J., Jagadish, H.V.: Learning user preferences by
adaptive pairwise comparison. Proc. VLDB Endow. 8(11), 1322–
1333 (2015)

123

http://arxiv.org/abs/1603.04118
http://arxiv.org/abs/1507.08139

L. Song et al.

22. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.:
BPR: bayesian personalized ranking from implicit feedback. In:
UAI (2009)

23. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann
machines for collaborative filtering. In: ICDM (2007)

24. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear
time: a martingale approach. In: SIGMOD. ACM (2015)

25. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal
time complexity meets practical efficiency. In: SIGMOD. ACM
(2014)

26. Teevan, J., Dumais, S.T., Horvitz, E.: Potential for personalization.
ACM Trans. Computer-Human Interact. (TOCHI) 17(1), 4 (2010)

27. Udell, M., Boyd, S.: Maximizing a sum of sigmoids. Optim. Eng
(2013)

28. Wang, W., Yin, H., Huang, Z., Wang, Q., Du, X., Nguyen, Q.V.H.:
Streaming ranking based recommender systems. In: SIGIR (2018)

29. Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large
vocabulary image annotation. In: IJCAI (2011)

30. Yang, L., Hsieh, C.K., Yang, H., Pollak, J.P., Dell, N., Belongie,
S., Cole, C., Estrin, D.: Yum-me: a personalized nutrient-based
meal recommender system. ACM Trans. Inf. Syst. (TOIS) 36(1),
7 (2017)

31. Yin,H.,Cui,B.,Chen,L.,Hu,Z., Zhou,X.:Dynamic usermodeling
in social media systems. ACM Trans. Inf. Syst. (TOIS) 33(3), 10
(2015)

32. Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.:
Adapting to user interest drift for POI recommendation. IEEE
Trans. Knowl. Data Eng. 28(10), 2566–2581 (2016)

33. Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J.: Deep rein-
forcement learning for page-wise recommendations. In: RecSys
(2018)

34. Zhao,X., Zhang,L.,Ding,Z.,Xia, L., Tang, J.,Yin,D.:Recommen-
dations with negative feedback via pairwise deep reinforcement
learning. In: SIGKDD (2018)

35. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for
cold-start recommendation. In: SIGIR (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Incremental preference adjustment: a graph-theoretical approach
	Abstract
	1 Introduction
	2 Motivation and case study
	2.1 A case study

	3 Problem formulation
	4 Preliminaries and a connection to flows
	4.1 Flow preliminaries
	4.2 A connection between MDA and flows

	5 NP-hardness
	6 A 2.17-approximate algorithm
	6.1 A mild assumption
	6.2 The F-problem
	6.3 The approximate algorithm

	7 Efficient heuristic algorithms
	7.1 Iterative linear programming algorithm
	7.2 Iterative successive shortest path algorithm
	7.2.1 Preliminaries: successive shortest path algorithm
	7.2.2 The ItrSSP algorithm

	8 The weight transition graph
	8.1 An alternative construction algorithm of G
	8.2 Feasibility of G with different ρ and β

	9 Experiments
	9.1 Experiment setup
	9.1.1 Datasets and experiment environment
	9.1.2 Ground truth formation and reference models
	9.1.3 Methods for comparison
	9.1.4 Initializing the preference vectors
	9.1.5 Measurement of effectiveness
	9.1.6 User behaviour simulation

	9.2 Measurement on the numbers of dimensions changed
	9.3 Measurement on the effectiveness of adjustments
	9.4 Efficiency evaluation

	10 Related work
	11 Conclusions
	Acknowledgements
	References

