
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

1

A Framework to Support Continuous Range

Queries over Multi-Attribute Trajectories

Jianqiu Xu, Zhifeng Bao, Hua Lu, Senior Member, IEEE

✦

Abstract—Emerging applications over spatio-temporal trajec-

tories require representing the data from diverse aspects. We

study multi-attribute trajectories each of which consists of a se-

quence of time-stamped locations and a set of attributes char-

acterizing diverse aspects. We investigate continuous range

queries over multi-attribute trajectories. Such a query returns

trajectories whose attributes contain expected values and

whose locations are always within a distance threshold to the

query trajectory during the entire overlapping time period. To

efficiently answer the query, an optimal method of partitioning

the trajectories is proposed and an index structure is developed

to support the combined search using both spatio-temporal

parameters and attribute values. Query algorithms and auxil-

iary structures are developed, accompanied with optimization

strategies and thorough theoretical analysis. Using both real

and synthetic datasets, we carry out comprehensive experi-

ments in a prototype database system to evaluate the efficiency

and scalability of our designs. The experimental results show

that our approach outperforms six alternative approaches by a

factor of 5-50x on large datasets.

Index Terms—multi-attribute trajectories, continuous range,

index structure, approximate computation

1 INTRODUCTION

The increasing prevalence of GPS-equipped mobile de-

vices has led to an explosion of spatio-temporal trajec-

tories. In the last decade, a rich body of research has

been conducted on processing such data [17] [5] [29]

[16] [27]. Emerging applications perform data analytics

and query processing over big trajectories to enhance their

services. Due to COVID-19 virus pandemic recently, the

system requires to find out people who have been close to

infected or likely infected persons [13] [14]. To achieve

this task, one needs not only time-stamped locations

but also an attribute describing the state of the person:

{Safe, Infected, Likely infected}. The system utilizes the

attribute to determine from when and where an infected

person will further infect other persons rather than simply

• Jianqiu Xu is with the Department of Computer Engineering and

Science, Nanjing University of Aeronautics and Astronautics,

China. E-mail: jianqiu@nuaa.edu.cn

• Zhifeng Bao is with the School of Computing Technologies,

RMIT University, Australia. E-mail: zhifeng.bao@rmit.edu.au

• Hua Lu is with the Department of People and Technology,

Roskilde University, Denmark. E-mail: luhua@ruc.dk

reporting two trajectoires which have been close to each

other for a while. This enhances the searching efficiency

and effectiveness as a large search space will be involved

if only spatio-temporal trajectories are analyzed and the

result may not be accurate. The increasing popularity

of car-calling and ride-sharing services (e.g., DiDi and

Uber) have lead to a large number of driver and pas-

senger trajectories. To enhance the schedule capability,

an important task is to analyze locations of passengers

and drivers at which passengers request pick-up services

and drivers who are not in service. The overall pick-up

time can be reduced if passengers would like to move a

short distance to places at which it takes much less time

and effort for drivers to reach than their original places,

in particular, at peak hours. The places are those routes

at which drivers are not in service and within a short

distance to the passenger’s current location. We believe

that it requires less effort to let passengers move to an

appropriate pick-up place than letting drivers move to

the passenger’s place. Usually, a passenger’s location is

equivalent to the pick-up request location. However, in

many all-time highly crowded places such as train station

and airport, passengers can only be picked up in certain

areas. In this context, passengers need to move to certain

places. Also, during traffic period the time to be picked

up would be less if the passenger moves to a nearby place

with low congestion. The passenger’s current location

may be difficult to reach for the driver due to one-way

street or making a U turn. We generalize the case by

considering a passenger’s trajectory rather than using a

spatial location.

Consider the following task. Given a driver trajectory

who is free, report passenger trajectories who have been

within the d-distance (e.g., 1 km) to the driver and

request pick-up services. To achieve the task, trajectory

databases at first require to extend the data representation

by integrating descriptive attributes into spatio-temporal

trajectories. There are driver and passenger trajectories,

and each trajectory contains the status information such

as whether the driver is free and the passenger has been

picked up. Furthermore, drivers’ vehicles have several

types such as taxi, tailored taxi and express which have

different charges and need to be defined as well. We call

spatio-temporal trajectories associated with descriptive

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

2

attributes multi-attribute trajectories. The query is called

Continuous Range query with Attributes, CRA for short.

t1

t2

t3

o2 (P, Request)

o1(D, In Service)

o3(D, Free)

d d

o4(P, Pick-up)

Did any passenger request the pick-up service within the d-distance to o3?

X

T

Y

D:Driver, P: Passenger

Fig. 1. Example of querying multi-attribute trajectories

The CRA reports trajectories satisfying the criteria:

(i) attribute consistency and (ii) time-dependent distance

constraint. Each trajectory is associated with a number

of attribute values and only those containing the query

value will be further evaluated. In Figure 1, although o1
(DRIVER, In Service) is within the d-distance to the query

target o3, it does not fulfill the attribute condition. The

query defines a dynamic searching area as the driver’s lo-

cation changes over time. This complicates the evaluation

as trajectories may be within the distance for a while and

then not. Trajectories are decomposed and only pieces of

movements within the query distance are considered. In

the example, o2 is within the range during [t2, t3], but it

does not satisfy the condition during [t1, t2]. As a result,

only the movement at [t2, t3] is reported. This differs

from traditional range queries in trajectory databases [22]

[3] [33] in which the query region is static. This leads

to different results. Specifically, continuous range query

reports trajectories at each piece of the query time interval

because distances between trajectories change over time

and only pieces of movements falling in the range will be

returned. In contrast, the traditional range query considers

a spatial range for a time interval and the distance evalu-

ation is conducted between a line (projecting trajectories

into the 2-D space) and an rectangle (or circle). Nearest

neighbor queries [9] [26] report the closest trajectory

to the target but there is no distance constraint. Conse-

quently, the distance could be very large in practice and

the results are not the same as those of our query.

Recently, trajectories featuring multiple attributes have

received increasing attention [30] [34] [4] [25] [23]. Such

data opens door to understand trajectories along differ-

ent dimensions simultaneously. What distinguish multi-

attribute trajectories from them are as follows: (i) Seman-

tics and data representation. Spatial and spatio-temporal

trajectories are enriched by keywords and labels for de-

scribing individual locations, whereas multiple attributes

can be location-dependent or location-independent. Se-

mantic trajectories do not attach labels to the overall

movements and usually semantic locations are sparsely

defined as only a few locations of trajectories have key-

words and labels, e.g., POIs. Our attributes are assigned to

the overall trajectory, otherwise redundant data are stored.

(ii) Processed queries. Queries in semantic trajectories

incorporate the measurement of spatial and textual rel-

evances in order to find the most relevant trajectories,

e.g., ranked retrieval and top-k retrieval. The returned

trajectories typically fulfill the condition at a certain time

point. Consider the query “return top-2 trajectories that

pass Costa and Pizza Hut in the city center between

[10am, 12am]”. The procedure will evaluate trajectories

containing “coffee” and “pizza” and order them based

on their distances that combine spatial closeness and

text relevance. However, coffee and pizza are related

to specific locations and thus cannot be attached to the

overall movement. The evaluation is performed on certain

time points instead of all time points during an interval.

Efficient management of multi-attribute trajectories re-

quires underlying systems to be complemented in terms of

data representation and indexing methods. This motivates

us to at first model attributes and integrate them with

spatio-temporal trajectories into a unified framework. We

primarily focus on processing static attributes (i.e., values

do not change over time) and dynamic attributes with low

updating frequency. If only static attributes are considered,

each trajectory is associated with certain attribute values

without updating. If there are dynamic attribute values

but the updating frequency is not high, e.g., taxi status,

one can partition trajectories with a dynamic attribute

into a sequence of sub-trajectories each of which is for

the movement containing only one attribute value. If

the updating frequency is high, the partition method can

be still applied but an approximate representation will

be employed. Such a method can also be utilized for

attributes with large domains.

Next, an effective and efficient index structure is

essentially required as this plays a pivotal role in query

processing. It is noteworthy that the well-established

spatio-temporal indexes is suboptimal for multi-attribute

trajectories because they do not manage attributes and

therefore one can not prune the search space for attributes.

Consequently, trajectories after the spatio-temporal eval-

uation are sequentially processed. If the query trajectory

has a short lifespan or the distance threshold is small,

a few trajectories will be returned. In such a case, the

approach still achieves good performance. However, if the

spatio-temporal predicate has bad selectivity, sequentially

evaluating the attribute predicate for each data trajectory

significantly inhibits the performance. Alternatively, one

can build an attribute index to at first retrieve trajectories

with qualified query attributes. The major drawback of

this attribute-first-pruning strategy is that trajectories after

the evaluation will be processed by either performing the

sequential scan or accessing an index built on-the-fly. If

the attribute predicate is selective, the sequential scan is

acceptable. Otherwise, a large number of trajectories are

fetched as intermediate results. Both sequential scan and

on-the-fly index building incur high computation costs.

Creating an index for each query causes storage overhead,

especially when a lot of queries are issued. Consequently,

this method is limited in scope.

Most cases, however, prefer a joint index that supports

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

3

the combined search on spatio-temporal parameters and

attributes. As such, we adapt a standard 3-D R-tree by

deploying an optimal partitioning of spatio-temporal tra-

jectories. The goal is to normalize trajectories to create an

R-tree with a good shape. An attribute structure is created

on top of the R-tree to maintain attribute values. We

design a flexible method such that the attribute structure

can be discarded if only spatio-temporal trajectories are

processed. In this case, the structure is merely a 3-D R-

tree, avoiding specific indexes. This provides a general

solution for both multi-attribute trajectories and spatio-

temporal trajectories rather than developing two systems

that process them separately.

Our contributions are summarized as follows: first,

we formulate multi-attribute trajectories and continuous

range queries over them. Second, an optimal data parti-

tion method over trajectories with thorough analysis is

proposed. Next, we develop a hybrid index supporting up-

dating as well as efficient algorithms to answer the query.

Furthermore, an efficient approximate distance compu-

tation method is developed to speed up the evaluation

procedure accompanied with space and time complexities

analysis. Finally, the proposal is fully implemented in a

database system SECONDO. A thorough experimental

study is performed using real and synthetic datasets. The

results demonstrate that our approach outperforms six

alternatives by a factor of 5-50x on large datasets.

The rest of the paper is organized as follows. In Sec-

tion 2, we review the related work. The studied problem

is defined in Section 3. The index structure and query

algorithms are proposed in Sections 4 and 5, respectively.

Approximate distance computation is presented in Section

6. We perform the evaluation in Section 7, followed by

conclusions in Section 8.

2 RELATED WORK

There is a substantial body of literature on querying

and analyzing spatio-temporal trajectories, e.g., range

queries, nearest neighbor queries [9] [6] [26], similar

trajectory queries [29], trip prediction [20] and route

planning [21]. In order to comprehensively understand

mobility data, extensive information is essentially required

in addition to time-stamped locations [36]. Extracting

semantics from spatio-temporal trajectories is investigated

by identifying stops or moves and annotating relevant

locations with semantics such as hotel and restaurant [30].

The partition-and-summarization approach automatically

generates texts to highlight semantic behavior for spatio-

temporal trajectories [18]. Then, one forms a sequence

of time-stamped locations with semantic labels, called se-

mantic trajectories. Attaching semantic labels to locations

enables users to perform queries and analytics consider-

ing semantic interests and location preferences. Existing

queries fall into two categories: (i) Ranking and top-k.

Relevant queries consider actions and activities that users

can take at particular places such as sport and dining. A

conjunctive query returns k trajectories whose semantics

contain the query and have the shortest minimum match

distance [35]. An approximate keyword search retrieves

trajectories containing the relevant query keywords and

having short travel distance [34]. A top-k exemplar tra-

jectory query [25] consists of a set of locations with

keywords and aims to find the most relevant trajectories

in terms of the spatial and textual similarity. (ii) Data

mining and analytics. Frequent sequential patterns can

be found to reflect movement regularity by considering

spatial compactness, semantic consistency and temporal

continuity simultaneously [32]. A regional semantic tra-

jectory pattern mining problem is studied in [4], the aim of

which is to identify all the regional sequential patterns in

semantic trajectories including global and local frequent

patterns. A detailed discussion on semantic trajectories

can be found elsewhere [15] [31]. Semantic trajectories

focus on location-dependent data and mainly target rank-

ing queries that combine the spatial proximity and textual

similarity. In contrast, multi-attribute trajectories support

both location-dependent and location-independent infor-

mation, leading to a general data representation. We deal

with continuous queries that report trajectories containing

the query attribute value and falling in a dynamic area.

A systematic study is performed to capture a wide

range of meanings related to locations including street

names, transportation modes and speed profile [10]. A

time-dependent label is defined to represent the so-called

symbolic trajectories, but time-dependent locations are

not included in the model. Later, a framework of analyzing

large sets of movement data having time-dependent at-

tributes is developed [24] [23]. The work is based on sym-

bolic trajectories and includes spatio-temporal trajectories

in the data representation. They aim to support pattern

matching queries on tuples of time-dependent values. A

new pattern language is proposed and the superiority is

thoroughly analyzed in terms of flexibility and expres-

siveness. Their works are orthogonal to our work. First,

different queries are evaluated. Our attribute and spatio-

temporal parameters can be individually evaluated, while

they deal with static range queries. Second, their main

contribution is a flexible and expressive pattern language

and the scalability and performance is not extensively

evaluated in terms of the number of attributes and the

domain size. Also, the number of trajectories in the eval-

uation is not large (162,000 spatio-temporal trajectories).

Recently, traditional spatio-temporal indexes have

been studied to incorporate semantic information. A hi-

erarchical aggregate grid index called HAGI is developed

to support heterogeneous kNN queries [19]. The method

can be adapted to answer our queries, but it is limited as

only one attribute is considered. A function is defined to

combine the cost of distances and location-independent

attributes, and the query returns trajectories having the k-

th smallest function value. Each node in HAGI maintains

min and max attribute values of all trajectories stored

in the subtree. Although min and max values may work

well for one attribute, they fail to guarantee good pruning

ability for multiple attributes as min and max values are

likely from different attributes. Also, the query evaluates

trajectories based on a ranking function, whereas we

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

4

require the exact match on attributes. Furthermore, the

distance in the function is static, whereas we deal with

time-dependent distances.

To answer spatial keyword range queries on trajec-

tories, a hybrid index called IOC-Tree is proposed [12].

The structure consists of an inverted index and a set

of 3-D quadtrees termed octrees. Attributes are defined

as keywords. The inverted index is responsible for at-

tribute values, each of which is associated with an octree

storing relevant trajectory points. However, for multi-

attribute trajectories, each octree will contain all location

points of the trajectory. A grid index is established to

organize spatio-temporal trajectories with activities in a

hierarchical manner [35]. A similar structure is developed

to incorporate both spatial and semantic information for

approximate keyword search [34]. The grid is a spatial

index that is extended to maintain trajectories based on

the spatial and activity proximity for ranking queries. This

line of work is not applicable to our problem. On the

one hand, our attributes are not related to locations and

therefore it does not make sense to group trajectories by

considering both spatio-temporal locations and attributes.

On the other hand, our query reports trajectories rather

than individual locations.

3 PROBLEM DEFINITION

Let O be a set of multi-attribute trajectories. Each o ∈ O
is denoted by o(Trip, Att) in which o.Trip and o.Att refer to

a spatio-temporal trajectory and attributes, respectively. A

spatio-temporal trajectory is typically defined by a data

type mpoint [11]. Table 1 gives the representation of

multi-attribute trajectories.

TABLE 1
Representing multi-attribute trajectories

Id: int Trip: mpoint Att: att

o1 location+time (Driver, In Service)

o2 location+time (Passenger, Request)

o3 location+time (Driver, Free)

o4 location+time (Passenger, Pick-up)

We model descriptive information by multiple at-

tributes. Let A be the set of multiple attributes. The

ith attribute and its domain are denoted by A[i] and

dom(A[i]) (i ∈ 1,..., |A|), respectively. We assume that

each dom(A[i]) is represented by a set of positive integers

and define a data type Datt for the set of attributes. For

readability, we use symbols to denote attribute values.

Definition 1 Multi-attribute

Datt = {(a1, ..., a|A|)| ai ∈ dom(A[i]), i ∈ {1, ...,

|A|}} such that

(i) ∀i ∈ {1,..., |A|}: dom(A[i]) ⊂ N+;
(ii) ∀ i, j ∈ {1,..., |A|}: i 6= j ⇒ dom(A[i]) ∩

dom(A[j]) = ∅.

Attribute semantics depend on real applications. The

running example defines dom(Type) = {Driver, Passen-

ger} and dom(Status) = {In Service, Free, Request, Pick-

up}, while other applications may need relevant informa-

tion such as vehicle type {TRUCK, BUS} and transporta-

tion modes {WALK, BICYCLE, BUS} to analyze trajec-

tories of different vehicles and modes. Let T (o) return

the time period of a trajectory. We employ the function

in [7] to return the time-dependent distance between two

trajectories o1, o2 ∈ O, denoted by dist(o1, o2, T (o1)
∩ T (o2)). Two trajectories are mapped into pieces at the

same time interval and the distance is represented by a

parabola function; the coefficients depend on locations

and velocities.

Definition 2 Query attribute

The query attribute is a tuple defining values for

evaluated attributes, denoted by Qa = (a1, ..., a|A|),
Qa[j] ∈ dom(Aj) ∪ {⊥}.

The query predicate Qa defines a component for each

attribute. A query may specify one or several attributes.

Let Qa[j] refer to the jth attribute value. We define an

operator called contain(o.Att, Qa) that returns true if ∀
Qa[j] 6= ⊥: o.Att[j] = Qa[j]. We also support queries

with multiple values. To achieve this, elements in Qa are

extended to sets of values, i.e., Qa = {X1, ..., Xd} in

which Xi is a set of attribute values. Accordingly, the

operator contain is extended: contain(o.Att, Qa) returns

true if ∀ Xi ∈ Qa ∧ Xi 6= ∅: o.Att[j] ∈ Xi.

The studied query CRA is formulated below.

Definition 3 Continuous Range queries with Attributes

Given a query trajectory oq , a threshold d and an

attribute predicate Qa, CRA returns O′ ⊆ O such that ∀
o′ ∈ O′: (i) contain(o′.Att, Qa); (ii)∃ ∆T = T (oq) ∩
T (o′): ∀ t ∈ ∆T , dist(oq, o′, t) ≤ d.

There are two variations: (i) The location of oq does

not change over time such that the query returns trajecto-

ries whose distances are smaller than d to a spatial point.

(ii) The query returns a trajectory as long as there is an

instant at which the distance between the data trajectory

and the query trajectory is smaller than d, i.e., ∃ ∆T =

T (oq) ∩ T (o′): ∃ t ∈ ∆T , dist(oq, o′, t) ≤ d. Table 2

lists the notations frequently used in the paper.

TABLE 2
Notations

Notation Description

O the multi-attribute trajectory database

o, T (o) a multi-attribute trajectory and its time period

|A| the number of attributes

dom(A[i]), dom(A) the domain A[i] and the overall domain

oq , d query trajectory and query distance

Qa query attribute

t a time point

δ grid granularity

f fanout of R-tree node

4 THE INDEX STRUCTURE

We design an index structure named GR2-tree including

two components: GR-tree and Ratt. The GR-tree is an

adapted 3-D R-tree built on spatio-temporal trajectories

and Ratt is a relation for managing attribute values.

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

5

4.1 GR-tree

4.1.1 Partitioning spatio-temporal trajectories

Trajectories have different distributions over time and

space. We would like to decompose them into pieces

having similar sizes in terms of spatial and temporal

dimensions. This will benefit the index structure because

spatio-temporal extents of nodes are similar, derivations

among nodes are small and the area of dead space 1 is

reduced. The time dimension is partitioned into a set of

equal-sized intervals {T1,...,TK} (K > 1) and the 2-D

space is partitioned into δ × δ equal-sized cells. Given a

multi-attribute trajectory, its spatio-temporal trajectory is

split into a set of so-called cell trajectories, each of which

represents the movement within a cell during an interval

Tk ∈ {T1 ,...,TK}.
Definition 4 Cell trajectory

Let Cell(o, t) return the cell where the trajectory o is

located at a time point t ∈ T (o). A cell trajectory o[i]
⊆ o.Trip is part of the overall trajectory that denotes the

movement within one cell fulfilling the condition:(i) o.Trip

=
⋃

o[i] (ii) ∀ t1, t2 ∈ T (o[i]), Cell(o[i], t1) = Cell(o[i],
t2); (iii) ∃ Tk ∈ {T1,..., TK}, T (o[i]) ⊆ Tk .

We partition each o ∈ O into a set of cell trajectories.

We may encounter the case that one trajectory enters the

cell more than once. As a consequence, there are several

cell trajectories from the same target corresponding to the

same cell. The GR-tree is built on cell trajectories sorted

by time, cell id and 3-D bounding box following a bulk

loading approach [2].

Example 1. Using the trajectory o3 in Figure 1, we

assume that the 2-D space is partitioned into 4 × 4 cells

and o3 is contained by one time interval from {T1,...,TK}.
The cells intersecting o3 and o3’s cell trajectories are

reported in Figure 2. This is done by (i) determining

the set of cells intersecting the 2D bounding box of

o3 and filtering those cells that do not intersect o3; (ii)

decomposing o3 into cell trajectories each of which is

restricted to one cell.

Fig. 2. Partitioning o3 into cell trajectories

In order to preserve the spatio-temporal proximity, we

define that each leaf node only maintains cell trajectories

having the same time interval Ti and cell id. Each GR-

tree node is supplemented by a bitmap representing the

cells intersecting the 2-D bounding box of the node.

1. The space is contained by the node but there are few or no data.
This means that the area will be evaluated but few trajectories are
there or even no trajectory exists.

An adaptive mapping between the cells and the bitmap

is performed by considering the trajectory distribution

among cells. This is motivated by the observation that

dense cells exhibit higher probability to be accessed than

sparse cells. More bits are allocated for dense cells and

the size of the bit array is set according to the ratio of the

number of dense cells to the total number of cells.

Example 2. Using example trajectories in Figure 1,

we show the created GR-tree in Figure 3, assuming that

trajectories {o1, o2, o3, o4} have the same time interval

and the grid granularity is δ = 2. Leaf nodes are marked by

their cells. Each node is associated with a bitmap structure

for identifying entries containing attribute values. This

will enhance the query performance as one can access

those entries without performing a linear search.

Fig. 3. Cell trajectories and GR-tree architecture

4.1.2 Grid granularity

Grid granularity plays a pivotal role in the index design

as an arbitrary value cannot guarantee an optimal query

performance. If we set a coarse granularity, e.g., δ = 1,

all trajectories are located in one cell. Since we put cell

trajectories having the same cell id into one leaf node,

trajectories will have large extent in x and y dimensions.

The created index does not exhibit the spatio-temporal

proximity, increasing false positives in query processing.

At the opposite end, a fine granularity leads to small

cells and each cell contains fewer trajectories having

small extent in x and y dimensions. This is good for

preserving locality. However, the finer the granularity is

(i.e., δ becomes larger), the more GR-tree nodes there

are. This is because each cell corresponds to at least one

leaf node (a node will overflow if the trajectory number

exceeds the node capacity). Some leaf nodes may only

contain a few data. Also, the number of cell trajectories

grows proportionally as a spatio-temporal trajectory is

distributed into all intersecting cells.

Suppose that the 2-D space is a unit space and the

side length of a cell is 1
δ

. Let X(o) ∈ [0, 1] and

Y (o) ∈ [0, 1] be the length of a trajectory in x and y
dimensions, respectively. The number of cell trajectories

for o is estimated as ⌈X(o)
1

δ

⌉ · ⌈Y (o)
1

δ

⌉. A large δ increases

the number of cell trajectories, leading to more storage

overhead. Each node access requires one disk I/O and the

increasing I/Os deteriorate the query performance.

Example 3. As shown in Figure 4(a), we will visit all

cells under the setting δ = 2 because they are within the

d-distance to o3. However, in cells 3© and 4©, cell trajec-

tories of o2 and o4 do not fulfill the distance condition.

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

6

(a) δ = 2 (b) δ = 4 (c) δ = 8

Fig. 4. Coarse and fine grid granularities

Alternatively, we can partition the space by setting δ = 4,

as illustrated in Figure 4(b). As a consequence, the search

space is reduced as some cells are out of the range. Let us

consider δ = 8 by referring to Figure 4(c). Although we

can greatly reduce the search space (gray area), more cells

(GR-tree nodes) are accessed in comparison with δ = 4.

An effective way is to split trajectories and ap-

proximate the resulting sub-trajectories by balancing the

number of indexed data and the approximation quality.

We analytically derive an optimal granularity as follows.

Given a granularity δ, at each Tk the average number of

leaf nodes for storing cell trajectories intersecting a cell is

approximated by

n(δ) = ⌈ |O| · Tavg

K
· 1
δ2
· 1
f
⌉ = ⌈ P

δ2
⌉,

where P =
|O| · Tavg

K · f and Tavg = ⌈AVG(
T (o)

1/K
)⌉
(1)

Here, Tavg ∈ {1,...,K} is the average number of time

partitions that a trajectory contains (T (o) is mapped to the

unit space) and f is the capacity of a GR-tree leaf node.

Consider the lower and upper bounds of δ. The lower

bound is straightforward, i.e., δ = 1, resulting in a large

value n(1) = ⌈P⌉. Regarding the upper bound, theoreti-

cally, one can set δ =∞. The larger δ is, the denser the cell

distribution is. Meanwhile, the smaller each cell will be.

For each cell, we maintain leaf nodes storing trajectories

located inside the cell. As cells become smaller, they may

contain fewer or no trajectory. In fact, the maximum value

of δ corresponds to the minimum number of cells such that

only one leaf node suffices to store all trajectories inside a

cell. It makes no sense to have cells without any trajectory

inside. As a result, the upper bound is derived by

n(δ) = ⌈ P
δ2
⌉ ≥ 1⇒ δ ≤ ⌈

√
P⌉ (2)

Let N(δ) be the number of leaf nodes under δ. We

have

N(δ) =

{

δ2 if δ ≥ ⌈
√
P⌉

δ2 · n(δ) = ⌈P⌉ else (δ ∈ {2, ...⌈
√
P⌉ − 1})

(3)

The task is to find an optimal granularity δ such that

δ∗ = argminN(δ) ∧ δ∗ = min{1, 2....,
√
P} (4)

We analyze that if δ > ⌈
√
P⌉, N(δ) exhibits quadratic

growth. If δ <
√
P , N(δ) is in fact independent of δ.

Lemma 1 The optimal granularity

δ∗ = ⌈
√
P⌉ ≥ 2, where P =

|O| · Tavg

K · f in which

(5)

|O| is the number of trajectories, f is the node capacity,

K is the number of partitions over time and Tavg is a value

from the set {1,..., K}.
Proof (i) If δ > δ∗, we have N(δ) = δ2 > (δ∗)2 = N(δ∗)
as the value increases exponentially with δ. (ii) If δ < δ∗,

without loss of generality we have δ = δ∗ - 1.

N(δ)−N(δ∗) = (δ∗ − 1)2 · n(δ)− (δ∗)2

≥ (δ∗ − 1)2 · 2− (δ∗)2

= (δ∗)2 − 4 · δ∗ + 2

let g(δ∗) = (δ∗)2 − 4 · δ∗ + 2 = (δ∗ − 2)2 − 2

g(δ∗) is a monotonic increasing function when δ∗ ≥
2 and g(δ∗) > 0 for all δ∗ > 3.

δ∗ = ⌈
√
P⌉ > 3⇒ |O| · Tavg

K · f > 9⇒ |O| · Tavg

K
> 9 · f

we have Tavg ∈ {1, ...,K}
and the condition N(δ) > N(δ∗) holds

as long as
|O|
K

> 9 · f �

Theoretically, one can set a relatively large K (e.g., K
= |O|) such that the condition

|O|
K

> 9 · f does not hold.

In practice, we can easily achieve the condition by setting

an appropriate K for a large number of trajectories as |O|
≫ 9 · f . One solution is to choose K such that each

time partition is equivalent to the average time interval

of all trajectories. We do not make any assumption about

data distribution, i.e., trajectories can be uniformly or non-

uniformly distributed in space and time.

4.2 The attribute structure

The relation Ratt records attribute values of multi-attribute

trajectories in GR-tree nodes. The attribute values of a leaf

node are obtained by accessing the underlying data and

the values of a non-leaf node are obtained by performing

the union on values of its child nodes. The schema of the

relation is Ratt (nid, a tr, b).

Each tuple indicates an attribute value contained by

a node, in which nid is a node id, a tr is a transformed

attribute value and b is a bitmap. The transformed value

is uniquely achieved by interleaving the binary repre-

sentation of the attribute id and the attribute value. We

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

7

use a bitmap with the size l1 + l2 in which l1 bits are

for attribute ids and l2 bits are for attribute values. For

example, we have two attributes AD and VEHICLE such

that l1 = 1 is enough, i.e., 0 for AD and 1 for VEHICLE.

The attributes AD and VEHICLE have two and three

values, respectively. As a result, l2 = 2 is sufficient.

Combining l1 + l2 bits can represent all attribute values

and each one is unique.

We create a B-tree on Ratt by combining nid and a tr

to form the key. The bitmap records the entries of a node

containing a particular attribute value, enabling us to only

access qualified entries instead of performing a sequential

scan. We perform different mapping strategies determined

by the size of the bit array |b| and the maximum number

of entries in a GR-tree node f (i.e., the fanout): (i) |b| ≥
f , each bit maps to a unique entry. We set b[i] = 1 if the

ith ∈ [0, f) entry contains the value. Otherwise, b[i] = 0.

(ii) |b| < f , each bit maps to a range of entries and entries

for the ith bit are calculated by [i · ⌈ f
|b|⌉, (i + 1) · ⌈ f

|b|⌉].
We define b[i] = 1 if one of the entries contains the value.

The bitmap index incurs little storage overhead and

determines qualified entries by performing the bitwise

operation AND. Note that the bitmaps do not define

attribute values contained by the node. This method will

inhibit the performance due to the limitation of the bitmap

size, in particular, when the number of attribute values is

large. In contrast, we perform the mapping between the

bitmap and entries of a node. The number of entries in a

node is limited by f , depending on the page or block size.

The number of attribute values may be large for some

applications but f is usually not. Thus, we do not need

a long bit array for f . Let |N | be the total number of

GR-tree nodes. We need O(|dom(A)| · |N |) tuples in Ratt.

Example 4. We report Ratt by referring to Figure

5 in which attribute values and bitmaps for the root

node Nr are provided. Both original attribute values and

transformed values are reported. Let N denote a GR-tree

node. Consider Qa = (Passenger, Request). We use “0” for

the attribute “Type” and “01” for the value “Passenger”.

Combining the two values we have “001”. The bitmap in

Nr is “1111” as {N1, N2, N3, N4} all contain Passenger.

The attribute value Request is transformed into “110” and

the bitmap in Nr is “0101” as N1 and N3 contain Request.

Driver(0) 000

Passenger(1) 001
Type(0)

Status(1)

InService (0) 100

Free (1) 101

Request (2) 110

Pick-up (3) 111

Combine attribute ids and values

RattGR-tree

Nr

N1

o1 , o2

o1 (Driver, In Service)

o2 (Passenger, Request)

o3 (Driver, FREE)

o4 (Passenger, Pick-up)

N2

o3 , o4

N3

o2 , o3

N4

o1 , o3

o4

nid a tr b
Nr

Nr

Nr

Nr

Nr

Nr

000

001

100

101

110

111

1111

1111

1001

1110

0101

1010

N1 ,N2 ,N3 ,N4

N1, N3

Fig. 5. Example of the attribute relation Ratt for Nr

4.3 Updating the index

Given a set of incoming multi-attribute trajectories, syn-

chronizing the GR2-tree includes: (i) inserting new arrival

trajectories into the GR-tree and (ii) updating the relation

Ratt. Part (i) is achieved by creating a subtree for a group

of new trajectories and then finding an appropriate node

in the existing GR-tree to locate the subtree. Part (ii) is

achieved by inserting new tuples into Ratt for the new

subtree and updating the tuples for attribute values. All

nodes on the path from the root node to the node where the

subtree is inserted are updated in terms of spatio-temporal

data and attributes.

We analyze the complexity of updating the index

structure by measuring the number of node accesses. We

restrict the height of the subtree to 2 in order to limit the

number of incoming trajectories for one time updating. As

a result, there will be O(f2) processed trajectories.

Update complexity. The cost of updating the index is

O((f + H) · (1 + dom(A)
b

)), in which f is the R-tree

node capacity, H is the height of the historical R-tree and

b is the block size.

Proof

Part (i): creating a subtree needs O(f + 1) nodes

in total and inserting the subtree into the existing index

requires accessing O(H) nodes, leading to O(f + H).
Part (ii): One needs O(f · dom(A)) tuples for storing

attribute values in the subtree, leading to O(f·dom(A)
b

)
I/O cost. Updating attribute values for nodes in the his-

torical R-tree requires O(H·dom(A)
b

) I/O cost. Then, we

have O((f+H)·dom(A)
b

) I/O cost for part (ii). Combining

(i) and (ii), the complexity is O((f +H) · (1+ dom(A)
b

)).
�

5 QUERY PROCESSING

5.1 An outline

Employing the GR2-tree, we process the query in three

steps, as illustrated in Figure 6.

oq , d
Grid

C3
Qa

GR2-tree candidates

split if needed

O′

marked

not marked

Step 1 Step 2 Step 3

Fig. 6. The query procedure

Step 1 establishes the spatio-temporal area restricted

by oq and d, which is represented by a set of time-

dependent cells denoted by C3. We will present the

structure in Section 5.2. Step 2 performs a breadth-first

traversal on the GR2-tree to return a set of candidates,

each of which is a cell trajectory that (i) contains Qa and

(ii) has the distance less than d to oq . The distance is

an approximate value calculated by using the minimum

bounding boxes of trajectories. A candidate is marked

if its maximum distance to oq is less than d. Step 3

iteratively checks the accurate distance between each

candidate and the query. If the candidate is marked, we

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

8

directly put it into the result set. Otherwise, the actual

value is computed. Two trajectories are mapped into

pieces at the same time interval. A trajectory may be

split because only the piece of movements fulfilling the

distance condition is considered. Since step 3 is trivial,

we focus on steps 1 and 2 in the following.

5.2 Time-dependent cells

We can quickly determine the cells within the d-distance

to the query by utilizing the grid partition. This is achieved

by computing the distance between the 2-D bounding box

of the query trajectory and the cell. When we traverse

the index, the GR-tree nodes that do not intersect the

cells can be safely pruned. Usually, a cell is not always

within the d-distance to the query as the location of the

trajectory changes over time. We report time-dependent

cells maintained by a composite structure including three

components: cell tree, cell set and cell list, denoted by

C3. Let Ci be the set of cells intersecting a cell trajectory

oq[i]. Note that oq[i] is restricted in a cell but we include

cells whose borders intersect oq[i].
• cell tree. A binary tree is used to record items of the

form (T (oq [i]), Ci). Each node stores the time interval of

oq[i] and the cells intersecting oq[i]. Items are increasingly

sorted on time. The cell tree reports all cells within the d-

distance to the query during a given time interval.

• cell set. The structure stores all cells within the d-

distance to oq and there is no duplicate result, i.e.,
⋃

Ci.

We define marked cells that the cell list maintains.

Definition 5 Marked cell

Let maxdist(c, oq[i]) denote the maximum distance

between a cell and a cell trajectory. A cell c is marked

if maxdist(c, oq[i]) < d.

• cell list. A list of pairs (c, T) is maintained. Each pair

contains a marked cell and a time interval. The structure

determines whether all trajectories in a leaf node are

within the d-distance to the query. If positive, the exact

distance computation can be avoided as a leaf node stores

trajectories whose movements are restricted in the cell.

Given a leaf node, if its cell is marked and the time is

contained by the cell list, all trajectories in the node fulfill

the distance condition.

The procedure of constructing C3 is provided in Al-

gorithm 1. We start by creating the cell tree (lines 2-5).

Next, for each node in the tree, we iteratively insert each

cell into the cell set and determine whether the cell is

marked or not. We insert the marked cell into the list and

update the time accordingly.

We now analyze the time complexity of building the

structure C3 for a query trajectory oq . This depends on

two factors: (i) the number of cell trajectories and (ii) the

number of cells intersecting each cell trajectory. Part (i) is

calculated by

T (oq)

1/K
· X(oq)

1
δ

· Y (oq)
1
δ

(6)

Consider part (ii). Given a cell trajectory oq[i], we

return the cells intersecting oq[i] the area of which is a

Algorithm 1 TCell

Input: query trajectory oq , distance threshold d and grid

Output: time-dependent cells C3
1: let Cell(oq) return cell trajectories of the query;

2: Tr← ∅; ⊲ initialize the cell tree

3: for all o[i] ∈ Cell(oq) do

4: search the grid to determine Ci such that ∀ c ∈
Ci : mindist(c, o[i]) < d and c is marked if maxdist(c,

o[i]) < d;

5: insert (T (o[i]), Ci) into Tr;

6: S← ∅, L← ∅; ⊲ initialize the cell set and cell list

7: for all (T (o[i]), Ci) ∈ Tr do

8: for all c ∈ Ci do

9: S← c;

10: if c is marked then

11: if (c, T (o[i])) /∈ L then

12: L← (c, T (o[i]));
13: else

14: if ∃(c′, T ′) ∈ L: c′ = c then

15: T ′ ← T ′ ∪ T (o[i]);

16: return C3 ← (Tr, S, L);

rectangle achieved by enlarging X(oq) and Y (oq) with

2 ·d. Among all cell trajectories, the maximum number of

cells intersecting oq[i] is calculated by

X(oq[i])max + 2 · d
1
δ

· Y (oq[i])max + 2 · d
1
δ

(7)

Time complexity. Given a query trajectory oq , building

the structure C3 requires O(Coq · logCoq) time, in which

Coq is the overall number of processed cells, calculated

by

Coq =
T (oq)

1/K
· X(oq)

1
δ

· Y (oq)
1
δ

·

X(oq [i])max + 2 · d
1
δ

· Y (oq[i])max + 2 · d
1
δ

.

Proof The structure C3 consists of three parts: (i) cell

tree, and (ii) cell set and (iii) cell list. Creating (i) needs

O(Coq · logCoq). Then, for each cell in the tree, we insert

it into cell set and cell list, both of which contain O(Coq)
cells and each insertion requires O(logCoq) and O(1)
time costs for the cell set and the cell list, respectively. To

sum up, we need the time O(Coq · logCoq) to construct

the structure. �

Example 5. By referring to Figure 7(a) in which we

have K = 4 ({T1, T2, T3, T4}) and δ = 8, we enlarge

the bounding box of o3 in both x and y dimensions to

find all cells within the d-distance to the query (depicted

in gray). Two dashed lines are depicted to help figure

out the cells. The time interval T (o3) intersects {T1, T2,

T3}. The cells {c5,1, c5,2, c6,1, c6,2, c7,2} are within

the d-distance to the query at T1, but they should not be

considered at T3. There are three marked cells {c5,5, c6,3,

c7,4} at T2 ∪ T3. Thus, the cell trajectory of o1 in c5,5
and the cell trajectory of o4 in c7,4 can be directly returned

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

9

without performing the accurate distance computation (the

attribute condition is not considered here). The structure

of the time-dependent cells is reported in Figure 7(b). The

cell set consists of three parts C1, C2 and C3, partitioned

by time intervals. The cell tree is built on cells with

corresponding time intervals. Since cells {c5,5, c6,3, c7,4}
are marked cells, they are put into the cell list with time

intervals.

b
b

b

b

b

b

b
b

b
b

b
b

b
b

b

b
b

b

b b
b b

b
b
b

b
b

b
b b

b

b

b

b

b

b

1

2

3

4

5

6

7

8

Y

1 2 3 4 5 6 7 8 X

T1

T2

T3

T4

o1

o2

o3 o4

b

b

d

d

d

d
enlarge the bounding box for o3

(a) cells within d to oq and marked cells

S = C1 ∪ C2 ∪ C3

C1 = {c5,1, c5,2, c6,1, c6,2, c7,2}
C2 = {c5,3, c5,4, c6,3, c6,4, c7,3, c7,4, c8,3, c8,4}
C3 = {c2,6, c2,7, c3,5, c3,6, c3,7, c4,5, c4,6, c4,7, c5,5,

c5,6, c6,5, c7,5}

b b
b b

b
b
b

b
b

b
b

oq(o3)

T1

T2

T3

(T2, C2)

(T1, C1) (T3, C3)

Tr

L = {(c5,5, T3),

(c6,3, T2),

(c7,4, T2)}

(b) cell tree, cell set and cell list

Fig. 7. An example of C3

5.3 Traversing GR2-tree

This step performs a breadth-first traversal on the index to

prune the search space by taking into account both spatio-

temporal parameters and attribute values. Given a GR-tree

node N , we retrieve its cell bitmap denoted by CBM(N)

and determine the cells intersecting the node denoted by

cell(CBM(N)). The node can be pruned if there is no

overlap between cell(CBM(N)) and the cell set C3.S.

Lemma 2 We can prune a node N if cell(CBM(N)) ∩
C3.S = ∅.

Proof ∀c ∈ cell(CBM(N)): c /∈ C3.S ⇒ dist(c, oq) >d.

�

Let T (N) return the time extent of a node. We utilize

the cell tree C3.Tr to report all cells during T (N). These

cells are within the d-distance to the query oq . The

following pruning strategy is used.

Lemma 3 Let cell(C3.Tr, T (N)) return the cells at

T (N) in the cell tree. We can prune N if cell(CBM(N))
∩ cell(C3.Tr, T (N)) = ∅.
Proof ∀ c ∈ cell(CBM(N)): c /∈ cell(C3.Tr, T (N)) ⇒
T (N) ∩ T (oq) = ∅ ∨ dist(c, oq , T (N) ∩ T (oq)) > d. �

When a leaf node is processed, we iteratively access

each cell trajectory in the node to compute the exact dis-

tance between each cell trajectory and the query trajectory.

This step can be avoided if the following condition holds.

Lemma 4 All trajectories in a leaf node N fulfill the

distance condition if ∃ (c′, T ′) ∈ C3.L: cell(CBM(N))
= c′ ∧ T (N) ⊆ T ′, where C3.L is the cell list.

Proof Each item (c′, T ′) ∈ C3.L represents a cell c′ such

that maxdist(c′, oq) < d at T ′. If the leaf node corresponds

to such a cell, all trajectories fulfill the condition and the

distance computation is omitted. �

Example 6. Using the example query, we consider

C3(Tr, S, L) and the GR-tree at T2. We report the

structure C3 at T2 in Figure 8(a) and illustrate the pruning

procedure in Figure 8(b). Starting from Nr , we process

nodes level by level. Na and Nb will be pruned because

their cells do not intersect the cell set (Lemma 2). Nc and

Nd are further considered. For Nc, we access each child

node during which trajectories in the node c6,3 are directly

reported because the cell exists in the cell list (Lemma 4).

For Nd, we open the node and process each child node

during which all trajectories in the node c7,4 are directly

reported (Lemma 4) and the node c8,2 is pruned because

it is not within the d-distance to o3 at T2 (Lemma 3).

Pruning by attribute values. Given a GR-tree node,

we take the node id and the attribute value a ∈ Qa to

create the key to access Ratt. The following criterion is

used for pruning.

Lemma 5 Given a node N and an attribute value a ∈
Qa, let r(nid, a tr, b) ∈ Ratt denote the tuple for N such

that a = r.a tr. We can prune N if
⋂

a∈Qa

(r.b) = ∅.

Proof Let N [i] be a child node. The tuple r.b defines

the entries of N containing r.a tr. We have
⋂

a∈Qa

(r.b)

= ∅ ⇒ ∀N [i]: ∄ r1....,r|Qa| ∈ Ratt such that (r1.nid =

N [i]... r|Qa|.nid = N [i]) ∧ (r1.a tr = Qa[1]...r|Qa|.a tr

= Qa[|Qa|]). �

The algorithm of reporting candidates is given in

Algorithm 2. Let cell(O) be the overall cell trajectories.

Starting from the root node, we maintain a node list to

visit the GR2-tree level by level. A node is pruned if

its cells do not intersect the cells in C3 or it does not

contain Qa (line 6). For a non-leaf node, we retrieve each

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

10

b
b

b

b

b

b

b
b

b b
b
b

b
b

b
b b

b

b

b

1

2

3

4

1 2 3 4 5 6 7 8

T2

o1

o2

o3 o4

Tr = (T2 , C2)

S = {c5,3, c5,4, c6,3, c6,4, c7,3, c7,4, c8,3, c8,4}

L = {(c6,3, T2), (c7,4, T2)}

(a) C3 at T2

c1,3

o2

... c2,1

o1

Na

c3,1

o1

... c4,4

o1

Nb

c5,1

o3

... c6,3

o3

Nc

c7,3 ... c7,4

o4

c8,2

o4

Nd

leaf level

Nr

cell(CBM(Na))={c1,3, c1,4, c2,1}

cell(CBM(Nb))={c3,1, c4,2, c4,3, c4,4}

cell(CBM(Nc))={c5,1, c5,2, c6,1, c6,2, c6,3, c6,4}

cell(CBM(Nd))={c7,2, c8,2, c7,3, c7,4, c8,3, c8,4}

(b) the pruning procedure by GR-tree

Fig. 8. Example of pruning by C3

qualified child node according to the bitmap (marking

entries containing attributes) and put it into the list for

further consideration. For a leaf node, we evaluate the

approximate distance between the query and each cell

trajectory. A cell trajectory is marked if its maximum

distance to the query is less than d (Lemma 4). Otherwise,

we put the trajectory into the candidate set to perform the

accurate distance computation later.

Algorithm 2 AccessGR2-tree

Input: oq , d, Qa, C3, GR2-tree and cell(O)

Output: candidate trajectories

1: Cand← ∅;

2: L← GR2-tree.Root;

3: while L is not empty do

4: N ← GetNode(GR2-tree, L.top());
5: access Ratt by N and Qa;

6: if N is not pruned by C3 and Qa then ⊲ Lemmas

2, 3 and 5

7: for all entry in N according to
⋂

a∈Qa

(r.b) do

8: if N is a non-leaf node then

9: put the child node into L;

10: else

11: get the cell trajectory o ∈ cell(O);

12: if o.Att contains Qa then

13: if Lemma 4 holds then

14: mark o and put it into Cand;

15: else

16: if mindist(oq, o, T (oq) ∩
T (o)) < d then

17: Cand← o;

18: return Cand;

5.4 Establishing leaf nodes

We observe that Algorithm 2 traverses the structure in

a top-down approach during which non-leaf nodes are

accessed at first and then leaf nodes. The returned tra-

jectories are actually stored in leaf nodes. This motivates

us to determine the set of leaf nodes containing the result

and then directly access leaf nodes without performing the

traversal from the root level to leaf level.

Each leaf node only stores trajectories within one cell.

Thus, given a cell, all leaf nodes storing trajectories inside

the cell can be determined. This is calculated by the 2-D

bounding box of a leaf node and the cell. Let fcell: C →
Set(N) be a function that maps from cells to leaf nodes.

Each leaf node is of the format (nid, box) in which we

store the 3-D bounding box of a node. For example, in

Figure 9(a) fcell(c6, 3) returns the node in which cell(o3)

is stored. Given a large number of trajectories, each cell

corresponds to a set of leaf nodes because one node may

not be sufficient for all trajectories located in the cell.

The structure C3 contains all cells that are within the

d-distance to the target during the query time. Next, we

determine the leaf nodes for those cells. Note that the

function fcell returns all leaf nodes for a cell but some

of them may not intersect the query time and should be

pruned. Based on the time-dependent cells returned from

Algorithm 1, we provide the method that only accesses

leaf nodes to answer the query (see Algorithm 3).

Algorithm 3 AccessGR2-treeLeaf

Input: oq , d, Qa, C3, GR2-tree and cell(O)

Output: candidate trajectories

1: L← ∅;

2: for all c ∈ C3.S do

3: Nl ← fcell(c);
4: for all n ∈ Nl do

5: if n is not pruned by Lemmas 2 and 3 then

6: L← n;

7: Cand← ∅;

8: call lines 3-18 in Algorithm 2;

Example 7. Based on the time-dependent cells in

Figure 8(a), we provide the cell set C3.S in Figure 9(a).

For each cell, we collect its leaf nodes which are within

the d-distance to the target during the query time. In the

example, we only access those leaf nodes (depicted in

gray) to collect the data without accessing non-leaf nodes

{Nr, Na, Nb, Nc, Nd}.

6 APPROXIMATE DISTANCE COMPUTATION

Since computing the exact distance between a cell tra-

jectory and the query trajectory is a costly procedure in-

cluding mapping pieces of movements into the same time

interval, splitting trajectories and determining the time-

dependent distance function, an approximate distance is

typically used to filter the data that cannot contribute to

the result. The distance between two minimum bounding

boxes (MBBs) is computed, called approximate distance

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

11

b
b

b

b

b

b

b
b

b b
b
b

b
b

b
b b

b

b

b

1

2

3

4

1 2 3 4 5 6 7 8

T2

o1

o2

o3 o4

C3
.S = {c5,3, c5,4, c6,3, c6,4, c7,3, c7,4, c8,3, c8,4}

(a) cell set

omitted

c5,1 ... c5,3 c5,4 c6,3 c6,4

NcNa Nb

c7,3 c7,4 c8,3 c8,4 ... c8,2

Nd

Nr

(b) access leaf nodes only

Fig. 9. Example of establishing leaf nodes

computation. To increase the efficiency of establishing the

MBB of the query trajectory for a time interval, a common

method is to build a bounding box tree (BB-tree) on all

MBBs of query trajectory segments [9]. The BB-tree is

essentially a binary tree in which each node is associated

with a time interval and a rectangle. For a leaf node, the

value is taken from the trajectory. For a non-leaf node, the

value is the union of its child nodes.

A minimum bounding box is represented by mbb =
(xmin, ymin, xmax, ymax). Given two MBBs mbb1 and mbb2,
the union operation that bounds the arguments by MBBs
is defined by

union(mbb1,mbb2) =

(Min(mbb1.xmin,mbb2.xmin),Min(mbb1.ymin,mbb2.ymin),

Max(mbb1.xmax,mbb2.xmax),Max(mbb1.ymax,mbb2.ymax))

Let m be the number of segments in a query trajectory

and C be the total number of candidate cell trajectories

involved in the distance computation, respectively.

Time complexity. Employing the BB-tree, we need

O(m+C · (logm+1)) time to perform the computation.

Analysis. We need O(m) time to build the BB-tree

as trajectory segments are already sorted on time. For

each cell trajectory, we require the time O(logm + 1)
to traverse the BB-tree and perform the union operation.

The time interval of a cell trajectory is usually less than

T (oq). Thus, we need to perform the union operation once

to merge two MBBs at different time intervals. As a result,

the overall time is O(m+ C · (logm+ 1)).

To enhance the performance, we propose a method

to efficiently retrieve the MBB for a cell trajectory by

using a bounding box array, called BB-array. This is a

two-dimensional array built on-the-fly with the size B ×
B (B ≤ m). First, we partition the query trajectory into

B equal-size segments in terms of the time and assign a

segment MBB for each BB-array[i][i] (i ∈ {0, ..., B - 1}).
Second, for each row in the array we set BB-array[i][j]

(i < j ∧ j ∈ {i + 1, ..., B - 1}) by performing the union

from the ith to jth MBB. That is,

BB-array[i][j] =Union(BB-array[i][i],mbbi+1)

mbbi+1 =Union(BB-array[i+ 1][i+ 1],mbbi+2),

...

mbbj =Union(BB-array[j − 1][j − 1],

BB-array[B − 1][B − 1])

Example 8. We report the BB-array built on oq in

Figure 10 by defining B = 3.

Fig. 10. The BB-array built on oq

Space complexity. The BB-array’s storage cost is

O(m2).

Given a cell trajectory intersecting the query, we are

able to retrieve the MBB at a constant cost by employing

the BB-array. The overall time of performing the approx-

imate distance computation is as follows.

Time complexity. Employing the BB-array, we need

O(m2 + C) to process all cell trajectories.

Analysis. We need O(m+B2) = O(m+m2) to create

the BB-array as one needs to perform the partition and

create the two-dimensional array. For each cell trajectory,

its start and end time points correspond to indexes i and

j in the BB-array and thus only a constant time cost

is required to report the MBB. To sum up, we require

O(m2 + C). �

Lemma 6 The time complexity of approximate distance

computation by using BB-array is less than that by using

BB-tree.

Proof We analyze their time complexities in the following.

The BB-tree needs O(m+ C · (logm + 1)) and the BB-

array needs O(m2 + C).

m+ C · (logm+ 1)− (m2 + C) >

C · (logm+ 1)− (m2 + C) = C · logm−m2

As logm ≥ 1 and C ≫ m (the total number of can-

didates) for large datasets, we have C · logm > m2.

The cost of BB-tree is the average time complexity, while

the cost of BB-array is the worst time complexity. Conse-

quently, the BB-array outperforms the BB-tree. �

7 EXPERIMENTAL EVALUATION

We implement the proposal in C/C++ and perform the

evaluation in SECONDO [8]. A desktop PC (Intel(R)

Core(TM) i7-4770CPU, 3.4GHz, 4GB memory, 2TB hard

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

12

disk) running Suse Linux 13.1 (32 bits, kernel version

3.11.6) is used. We use real GPS records of taxis from

Beijing and Shanghai [1], named BTAXI and STAXI,

respectively. We develop a tool to generate attributes for

Beijing taxis. For STAXI, each GPS record is associated

with an attribute indicating the company id. Table 3

summarizes the dataset statistics. For each attribute, the

value is randomly selected from the domain. The CPU

time and I/O accesses are used as performance metrics

and the results are averaged over 20 runs.

TABLE 3
Datasets and parameter settings

Name #GPS Records |O| |A| dom(A) X range Y range

BTAXI 235,634,511 4,220,435 10 [1, 151] 21-119,958 0-119,653

STAXI 202,919,952 6,280,600 1 [1, 4] 0-99,749 0-99,980

Query settings

|Qa|: {1, 2, 3, 4, 5} d (km): {1, 5, 10, 20, 50}

7.1 Setup

In the system, the fanout of a GR2-tree node is 62. Such a

value is determined by the page size. In the attribute struc-

ture Ratt, each tuple defines a bitmap recording entries of

a node containing an attribute value. We set the length of

a bit array to be 32, that is, using a 32-bit integer. As a

result, each bit maps ⌈6232⌉ = 2 entries.

The grid granularity δ. We evaluate the performance

affected by δ and report the query cost in Figure 11.

According to Lemma 1, the optimal granularities for

BTAXI and STAXI are δ∗ = 11 and δ∗ = 15, respectively.

The number of partitions over time are K = 259 and K
= 446, respectively. The experimental results confirm that

our setting achieves the best performance.

 0

 1

 2

 3

 4

 5

 6

1 5 11 20 50 100

C
P

U
 t

im
e(

se
c)

Grid granularity δ

BTAXI
STAXI

(a) CPU

 0

 10

 20

 30

 40

 50

 60

1 5 11 20 50 100

I/
O

 A
cc

es
se

s
(x

 1
00

0)

Grid granularity δ

BTAXI
STAXI

(b) I/O

Fig. 11. Effect of δ∗ for BTAXI and STAXI

The effect of establishing leaf nodes. As expected,

the procedure of accessing leaf nodes does not incur

accessing non-leaf nodes and require less CPU time and

I/O accesses, as reported in Figure 12.

 0

 0.5

 1

 1.5

 2

BTAXI STAXI

C
P

U
 t

im
e(

se
c)

Traverse
Leaf

(a) CPU time

 0

 5

 10

 15

 20

BTAXI STAXI

I/
O

 A
cc

es
se

s
(x

 1
00

0) Traverse
Leaf

(b) I/O accesses

Fig. 12. Traverse the GR2-tree versus Access leaf nodes

BB-array versus BB-tree. Part of BTAXI is chosen

as the testing dataset (2,888,278 GPS records and 44,653

trajectories). The experimental results demonstrate up to

an order of magnitude speed up by BB-array, as shown

in Figure 13(a). Since the computation is executed many

times in the query procedure (81,878), the overall running

time is reduced by half. As both BB-tree and BB-array

perform approximate distance computations, the relative

error is calculated, that is the deviation between the exact

distance and the approximate distance. The relative errors

are 6% and 8% for BB-tree and BB-array, respectively. As

a further step, we demonstrate the effect of the array size

on the performance, as illustrated in Figure 13(b). The

array size has little effect on the efficiency and thus in the

following we set B = ⌈m·0.38⌉.

(a) time cost (b) the effect of B

Fig. 13. BB-tree and BB-array

7.2 Performance evaluation

We perform the evaluation by comparing our method with

six baseline methods in terms of scalability and efficiency:

(1) 3-D R-tree, (2) RIB [28], (3) 4-D R-tree, (4) IOC-

Tree [12], (5) HAGI [19] and (6) Att-online, an attribute

index is built to at first collect trajectories containing

Qa. Then, a 3D R-tree is built on-the-fly to perform the

evaluation.

7.2.1 Scalability evaluation

Scaling the number of trajectories. Different subsets

of BTAXI are selected, as summarized in Table 4. The

performance result is reported in Figure 14. When the data

size grows, the costs of all methods rise proportionally,

but our method outperforms baseline methods by a factor

of 5-50x on the largest dataset. The method Att-online is

only competitive for a small dataset but the performance

degrades significantly for large datasets. This is because

the attribute predicate is not selective and thus a large

number of trajectories are returned to build the index. We

provide the storage cost of GR2-tree and the ratio of the

index size to the data size.

TABLE 4
Datasets for scaling |O|

Name |O| |A| dom(A) Size(O) (mb)

BT1 533,635

10 [1, 151]

2,631
BT2 1,009,579 4,983
BT3 1,424,273 7,041
BT4 2,757,312 13,678
BT5 4,220,435 20,910

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

13

 0.05
 0.1

 1

 15

BT1
BT2

BT3
BT4

BT5

C
PU

 ti
m

e(
se

c)

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
Att-online
GR2-tree

(a) CPU time

 0.5
 1

 10

 100

 500

BT1
BT2

BT3
BT4

BT5

I/
O

 A
cc

es
se

s
(x

 1
00

0)

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
Att-online
GR2-tree

(b) I/O accesses

 0

 500

 1000

 1500

 2000

BT1
BT2

BT3
BT4

BT5

5.5%
5.9%

6.4%

7.7%

8.6%

St
or

ag
e

co
st

(m
b)

GR-tree
Ratt

(c) The storage cost

Fig. 14. Scaling |O|

Scaling data attributes. To investigate the effect of

attributes on the performance, we choose the largest num-

ber of trajectories and scale (i) the number of attributes

|A| and (ii) the domain dom(A), as reported in Table 5.

TABLE 5
The settings of |A| and dom(A)

|A| 2 5 10 15 20

dom(A) [1, 43] [1, 74] [1, 211] [1, 322] [1, 861]

|A| = 1

[1, 5], [1, 20], [1, 50], [1, 100], [1, 200], [1, 500]

The results are reported in Figures 15 and 16. The

performance decreases when |A| increases (also dom(A))
but enhances if |A| is set by 1 and dom(A) is enlarged.

This is because the attribute predicate becomes quite

selective for a single attribute with a large domain. In

this setting, RIB is slightly better than our solution, also

when a small number of attribute values are defined.

The index is built on trajectories grouped by attribute

values and a good locality is achieved in terms of at-

tributes. However, the performance suffers from dealing

with multiple attributes as it is difficult to achieve a good

data locality. Our method is superior to other methods in

most settings for multiple attributes. The 3-D R-tree does

not prune the search space on attribute, and thus a large

number of candidates may be returned, deteriorating the

efficiency. The 4-D R-tree enlarges the data set |A| times.

This increases the index overhead and also complicates

the evaluation. Furthermore, the method does not achieve

good locality for multiple attributes.

The IOC-tree associates attributes with all locations.

Consequently, each octree maintains all points of a trajec-

tory. This significantly increases the index storage over-

head, deteriorating the query performance. HAGI defines

a loose bound by min and max values and may work well

for one attribute. However, the method will process all

trajectories whose values are within the bound but are

not equal to the query. The bound does not make sense

if several attributes are defined because min and max

values may be from different attributes. The scope of the

method Att-online is limited as the performance is only

competitive in a few settings, e.g., |A| = 1 and dom(A)

= 500. We will not include the method in the following

evaluation. We also report the storages of GR-tree and

Ratt, respectively, see Figures 15(c) and 16(c). One can

see that varying the attribute setting will only incur the

variation of Ratt’s storage.

7.2.2 Efficiency study

Varying |Qa|. We perform the evaluation by varying

the number of query attributes. The results, as reported

in Figure 17, demonstrate that our method substantially

outperforms baseline methods in all settings. When |Qa|
increases, the performance becomes better as the attribute

predicate is more selective.

Varying the distance d. We report the performance

evaluation affected by d in Figures 19 and 20. When d
increases, the performance degrades as expected due to

more data being processed. The advantage of our method

is significant in BTAXI, while some baseline methods

are competitive in STAXI. That is, RIB achieves a good

selectivity when there is only one attribute. The result is

consistent with scaling the number of attributes.

Effect of T (oq). We do the evaluation by choosing

query trajectories with different distributions of time peri-

ods: short time, random and long time. For example, we

select 20 trajectories with the minimum time period as

short time query trajectories. The results are reported in

Figure 18. One can see that the costs grow proportionally

when T (oq) increases, but our method achieves the best

performance in all settings. Furthermore, the performance

deviates significantly for long trips.

Memory costs. We report the average memory cost

of auxiliary structures C3, BB-array and GR-tree in Table

6. When d increases, more cells will be involved during

the evaluation and the storage of C3 rises accordingly. The

storage of the BB-array depends on the query trajectory

and thus is not sensitive to d. We measure the memory

cost of GR-tree in terms of the number of accessed nodes

during the query evaluation. The largest query distance d
= 50 km incurs around 12mb memory cost.

TABLE 6
The memory costs of C3, BB-array and GR-tree

d (km) 1 5 10 20 50

C3 (kb) 0.27 0.28 0.8 4.56 28.52

BB-array (kb) 18.17 10.45 15.62 38.9 24.45

B 15 15 17 23 20

GR-tree(×4kb) 72 299 1,292 1614 2,760

7.2.3 Updating evaluation

The performance is evaluated by scaling the number of

new trajectories. We build the historical database on part

of the dataset and take the rest as new trajectories, denoted

by Ou. As reported in Figure 21(a), |O| increases in

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

14

 0.01

 0.1

 10

 100

2 5 10 15 20

C
PU

 ti
m

e(
se

c)

|A|

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
Att-online
GR2-tree

(a) CPU time

 0.1

 1

 10

 100

 1000

2 5 10 15 20I/O
 A

cc
es

se
s (

x
10

00
)

|A|

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
Att-online
GR2-tree

(b) I/O accesses

 0

 2000

 4000

 6000

 8000

 10000

2 5 10 15 20

St
or

ag
e

co
st

(m
b)

|A|

GR-tree Ratt

(c) The storage cost

Fig. 15. Scaling |A| and dom(A)

 0.01

 0.1

 1

 30

[1, 5]
[1, 20]

[1, 50]

[1, 100]

[1, 200]

[1, 500]

C
PU

 ti
m

e(
se

c)

dom(A)

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
Att-online
GR2-tree

(a) CPU time

 0.1
 1

 10
 100
 500

[1, 5]
[1, 20]

[1, 50]

[1, 100]

[1, 200]

[1, 500]I/
O

 A
cc

es
se

s
(x

 1
00

0)

dom(A)

3D R-tree
RIB

4D R-tree
IOC-tree

HAGI
GR2-tree
GR2-tree

(b) I/O accesses

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

[1, 5]
[1, 20]

[1, 50]

[1, 100]

[1, 200]

[1, 500]

St
or

ag
e

co
st

(m
b)

dom(A)

GR-tree
Ratt

(c) The storage cost

Fig. 16. Scaling dom(A) (|A| = 1)

 0.1

 1

 10

 40

1 2 3 4 5

C
P

U
 t

im
e(

se
c)

|Qa|

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(a) CPU time

 2

 10

 100

 500

1 2 3 4 5I/
O

 A
cc

es
se

s
(x

 1
00

0)

|Qa|

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(b) I/O accesses

Fig. 17. The effect of |Qa| (BTAXI, d = 10km)

 0.1

 1

 10

 100

 1000

short(0.2) random(0.4) long(1069)

C
P

U
 t

im
e(

se
c)

T(oq) (min)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(a) CPU time

 1

 10

 100

 1000
 6000

short(0.2) random(0.4) long(1069)I/
O

 A
cc

es
se

s
(x

 1
00

0)

T(oq) (min)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(b) I/O accesses

Fig. 18. The effect of query time (BTAXI, d = 10km, |Qa| = 3)

 0.1

 1

 10

 80

1 5 15 20 50

C
P

U
 t

im
e(

se
c)

d(km)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(a) CPU time

 1

 10

 100

 600

1 5 15 20 50I/
O

 A
cc

es
se

s
(x

 1
00

0)

d(km)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(b) I/O accesses

Fig. 19. The effect of d (BTAXI, |Qa| = 3)

several orders of magnitude, but the updating cost only

rises marginally. The cost of BTAXI is higher than that of

STAXI due to the number of attributes. We also perform

a series of updates, each of which processes 50,000

trajectories. The overall update time is measured and the

result is reported in an accumulated way, as shown in

Figure 21(b). The time cost increases slightly.

 0.1

 1

 10

 80

1 5 15 20 50

C
P

U
 t

im
e(

se
c)

d(km)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(a) CPU time

 0.5
 1

 10

 100
 300

1 5 15 20 50I/
O

 A
cc

es
se

s
(x

 1
0
0
0
)

d(km)

3D R-tree
RIB

4D R-tree

IOC-tree
HAGI

GR2-tree

(b) I/O accesses

Fig. 20. The effect of d (STAXI, |Qa| = 3)

 0

 0.5

 1

 1.5

 2

100
500

1,000
5,000

50,000

10,000

100,000

O
v

er
al

l
ti

m
e(

se
c)

|Ou|

BTAXI
STAXI

(a) scaling |Ou|

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

O
v

er
al

l
ti

m
e(

se
c)

update times

BTAXI
STAXI

(b) a series of updates

Fig. 21. The performance of updating GR2-tree

8 CONCLUSIONS

We studied multi-attribute trajectories to enrich the data

representation of trajectory data. A new query is pro-

posed to simultaneously evaluate the data in terms of

spatio-temporal and attribute predicates. We develop an

optimal data partition method and build index structures

with efficient query algorithms. An approximate distance

calculation method is proposed accompanied with thor-

ough theoretical analysis. Extensive experimental results

demonstrated that our method significantly outperforms

alternative methods. The future work is to consider join

queries on multi-attribute trajectories.
Acknowledgment. This work is supported by NSFC under grants

61972198, Natural Science Foundation of Jiangsu Province of China under

grants BK20191273. Zhifeng Bao is supported in part by ARC DP200102611.

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3100650, IEEE
Transactions on Knowledge and Data Engineering

15

REFERENCES

[1] http://factory.datatang.com/en/ (2019).

[2] J. Bercken, B.Seeger, and P.Widmayer. A generic approach
to bulk loading multidimensional index structures. In VLDB,
pages 406–415, 1997.

[3] R. Cai, Z. Lu, L. Wang, Z. Zhang, T. Z. J. Fu, and M. Winslett.
DITIR: distributed index for high throughput trajectory inser-
tion and real-time temporal range query. Proc. VLDB Endow.,
10(12):1865–1868, 2017.

[4] D.W. Choi, J. Pei, and T. Heinis. Efficient mining of re-
gional movement patterns in semantic trajectories. PVLDB,
10(13):2073–2084, 2017.

[5] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu. Path cost
distribution estimation using trajectory data. PVLDB, 10(3):85–
96, 2016.

[6] Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang. Scalable
algorithms for nearest-neighbor joins on big trajectory data. In
ICDE, pages 1528–1529, 2016.

[7] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis.
Algorithms for nearest neighbor search on moving object
trajectories. GeoInformatica, 11(2):159–193, 2007.

[8] R. H. Güting, T. Behr, and C. Düntgen. SECONDO: A platform
for moving objects database research and for publishing and
integrating research implementations. IEEE Data Eng. Bull.,
33(2):56–63, 2010.

[9] R. H. Güting, T. Behr, and J. Xu. Efficient k-nearest neigh-
bor search on moving object trajectories. VLDB Journal,
19(5):687–714, 2010.

[10] R. H. Güting, F. Valdés, and M.L. Damiani. Symbolic Trajec-
tories. ACM Transactions on Spatial Algorithms and Systems,
1(2):Article 7, 2015.

[11] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, and et al. A
foundation for representing and querying moving objects. ACM

TODS, 25(1):1–42, 2000.

[12] Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin. Spatial
keyword range search on trajectories. In DASFAA, pages 223–
240, 2015.

[13] Q. Hao, L. Chen, F. Xu, and Y. Li. Understanding the urban
pandemic spreading of COVID-19 with real world mobility
data. In KDD, pages 3485–3492, 2020.

[14] Y. Luo, W. Li, T. Zhao, X. Yu, L. Zhang, G. Li, and
N. Tang. Deeptrack: Monitoring and exploring spatio-temporal
data - A case of tracking COVID-19 -. Proc. VLDB Endow.,
13(12):2841–2844, 2020.

[15] C. Parent, S. Spaccapietra, C. Renso, and et al. Semantic tra-
jectories modeling and analysis. ACM Comput. Surv., 45(4):42,
2013.

[16] Z. Shang, G. Li, and Z. Bao. DITA: distributed in-memory
trajectory analytics. In SIGMOD, pages 725–740, 2018.

[17] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating
trajectory data for similarity-based analysis. In SIGMOD, pages
833–844, 2013.

[18] H. Su, K. Zheng, K. Zeng, J. Huang, S. W. Sadiq, N. J. Yuan,
and X. Zhou. Making sense of trajectory data: A partition-and-
summarization approach. In ICDE, pages 963–974, 2015.

[19] Y. Su, Y. Wu, and A. L. P. Chen. Monitoring heterogeneous
nearest neighbors for moving objects considering location-
independent attributes. In DASFAA, pages 300–312, 2007.

[20] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye,
and W. Lv. The simpler the better: A unified approach to
predicting original taxi demands based on large-scale online
platforms. In ACM SIGKDD, pages 1653–1662, 2017.

[21] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A
unified approach to route planning for shared mobility. PVLDB,
11(11):1633–1646, 2018.

[22] G. Trajcevski and P. Scheuermann. Triggers and continuous
queries in moving objects database. In DEXA, pages 905–910,
2003.

[23] F. Valdés and R. H. Güting. A framework for efficient multi-
attribute movement data analysis. VLDB J., 28(4):427–449,
2019.

[24] F. Valdés and R. Hartmut Güting. Index-supported pattern
matching on tuples of time-dependent values. GeoInformatica,
21(3):429–458, 2017.

[25] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sanderson, and
X. Qin. Answering top-k exemplar trajectory queries. In ICDE,
pages 597–608, 2017.

[26] S. Wang, Z. Bao, J. Shane Culpepper, T. Sellis, and G. Cong.
Reverse k nearest neighbor search over trajectories. IEEE

Trans. Knowl. Data Eng., 30(4):757–771, 2018.
[27] S. Wang, Z. Bao, J. Shane Culpepper, Z. Xie, Q. Liu, and

X. Qin. Torch: A search engine for trajectory data. In SIGIR,
pages 535–544, 2018.

[28] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k
spatial keyword query processing. IEEE Trans. Knowl. Data

Eng., 24(10):1889–1903, 2012.
[29] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory

similarity search. PVLDB, 10(11):1478–1489, 2017.
[30] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and

K. Aberer. Semitri: a framework for semantic annotation of
heterogeneous trajectories. In EDBT, pages 259–270, 2011.

[31] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and
K. Aberer. Semantic trajectories: Mobility data computation
and annotation. ACM TIST, 4(3):49:1–49:38, 2013.

[32] C. Zhang, J. Han, L. Shou, J. Lu, and T. F. La Porta. Splitter:
Mining Fine-Grained Sequential Patterns in Semantic Trajecto-
ries. PVLDB, 7(9):769–780, 2014.

[33] J. Zhang, B. Tang, and M. L. Yiu. Fast trajectory range query
with discrete frechet distance. In EDBT, pages 634–637, 2019.

[34] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. W. Sadiq, and
X. Zhou. Approximate keyword search in semantic trajectory
database. In ICDE, pages 975–986, 2015.

[35] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient
search for activity trajectories. In ICDE, pages 230–241, 2013.

[36] K. Zheng and H. Su. Go beyond raw trajectory data: Quality
and semantics. IEEE Data Eng. Bull., 38(2):27–34, 2015.

Jianqiu Xu is a professor in Nanjing
University of Aeronautics and Astronau-
tics, China. His research interests in-
clude spatial databases and moving ob-
jects databases. He has served on the
program committees for conferences
such as KDD, DASFAA and MDM.

Zhifeng Bao is an associate profes-
sor with the RMIT University in Aus-
tralia. His research interests include
data usability, spatial database, data in-
tegration, and cleaning. He has served
on the program committees for confer-
ences such as SIGMOD, PVLDB, ICDE
and KDD.

Hua Lu is a professor with the De-
partment of Department of People and
Technology, Roskilde University, Den-
mark. His research interests include
database and data management, and
geographic information systems. He
has served on the program committees
for conferences such as PVLDB, ICDE
and KDD.

Authorized licensed use limited to: RMIT University Library. Downloaded on August 07,2021 at 04:55:59 UTC from IEEE Xplore. Restrictions apply.

