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How Context or Knowledge Can Benefit
Healthcare Question Answering?

Xiaoli Wang, Feng Luo, Qingfeng Wu, and Zhifeng Bao

Abstract—Healthcare question answering (HQA) is a challenging task as questions are generally non-factoid in nature. Traditional
information retrieval techniques do not perform well on non-factoid questions. Recent neural question answering systems are reported
to have performance gains over traditional methods. However, little attention has been given to HQA as datasets are generally too
small to train a neural model from scratch. Recently, several systems have been proposed to learn context representations for HQA.
Despite moderate progress, these systems have not been thoroughly compared with state-of-the-art neural models, and these neural
models were tested only on self-created datasets. This makes it difficult for practitioners to decide which models should be used for
various scenarios. To address the above challenges, we develop a new joint model to incorporate both context and knowledge
embeddings into neural ranking architectures. First, we adapt context embedding pre-trained from large open-domain corpus to small
healthcare datasets. Second, we learn knowledge embedding from knowledge graphs to provide external information for
understanding non-factoid questions. To evaluate how context or knowledge embedding can benefit HQA, we adapt many
state-of-the-art methods for general QA to HQA, by injecting the context or knowledge information only, or both of them. Extensive
experiments are conducted to compare our approach with those adapted methods and current HQA systems. The results show that
our approach achieves the state-of-the-art performance on both HealthQA and NFCorpus datasets.

Index Terms—Healthcare Question Answering, Context Embedding, Knowledge Embedding

F

1 INTRODUCTION

THE last decade has witnessed the flourishing of online
QA platforms, which provide precise answers instead

of navigating through full documents [1], [2]. Recently,
domain-specific QA platforms in healthcare have emerged,
which allow users to seek help online instead of looking for
traditional clinical services [3]. It is a challenging task for
users to navigate through massive information for querying
the required healthcare answers. Early systems are based
on traditional information retrieval (IR) methods [4]–[6],
and a comprehensive survey can be found in [7]. However,
they were reported to have limited success, as users post
healthcare questions that are abstract and non-factoid in
nature, in which IR methods do not perform well [3].

Recent neural QA systems are reported to have perfor-
mance gains over traditional IR methods [2], [8]–[17]. The
key idea is to learn language representations of questions
and answers that are used as input to neural ranking archi-
tectures. Some methods such as [9], [10], [13], [17] learn the
syntactic and semantic representations of the question and
the answer separately, and then score each question-answer
pair based on the similarity of their representations. Others
such as [2], [8], [9], [11], [12], [15], [16] exploit attention
mechanisms to learn the interaction information between
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the question and the answer, which can better focus on
relevant parts of the question-answer pair. Despite the above
success in general QA, little effort has been made on more
specific domains such as HQA, as datasets are generally too
small to train a deep learning system from scratch.

To address the challenges, several systems have adopted
neural ranking architectures to the healthcare domain [1],
[3], [18], [19]. Among them, context embeddings are re-
ported to have the best performance [1], [18], [19]. However,
the appropriateness of several state-of-the-art models has
not been thoroughly evaluated, and these models are tested
without considering the adaption of context embedding
on existing neural networks. This makes it unclear for
practitioners to decide which part of the models leads to
performance improvement. To address the problem, we
comprehensively study the applicability of state-of-the-art
neural networks for general QA to HQA. An ablation study
is also conducted on the effectiveness of context embedding
on existing neural networks.

The above systems only capture lexical, syntactic, and
context information, but ignore the external knowledge
from knowledge graph (KG) that plays a crucial role in QA
[20]. Several systems extract graph representations for the
question and answer from KG using query languages such
as SPARQL [21]–[24]. However, it is too time-consuming
to process huge KGs [2]. To resolve this problem, recent
systems incorporate pre-trained knowledge embedding into
existing language representations [20], [25]–[27]. These sys-
tems have shown that injecting extra knowledge informa-
tion can significantly enhance the results. This observation
raises two interesting questions: (i) whether the abilities of
external knowledge on the open domain are transferable
to the domain of healthcare; (ii) whether incorporating ex-
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ternal knowledge embedding into existing neural networks
benefits HQA.

This paper comprehensively studies state-of-the-art neu-
ral networks and their applicability to HQA. We propose
a novel neural ranking framework, namely CK-HQA, with
a new joint model to incorporate context and knowledge
embeddings into neural ranking architectures for HQA.
We also design systematic experiments for answering the
following four questions: (1) How does context embedding
improve existing neural networks for HQA? (2) How does
knowledge embedding improve existing neural networks
for HQA? (3) Does domain-specific knowledge embedding
benefit HQA compared against open-domain knowledge
embedding? (4) Does our joint model with context and
knowledge embedding improve existing neural networks
for HQA? Our main contributions are as follows:
• Different from existing HQA systems that use only con-

text embedding or knowledge embedding, we propose
a new neural ranking framework with a joint model
that combines context and knowledge embeddings into
neural ranking architectures (Section 4).

• We adapt many state-of-the-art neural networks for
general QA to HQA, by injecting context or knowl-
edge information only, or both of them. We study
the applicability of each of such adapted models to
HQA. Extensive experiments are conducted to compare
our CK-HQA with those adapted models and current
HQA systems. The results show that both context and
knowledge embeddings can improve existing neural
networks significantly, achieving state-of-the-art perfor-
mance on two real-world datasets under four bench-
mark metrics (Section 5).

• We have implemented a benchmark system for users
to carry out extensive experiments on self-collected
datasets. The full system is publicly available at [28],
together with codes for replicating the results shown
in this paper. All existing and adapted state-of-the-art
neural networks for HQA are implemented in a library
for users to conveniently apply to their HQA tasks.

2 RELATED WORK

Question answering is a classical problem in information
retrieval. Early works are based on traditional information
retrieval techniques (e.g., [5], [6]). However, such techniques
do not perform well, when applied to healthcare question
answering with very abstract and non-factoid questions
[3], [29]. Recent years have witnessed many successes in
applying neural networks to QA [30]. In this paper, we com-
prehensively study existing neural network architectures,
including feature-based models [3], [29], [31], context-based
models [12], [32] and knowledge-based models [20], [25]–
[27], and their applicability to HQA.

2.1 Feature-based Models
Feature-based models use pre-trained word embeddings to
capture syntactic and semantic information from texts for
ranking. We present several representative models that have
been applied to HQA [3], [29], [31].

CDSSM [13] is a latent semantic model that uses convo-
lutional layers on word trigram features, and PACRR [33]

is a position-aware neural model that adopts convolutional
layers on n-gram features. Both Arc-I and Arc-II [9] use
convolutional architectures to create word representations
of query and document, and compute their relevance using
a feed-forward network. Arc-I generates document-level
representations, while Arc-II adopts word-level interaction
features. MatchPyramid [8] and aNMM [16] use the dot
product between query and document word vectors as their
interaction features. The difference is that MatchPyramid
employs convolutional layers to compute the relevance
while aNMM uses an attention network. MV-LSTM [14]
uses cosine or bilinear operation over Bi-LSTM features,
to compute the interaction features. DRMMTKS [34] uses
word count based interaction features between query and
document words. Both Conv-KNRM [15] and KNRM [35]
use kernel pooling on interaction features to compute simi-
larity scores. DUET [11] adopts both word-level interaction
features and document-level semantic features as input em-
beddings that are fed into convolutional layers to compute
the relevance. HAR [3] combines word-level, sentence-level,
and document-level representations, and uses cross atten-
tion mechanism to compute the relevance.

These models are reported to have impressive perfor-
mance gains over traditional Information Retrieval models
for HQA [3]. However, their power is restricted by only
using lexical or syntactic information that ignores contextual
information which might be useful for domain-specific QA.

2.2 Context-based Models
For context-based models, high-level sentence or document
encoders that generate contextual token representations
have been pre-trained from unlabeled data and fine-tuned in
downstream tasks, such as ELMo [36] and BERT [32]. ELMo
[36] learns the deep contextualized word representation
from a bidirectional LSTM. BERT [32] utilizes a multi-layer
bidirectional transformer encoder which can generate a
deep bidirectional representation to capture more contextual
information. Motivated by this, recent works employ the
contextual representations to improve the performance of
traditional feature-based models on QA [2], [12], [37]. For
example, Comp-Clip [37] employs ELMo along with Latent-
Clustering for QA. BAS [2] and CEDR [12] both use BERT.
BAS combines BERT with an answer type detector, while
CEDR employs BERT with existing neural architectures,
such as PACRR [33], KNRM [35], and DRMMTKS [34].

2.3 Knowledge-based Models
Despite moderate progress, both the feature-based model
and the context-based model neglect the incorporation of
external knowledge [20], [27]. Most knowledge-based mod-
els are semantic parsing approaches, which can be divided
into two stages: structured query generation and answer
retrieval in knowledge base (KB) [38]–[43]. Some works [39],
[40] aim to transform the natural language question into
structured query. They propose a neural semantic parser to
generate the logic query form via two subtasks (i.e., entity
linking and logic form generation), and simply employ the
traditional search algorithms such as BFS to obtain answers.
Other works [38], [41]–[44] focus on neural retriever model
to derive answers from KB. For example, [41]–[44] utilize
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Fig. 1: Two procedures of CK-HQA

neural ranking model or logic reasoning framework to com-
pute the relevance score between question and candidate
answers.

However, these knowledge-based models are too time-
consuming with huge knowledge base [2]. To resolve this
problem, some knowledge-based models incorporate pre-
trained knowledge embedding learned from the knowledge
graph into existing language representations [20], [25]–[27].
These models have shown that injecting extra knowledge
information from knowledge graph can significantly en-
hance the QA performance. Prompted by the recent success
of contextualized and knowledge embeddings on language
representation models, this paper considers incorporating
external knowledge into contextualized language represen-
tation models to improve the HQA performance.

3 PROBLEM DEFINITION

We denote a healthcare question as q and an answer docu-
ment as d. Given a question/document, we represent it as
a token sequence of {T1, · · · , TN}, whose length is N . The
tokens are at the sub-word level. By aligning each token to
an entity in knowledge graph, we have an entity sequence
of {E1, · · · , EN ′}, whose length is N ′. We formulate the
healthcare question answering problem as a document rank-
ing problem in Definition 1.

Definition 1. Given a healthcare question q, let Ω =
{d1, · · · , d|Ω|} be a set of candidate answer documents, and |Ω|
is the total number of documents in Ω. We aim to compute the
relevance score of S(q, di) between q and each document di in Ω.
S(q, di) ∈ < represents a real-valued relevance score between q
and di.

To address the above problem, we develop a new neural
ranking framework denoted as CK-HQA. Figure 1 shows
two procedures in our framework: computing the relevance
scores and learning to rank. In the first procedure, we cal-
culate the relevance score of S(q, di) between the question
q and each document di. Then, the second procedure uses
human-annotated labels for learning to optimize and update
our ranking framework in the first procedure. We assume
that the ground truth is known and labels are predefined.
We use a triple of (q, di, l(q,di)) to represent a ground truth of
the relevance score between q and di, where l(q,di) ∈ < is the
relevance score annotated by experts (We use several public
datasets with human-annotated labels in our experiments in
Section 5). The details of our proposed CK-HQA are shown
in Section 4.

4 METHODOLOGY

Figure 2 illustrates the overall architecture of CK-HQA,
which contains four main components: context encoder,

knowledge encoder, joint model, and neural ranking model.
Given a question, we aim to rank a set of candidate answer
documents by computing the ranking score between each
pair of question and document. Concretely, we first employ
context encoder to learn the initial context embeddings
of question and document, separately (Section 4.1). Then,
we employ knowledge encoder to learn the knowledge
embeddings of question and document, separately (Section
4.2). Afterwards, we introduce our proposed joint model to
learn the final knowledge-enhanced context representations
of question and document, separately (Section 4.3). Finally,
the neural ranking model utilizes the knowledge-enhance
context representations to calculate the final ranking score
between question and document (Section 4.4).

4.1 Context Encoder

The context encoder aims to generate context embeddings
of question and document. Recently, the pre-trained context
language representation models, such as CoVe [45], ELMo
[36], OpenAI GPT [46] and BERT [32], represent words in
context by downstream tasks to capture higher-level context
information such as disambiguation, syntactic structures,
and semantic roles. Inspired by current success of BERT
model (e.g., BioBERT [47] and SciBERT [48]), we adapt it in
our context encoder to embed the question and document
into three high-dimensional vector spaces.

Given a question consisting of N tokens denoted as
{T q

1 , · · · , T
q
N} and a document consisting of M tokens

denoted as {T d
1 , · · · , T d

M}. We first concatenate them into
one token sequence. Then, we add [CLS] token as the first
token to the sequence and separate question and document
sequence with [SEP ] token to get the input token sequence,
i.e., {[CLS], T q

1 , · · · , T
q
N , [SEP ], T d

1 , · · · , T d
M}. After that,

the sequence is fed into the context encoder. We use the
BERT [32], a transformer model which is pre-trained with
a large amount of corpus on sub-word level1. To generate
the context representation for the input token sequence, we
use the pooling of each attention layer. Suppose the total
number of attention layers is L. In the i-th layer (1 ≤ i < L),
the output context embedding is denoted as

W i = {wi
[CLS], w

i
T q
1
, · · · , wi

T q
N
, wi

[SEP ], w
i
Td
1
, · · · , wi

Td
M
}.

Here, W i ∈ RK×Dc , where K = N + M + 2 and Dc is the
attention hidden layer dimension. w ∈ RDc denotes a token
representation. Then, we have

W i = f(W i−1),

where f(·) is the multi-head self-attention used in each
layer.

Different from recent BERT models, we concentrate all
the output context embeddings from L attention layers to
generate the final context representation as below:

C =


W 0

W 1

...
WL−1

 ∈ RL×K×Dc . (1)

1. In this paper, the corpus could be open-domain or domain-specific.
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Fig. 2: Overview of our end-to-end CK-HQA framework. Given the question and document, the context encoder utilizes
pre-trained context language representation model to generate the context embedding, while the knowledge encoder
extracts entities from knowledge graph which are fed into knowledge representation model to generate the knowledge
embedding. After getting the context embedding and knowledge embedding, the fusion layer in the joint model iterates
L layers to combine context embeddings with knowledge embeddings to generate the knowledge-enhanced context
representation for the neural ranking architectures.

From C, the inputs with question and document are
embedded into three high-dimensional vector spaces. The
embedding outputs of question and document are respec-
tively concatenated to form a single representation: CLRq ∈
RL×N×Dc and CLRd ∈ RL×M×Dc respectively denote the
context representation of question and document. Then, we
have

CLRq =


w0

T q
1
· · · w0

T q
N

w1
T q
1
· · · w1

T q
N

...
. . .

...
wL−1

T q
1

· · · wL−1
T q
N

 , (2)

CLRd =


w0

Td
1
· · · w0

Td
M

w1
Td
1
· · · w1

Td
M

...
. . .

...
wL−1

Td
1

· · · wL−1
Td
M

 . (3)

Both representations combine the output of all layers
to allow our contextualized language representation model
to learn the importance of representation from different
layers for better understanding the context information. The
embedding of [CLS] is also recorded in our framework and
will be used as input in the ranking model (Section 4.4). It
can also provide semantic information besides individual
context information.

4.2 Knowledge Encoder

As shown in Figure 2, the knowledge encoder is designed
to embed entities in KGs into a low-dimensional entity
vector space by employing the knowledge representation
model. To generate the entity sequences, existing works
[20], [27], [49] incorporate the external knowledge informa-
tion by performing entity mention detection using string
matching methods [50] such as n-gram matching or entity
linking methods. Following these works, given the ques-
tion and document with their concatenated token sequence
{[CLS], T q

1 , · · · , T
q
N , [SEP ], T d

1 , · · · , T d
M}, we first employ

specific KG-related entity linking systems, such as Scispacy
[51] or TagMe [52] for entity mention detection in our KGs
(i.e., UMLS and Wikidata) as described in Section 5.1.4.
Scispacy provides a fast and robust entity linker component
to extract entities linked to UMLS. TagMe is a powerful
tool that can conduct fast and accurate annotation of short
texts with Wikidata entities. Due to the accuracy of entity
linking methods on specific KGs, we align each token to a
named entity by simply selecting the top-1 entity from the
entity candidates of its corresponding entity mention. Note
that not every token can be aligned to an entity. If a token
does not have a corresponding entity, we align it with a
pre-defined empty entity [UNK]. Consequently, the token
sequence can be aligned to an entity sequence denoted as
{[CLS], Eq

1 , · · · , E
q
N , [SEP ], Ed

1 , · · · , Ed
M}, and our goal is

to create a mapping of each entity into a low-dimensional
entity vector space.

To learn the KG-based knowledge embedding, we uti-
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Fig. 3: Illustration of the fusion layer in our joint model. Given the context and knowledge embeddings, it iterates L layers
context embedding with knowledge embedding to generate the knowledge-enhanced context representation.

lize the knowledge representation model to inject external
knowledge information into knowledge representation. The
KG is formed of a substantial number of triples, where each
triple indicates a relation between two entities denoted as
(subject, relation, object). For each triple, the knowledge
representation model learns vector embedding of it denoted
as (s, r, o), where s is the embedding of the subject entity,
r is the embedding of the relation and o is the embedding
of the object entity. In this paper, we adopt the transE [53],
which is an effective knowledge representation model, to
pre-train the entity knowledge embedding. The idea is that
the embedded entities s and o can be connected by r with
low error, i.e., s+r ≈ o. Thus, we can obtain the correspond-
ing knowledge embedding for each entity in the entity se-
quence of question and document. To be specific, we encode
the sequence of {[CLS], Eq

1 , · · · , E
q
N , [SEP ], Ed

1 , · · · , Ed
M}

into the KG-based knowledge representation denoted as
{[CLS], eT q

1
, · · · , eT q

N
, [SEP ], eTd

1
, · · · , eTd

M
}, where e ∈

RDe and De is the dimension of entity embedding. The
inputs with question and document are encoded into the
entity vector space. The embedding outputs of question and
document are respectively concatenated to form a single
representation: KLRq ∈ RN×De and KLRd ∈ RM×De

respectively denote the knowledge representation of ques-
tion and document. N and M are the lengths of question
and document entity sequence respectively. Then, we have

KLRq = {eT q
1
, · · · , eT q

N
},

KLRd = {eTd
1
, · · · , eTd

M
}.

4.3 Joint Model
A new joint model is proposed to incorporate both the
context and knowledge embeddings into our language rep-

Algorithm 1: CK-Trans
Input : context embedding CLRq, CLRd

knowledge embedding KLRq , KLRd

Output: knowledge-enhanced contexutalized
representation Gq and Gd

Initialize transformation matrices Q, U and b;
Initialize the question representation list QL ;
Initialize the document representation list DL ;
for i-th layer embedding CLRi

q in CLRq do
Gi

q = σ(CLRi
q ∗Q+KLRq ∗ U + b);

add Gi
q to QL;

end
for i-th layer embedding CLRi

d in CLRd do
Gi

d = σ(CLRi
d ∗Q+KLRd ∗ U + b);

add Gi
d to DL;

end
stack QL to Gq ;
stack DL to Gd;

resentation model. As shown in Figure 3, when obtain-
ing the context and knowledge embeddings, the fusion
layer in our joint model integrates them to generate the
knowledge-enhanced context representation for each token
and its corresponding entity. To aggregate both context and
knowledge embeddings, we develop a new transformed
strategy in the fusion layer denoted as CK-Trans. Algorithm
1 describes the procedure of CK-Trans. Given the input
embeddings of CLRq, CLRd, KLRq , and KLRd, we first
iterate the context embedding in each layer from the multi-
layer context embeddings CLRq and CLRd. Then, in each
layer, we use two transformation matrices Q ∈ RDc×Dj and
U ∈ RDe×Dj with a bias vector b ∈ RDj to integrate the
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context embedding with knowledge embedding KLRq and
KLRd for generating the knowledge-enhanced context rep-
resentation, where Dj is the dimension of the knowledge-
enhanced context representation. Finally, the representation
in each layer is aggregated to generate the final output
representation. As shown in Figure 3, the final output rep-
resentations of question and document are Gq ∈ RL×N×Dj

and Gd ∈ RL×M×Dj .

4.4 Neural Ranking Architectures
Based on the final output of Gq and Gd aforementioned, we
feed them into existing neural ranking models for HQA.
Thus, the similarity representation can be represented as
s(q, d) ∈ RL×N×M . Different structures are used to calculate
the similarity representation and output the final ranking
score as S(q, d). In our implementation, we follow a most
recent work in general QA [12] and apply three neural
models of KNRM [35], PACRR [54], and DRMMTKS [34].
For each model, we concatenate the [CLS] token embedding
from Section 4.1 with the matching signals at the last hidden
layer for benefiting HQA.

For training, the objective function of our framework
follows most state-of-the-art neural ranking models [9], [14],
[35], [55]. It uses the pairwise learning to rank and the loss
is shown as follows:

Loss =
∑
q

∑
d+,d−

max(0, 1− S(q, d+) + S(q, d−)),

where d+ and d− represent the pairwise relevant and irrel-
evant document respectively. Given the human-annotated
ground truth l(q,d+) and l(q,d−) for d+ and d− respectively,
we have l(q,d+) > l(q,d−).

5 EVALUATION

We design systematic experiments for answering the follow-
ing four questions:
• How does context embedding improve existing neural

networks for HQA?
• How does knowledge embedding improve existing

neural networks for HQA?
• Does domain-specific knowledge embedding have ben-

efits for HQA compared with open-domain knowledge
embedding?

• Does the proposed joint model with context and knowl-
edge embeddings together improve existing neural net-
works for HQA?

5.1 Setup
5.1.1 Datasets
We use two widely adopted datasets. Table 1 shows the
statistics of documents and questions, and Figure 4 shows
the distribution of the question and document length.

HealthQA [3] is a dataset used in recent work containing
7,517 questions and 7,355 documents. The documents are ex-
tracted from 1,235 healthcare articles from the Patient web-
site2. Each section in the articles is selected as a document.
Since the sections themselves are very long, most documents

2. https://patient.info/

TABLE 1: Dataset statistics

Parameters HealthQA NFCorpus
Number of document 7,355 3,593
Number of question 7,517 3,220

Average length of question 8.0 3.6
Average length of document 233.4 146.1
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Fig. 4: The distribution of question and document lengths
on datasets

contain more than 100 words. Questions are human-created
using the information in documents or rephrased from the
document subtitles. We obtain this dataset from the authors
of [3], and follow their settings to split all questions together
with documents into the train, validation, and test datasets
with a cardinality of 5,247, 1,109, and 1,134 respectively.

NFCorpus [56] is a dataset used in previous work that
contains thousands of full-text medical queries with relevant
links to research articles on PubMed3. The medical queries
are collected from an HQA website4. The documents are
titles and abstracts extracted from articles. Three relevance
levels are defined based on direct and indirect links of
queries to articles. We treat the label with direct and indirect
links as relevant while the others as irrelevant. The dataset
can be downloaded from a public link5. We follow the
settings from the original paper to split all the questions
together with documents into a training set of 80%, a vali-
dation set of 10%, and a test set of 10% respectively.

5.1.2 Evaluation metrics
Given a query qj ∈ Q where Q is a set of queries, we return
the top-K documents to qj according to the relevance score
computed by each model. Let Aqj be the set of relevant
documents in the top-K retrieved results for qj , and Âqj

be the set of human-annotated relevant documents to qj in
the dataset. Similar to [3], we adopt the following evaluation

3. http://www.ncbi.nlm.nih.gov/pubmed/
4. http://www.nutritionfacts.org/
5. http://www.nutritionfacts.org/
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metrics [57]. For each metric, its value is averaged by all the
test queries.
• Precision@K (P@K) is calculated to evaluate the

precision of the retrieved results, which denotes the
ratio of relevant documents in the top-K results, i.e.,

Precision@K =
∑|Q|

j=1

|Aqj
|

K

|Q| .
• Recall@K (R@K) is computed as the ratio of relevant

documents in the top-K results over human-annotated
relevant documents in the dataset, i.e., Recall@K =

1
|Q|

∑|Q|
j=1

|Aqj
|

|Âqj
| .

• MAP is defined as the mean value of average preci-
sion for relevant documents to given queries. MAP =

1
|Q|

∑|Q|
j=1

∑|Aqj
|

i=1
i

rank(di)

|Âqj
| , where rank(di) is the ranking

position of document di.
• NDCG@K (N@K) is the normalized discounted cu-

mulative gain, which measures the quality of the rank-
ing order of retrieved results [57].

5.1.3 Competitors
Our competitors come from two bodies of work: (i) methods
specifically designed for HQA; (ii) we adapt state-of-the-art
general QA methods to the HQA domain.

HAR [3] is a recent neural model proposed for HQA.
It employs a Bi-GRU encoder and a cross-attention layer to
capture the similarity information between query and docu-
ment at word-level. It also uses a hierarchical inner-attention
mechanism over the document words and sentences to find
interaction information for the query.

Neural Models for Text Retrieval – aNMM [16],
CDSSM [13], Arc-I [9], Arc-II [9], DUET [11], MV-LSTM
[14], CONV-KNRM [15] and MatchPyramid [8]. Most of
them are also chosen as the baselines in recent work such as
HQA [3].

DRMMTKS [34], KNRM [35] and PACRR [33] are three
models we choose to adapt by injecting context or knowl-
edge information only, or both of them. We study their
applicabilities to HQA in Section 4.4.

5.1.4 Incorporating context and knowledge
To incorporate the context information into our models, we
pre-train context embeddings. In our experiments, we use
two pre-trained BERT models, BERT (Base, Uncased) [32]
and SciBERT(Uncased) [48]. BERT (Base, Uncased) is trained
on lower-based English texts, while SciBERT (Uncased) is
trained on domain-specific scientific texts. The intuition is
that the domain-specific context embedding may be helpful
for HQA tasks.

To incorporate knowledge into our models, we recognize
all the corresponding entities and pre-train the knowledge
embeddings. Two knowledge graphs are used in our exper-
iments: Wikidata 6 and UMLS 7. Wikidata is open-domain
containing 5,040,986 entities and 24,267,796 fact triples,
while UMLS is domain-specific containing 4,258,810 entities
and 11,882,429 fact triples. After recognizing all the entities
from knowledge graphs, we utilize TransE [53] to learn their
knowledge embeddings.

6. https://www.wikidata.org/
7. https://www.nlm.nih.gov/research/umls/

To evaluate our framework, we implement various mod-
els by incorporating either context or knowledge embed-
dings only, or both of them. We divide the models to be
evaluated (in Tables 2 and 3) into four groups:
• Original models: aNMM, CDSSM, Arc-I, CONV-

KNRM, Arc-II, MatchPyramid, DUET, MV-LSTM,
HAR, DRMMTKS, KNRM, and PACRR.

• Adapted knowledge-embedding models: DRMMTKS-
W, KNRM-W, and PACRR-W.

• Adapted context-embedding models: KNRM-B,
KNRM-BC, DRMMTKS-B, DRMMTKS-BC, PACRR-B,
and PACRR-BC.

• Our CK-HQA (knowledge-enhanced context em-
bedding models): DRMMTKS-BC-W, DRMMTKS-BC-
U, DRMMTKS-SC-W, DRMMTKS-SC-U, KNRM-BC-W,
KNRM-BC-U, KNRM-SC-W, KNRM-SC-U, PACRR-BC-
W, PACRR-BC-U, PACRR-SC-W, and PACRR-SC-U.

In our model names, B refers to context embedding using
BERT, and BC further takes [CLS] token representation into
consideration when employing BERT. SC refers to domain-
specific context embedding using SciBERT [48]. W denotes
knowledge embedding from an open-domain KG named
Wikidata; while U denotes that from domain-specific KG
named UMLS.

5.1.5 Parameter settings

All methods are trained using Adam optimizer [58], with
an initial learning rate of 0.001. The BERT layers are trained
with a rate of 2e−5. All the methods are trained for 100
epochs, each with 32 batches of 16 training pairs following
[12]. For HealthQA dataset, we set the maximum number of
tokens in each query to 15 and in each document to 300 by
following the previous work [3]. For the NFCorpus dataset,
the maximum number of tokens is set to 10 in queries and
400 in documents.

We implement all competitors in Keras, with TensorFlow
as the backend. The parameters are set the same as those
used in [3]. For adapted models, the parameters are set the
same as our implemented models in the CK-HQA frame-
work for fair consideration to evaluate the impact of context
embedding, knowledge embedding, and our knowledge-
enhanced context embedding. We have implemented an
interaction system [28] to help users design and evaluate
HQA neutral ranking models for their future applications.

5.2 Experimental Results

The results on HealthQA and NFCorpus are summarized
in Table 2 and Table 3. Researchers can reproduce the
results following the source codes at https://github.com/
emmali808/HQADeepHelper. For the NFCorpus dataset,
some questions have no relevant documents, hence the
metric Recall@K is not included. All the models labeled
with CK can be considered as one of our CK-HQA based
models. There are four parts in each table: in the first
part we compare our CK-HQA models with state-of-the-
art competitors; from the second to fourth part, we further
study the effect of different embedding variants. Among our
CK-HQA models, we explore the domain-specific context
and knowledge graph.
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TABLE 2: Ranking performance on HealthQA. In the Cat column (i.e., Category), F denotes original models, C denotes
adapted models with context embedding, K denotes adapted models with knowledge embedding, CK denotes jointed
models with context and knowledge embeddings together. The number in the parenthesis indicates the improvements
compared with the first model in each line. The best results are indicated in bold.

Cat Model MAP
P@K Recall@k NDCG@k

P@3 P@5 R@3 R@5 N@3 N@5

F

ARC-I [9] 30.62 10.49 10.19 31.48 50.97 22.88 30.85
CDSSM [13] 53.25 (73.9%) 22.08 (110.4%) 16.74 (64.2%) 66.23 (110.4%) 83.69 (64.2%) 51.9 (126.9%) 59.09 (91.5%)
ARC-II [9] 59.55 (94.5%) 24.37 (132.2%) 17.65 (73.2%) 73.1 (132.2%) 88.27 (73.2%) 59.23 (158.9%) 65.5 (112.3%)
MV-LSTM [14] 64.85 (111.8%) 30.92 (194.7%) 19.59 (92.2%) 92.77 (194.7%) 97.97 (92.2%) 80.32 (251.1%) 82.5 (167.4%)
MatchPyramid [8] 72.24 (135.9%) 29.25 (178.7%) 19.58 (92%) 87.74 (178.7%) 97.88 (92%) 74.06 (223.8%) 78.35 (154%)
aNMM [16] 75.45 (146.4%) 30.28 (188.5%) 19.68 (93.1%) 90.83 (188.5%) 98.41 (93.1%) 77.87 (240.4%) 81.07 (162.8%)
DUET [11] 76.02 (148.3%) 30.1 (186.8%) 19.38 (90.1%) 90.3 (186.8%) 96.91 (90.1%) 78.22 (241.9%) 80.95 (162.4%)
HAR [3] 86.2 (181.5%) 31.72 (202.2%) 19.75 (93.8%) 95.15 (202.2%) 98.77 (93.8%) 87.74 (283.5%) 89.25 (189.3%)
CONV-KNRM [15] 86.94 (183.9%) 32.33 (208.1%) 19.89 (95.2%) 97 (208.1%) 99.47 (95.2%) 89.03 (289.2%) 90.07 (192%)

F PACRR [54] 71.6 28.81 19.17 86.42 95.86 73.36 77.30
K PACRR-W 80.85 (12.9%) 31.16 (8.2%) 19.63 (2.4%) 93.47 (8.2%) 98.15 (2.4%) 83.09 (13.3%) 85.05 (10%)

C
PACRR-B 91.4 (27.7%) 32.63 (13.3%) 19.89 (3.8%) 97.88 (13.3%) 99.47 (3.8%) 92.74 (26.4%) 93.41 (20.8%)
PACRR-BC 91.58 (27.9%) 32.66 (13.4%) 19.88 (3.7%) 97.97 (13.4%) 99.38 (3.7%) 92.92 (26.7%) 93.51 (21%)

CK

PACRR-BC-W 91.68 (28%) 32.83 (14%) 19.91 (3.9%) 98.5 (14%) 99.56 (3.9%) 93.22 (27.1%) 93.66 (21.2%)
PACRR-BC-U 92.56 (29.3%) 32.77 (13.7%) 19.96 (4.1%) 98.32 (13.8%) 99.82 (4.1%) 93.76 (27.8%) 94.4 (22.1%)
PACRR-SC-W 92.93 (29.8%) 33.07 (14.8%) 19.98 (4.2%) 99.21 (14.8%) 99.91 (4.2%) 94.41 (28.7%) 94.72 (22.5%)
PACRR-SC-U 94.11 (31.4%) 33.13 (15%) 20 (4.3%) 99.38 (15%) 100 (4.3%) 95.36 (30%) 95.62 (23.7%)

F KNRM [35] 75.29 29.63 19.37 88.89 96.83 77.05 80.36
K KNRM-W 80.42 (6.8%) 31.28 (5.6%) 19.84 (2.5%) 93.83 (5.6%) 99.21 (2.5%) 82.81 (7.5%) 85.08 (5.9%)

C
KNRM-B 87.17 (15.8%) 31.95 (7.8%) 19.82 (2.3%) 95.86 (7.8%) 99.12 (2.4%) 88.73 (15.2%) 90.11 (12.1%)
KNRM-BC 91.43 (21.4%) 32.69 (10.3%) 19.96 (3.1%) 98.06 (10.3%) 99.82 (3.1%) 92.81 (20.5%) 93.55 (16.4%)

CK

KNRM-BC-U 89.15 (18.4%) 33.1 (11.7%) 19.93 (2.9%) 99.29 (11.7%) 99.91 (3.2%) 95.47 (23.9%) 95.73 (19.1%)
KNRM-SC-U 92.61 (23%) 32.98 (11.3%) 20 (3.3%) 98.94 (11.3%) 100 (3.3%) 94.07 (22.1%) 94.51 (17.6%)
KNRM-BC-W 92.72 (23.2%) 32.92 (11.1%) 19.91 (2.8%) 98.77 (11.1%) 99.56 (2.8%) 94.11 (22.1%) 94.44 (17.5%)
KNRM-SC-W 93.14 (23.7%) 33.1 (11.7%) 20 (3.3%) 99.29 (11.7%) 100 (3.3%) 94.61 (22.8%) 94.9 (18.1%)

F DRMMTKS [34] 76.76 30.10 19.65 90.30 98.24 78.68 82.01
K DRMMTKS-W 77.62 (1.1%) 30.19 (0.3%) 19.51 (-0.7%) 90.56 (0.3%) 97.53 (-0.7%) 79.44 (1%) 82.37 (0.4%)

C
DRMMTKS-B 92.14 (20%) 32.86 (9.2%) 19.93 (1.4%) 98.59 (9.2%) 99.65 (1.4%) 93.57 (18.9%) 94.02 (14.6%)
DRMMTKS-BC 94.21 (22.7%) 33.1 (10%) 20 (1.8%) 99.29 (10%) 100 (1.8%) 95.4 (21.3%) 95.69 (16.7%)

CK

DRMMTKS-SC-U 94.11 (22.6%) 33.13 (10.1%) 20 (1.8%) 99.38 (10.1%) 100 (1.8%) 95.36 (21.2%) 95.62 (16.6%)
DRMMTKS-BC-U 94.13 (22.6%) 33.1 (10%) 19.98 (1.7%) 99.29 (10%) 99.91 (1.7%) 95.35 (21.2%) 95.61 (16.6%)
DRMMTKS-SC-W 94.25 (22.8%) 33.19 (10.3%) 20 (1.8%) 99.56 (10.3%) 100 (1.8%) 95.54 (21.4%) 95.73 (16.7%)
DRMMTKS-BC-W 94.3 (22.9%) 33.1 (10%) 19.98 (1.7%) 99.29 (10%) 99.91 (1.7%) 95.47 (21.3%) 95.73 (16.7%)

5.2.1 Our CK-HQA vs. competitors

We have the following observations. (1) Among the com-
petitors, CONV-KNRM and aNMM perform the best on
HealthQA and NFCorpus respectively. (2) Our CK-HQA can
substantially outperform all competitors on all metrics. For
example on the HealthQA, the best MAP result of CK-HQA
is 94.30% (i.e., DRMMTKS-BC-W), beating CONV-KNRM
by 8.5%; on NFCorpus, the best MAP result for CK-HQA
(i.e., DRMMTKS-SC-U) outperforms aNMM by 6.8%. Such
an increase is attributed to the superiority of our CK-HQA
framework over existing models. Using traditional word
embedding such as GloVe, existing models are limited by
the power of language representation and fail to capture
the deep context information. However, our framework can
provide the bi-direction context information and knowl-
edge, which are crucial for HQA. Other observations are
as follows:

• ARC-I and CDSSM do not work well for the HQA
task. This is because they generate the representation
of query and document separately and simply compute
the relevance score using feedforward network or co-
sine similarity. Although the representation provides
the semantic information for query and document, it
fails to capture the important matching information
between query and document.

• ARC-II has low performance, probably because it com-
putes similarity matrix in an early stage. Therefore, it
only captures the matching information at word-level
but loses the structural information such as phrases and
sentences.

• CONV-KNRM and aNMM outperform other baselines
for both capturing fine-grained matching information
based on the matching matrix, using kernel-pooling
layer or value-shared weighting schema. With more
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TABLE 3: Ranking performance on NFCorpus. The number in the parenthesis indicates the improvements compared with
the first model in each line. The best results are indicated in bold.

Cat Model MAP
P@K NDCG@K

P@1 P@3 P@5 N@1 N@3 N@5

F

ARC-I [9] 15.69 13 10.22 9.29 13 13.16 14.37
ARC-II [9] 15.98 (1.8%) 13.93 (7.1%) 11.15 (9.1%) 9.54 (2.7%) 13.93 (7.1%) 14.24 (8.2%) 14.96 (4.1%)
DUET [11] 16.27 (3.7%) 12.38 (-4.8%) 10.11 (-1%) 10.09 (8.7%) 12.38 (-4.8%) 13.14 (-0.2%) 14.89 (3.6%)
CDSSM [13] 17.06 (8.7%) 15.79 (21.4%) 11.87 (16.2%) 10.03 (8%) 15.79 (21.4%) 15.33 (16.5%) 15.92 (10.8%)
MV-LSTM [14] 17.57 (12%) 15.17 (16.7%) 11.35 (11.1%) 10.22 (10%) 15.17 (16.7%) 15.41 (17.1%) 16.54 (15.1%)
HAR [3] 19.76 (25.9%) 17.03 (31%) 13.31 (30.3%) 11.58 (24.7%) 17.03 (31%) 18.08 (37.4%) 19.17 (33.4%)
CONV-KNRM [15] 21.93 (39.8%) 21.98 (69%) 16.41 (60.6%) 13.31 (43.3%) 21.98 (69%) 21.79 (65.6%) 22.07 (53.6%)
MatchPyramid [8] 22.02 (40.3%) 21.67 (66.7%) 17.23 (68.7%) 14.30 (54%) 21.67 (66.7%) 22.24 (69%) 22.76 (58.4%)
aNMM [16] 23.5 (49.8%) 24.15 (85.7%) 17.96 (75.8%) 14.74 (58.7%) 24.15 (85.7%) 24.16 (83.6%) 24.43 (70%)

F PACRR [54] 22.05 22.6 17.03 13.93 22.6 22.57 22.93
K PACRR-W 22.22 (0.8%) 21.36 (-5.5%) 16.2 (-4.9%) 13.44 (-3.5%) 21.36 (-5.5%) 22.12 (-2%) 22.76 (-0.7%)

C
PACRR-B 23.48 (6.5%) 23.53 (4.1%) 18.16 (6.6%) 15.05 (8%) 23.53 (4.1%) 24.09 (6.7%) 24.62 (7.4%)
PACRR-BC 23.81 (8%) 23.84 (5.5%) 18.06 (6%) 15.29 (9.8%) 23.84 (5.5%) 24.16 (7%) 24.86 (8.4%)

CK

PACRR-SC-W 23.56 (6.8%) 22.29 (-1.4%) 18.06 (6%) 14.98 (7.5%) 22.29 (-1.4%) 23.52 (4.2%) 24.23 (5.7%)
PACRR-BC-W 23.77 (7.8%) 25.39 (12.3%) 17.85 (4.8%) 14.55 (4.5%) 25.39 (12.3%) 24.21 (7.3%) 24.57 (7.2%)
PACRR-BC-U 23.98 (8.8%) 24.46 (8.2%) 18.68 (9.7%) 14.98 (7.5%) 24.46 (8.2%) 24.68 (9.3%) 24.9 (8.6%)
PACRR-SC-U 24.67 (11.9%) 24.77 (9.6%) 18.78 (10.3%) 15.17 (8.9%) 24.77 (9.6%) 24.99 (10.7%) 25.32 (10.4%)

F KNRM [35] 20.64 20.43 15.38 13.25 20.43 20.42 21.43
K KNRM-W 22.4 (8.5%) 23.22 (13.6%) 16.82 (9.4%) 13.31 (0.4%) 23.22 (13.6%) 22.9 (12.1%) 22.79 (6.3%)

C
KNRM-B 23.7 (14.8%) 25.08 (22.7%) 17.85 (16.1%) 14.67 (10.7%) 25.08 (22.7%) 24.23 (18.6%) 24.57 (14.6%)
KNRM-BC 23.9 (15.8%) 24.15 (18.2%) 18.16 (18.1%) 15.05 (13.6%) 24.15 (18.2%) 24.47 (19.8%) 24.86 (16%)

CK

KNRM-BC-W 23.42 (13.4%) 24.15 (18.2%) 17.23 (12.1%) 14.37 (8.4%) 24.15 (18.2%) 23.32 (14.2%) 24.09 (12.4%)
KNRM-SC-W 24.35 (17.9%) 24.15 (18.2%) 17.75 (15.4%) 14.43 (8.9%) 24.15 (18.2%) 24.14 (18.2%) 24.58 (14.7%)
KNRM-BC-U 24.49 (18.6%) 26.01 (27.3%) 18.47 (20.1%) 14.8 (11.7%) 26.01 (27.3%) 25.16 (23.2%) 25.25 (17.8%)
KNRM-SC-U 24.78 (20%) 25.39 (24.3%) 18.27 (18.8%) 15.29 (15.4%) 25.39 (24.3%) 24.69 (20.9%) 25.37 (18.4%)

F DRMMTKS [34] 23.59 24.46 17.96 14.55 24.46 24.19 24.6
K DRMMTKS-W 21.74 (-7.9%) 21.67 (-11.4%) 16.31 (-9.2%) 13.13 (-9.8%) 21.67 (-11.4%) 21.91 (-9.4%) 22.13 (-10%)

C
DRMMTKS-B 23.82 (1%) 24.77 (1.3%) 18.27 (1.7%) 14.55 (0%) 24.77 (1.3%) 24.3 (0.5%) 24.65 (0.2%)
DRMMTKS-BC 24.34 (3.2%) 24.46 (0%) 18.58 (3.5%) 15.36 (5.6%) 24.46 (0%) 24.97 (3.2%) 25.42 (3.3%)

CK

DRMMTKS-BC-U 23.96 (1.6%) 24.46 (0%) 18.47 (2.9%) 15.54 (6.8%) 24.46 (0%) 24.42 (1%) 25.3 (2.8%)
DRMMTKS-BC-W 24.59 (4.2%) 25.7 (5.1%) 18.68 (4%) 14.98 (2.9%) 25.7 (5.1%) 24.91 (3%) 25.18 (2.4%)
DRMMTKS-SC-W 24.65 (4.5%) 24.46 (0%) 18.78 (4.6%) 15.42 (6%) 24.46 (0%) 24.77 (2.4%) 25.39 (3.2%)
DRMMTKS-SC-U 25.1 (6.4%) 26.01 (6.3%) 18.47 (2.9%) 15.36 (5.6%) 26.01 (6.3%) 24.9 (3%) 25.62 (4.1%)

fine-grained matching info, the relevance score could
be more precise.

5.2.2 Effect of embedding variants
To demonstrate the efficacy of our CK-HQA framework, we
compare the following three embedding variants: context
embedding (the adapted models affixed by “-B” and “-
BC”), knowledge embedding (the adapted models affixed
by “-W”), and knowledge-enhanced context embedding (the
models affixed by “-BC-W”, “-SC-W”, “-BC-U” and “-SC-
U”) that incorporate both context and knowledge embed-
dings. We observe that:
• With knowledge embedding, all adapted models

achieve better performance on HealthQA. For instance,
the increase of NDCG@3 can be up to 13.3%. On NF-
Corpus, some unexpected results happened on PACRR-
W and DRMMTKS-W. This is caused by queries that
are very short without mapping entities in KGs. No

external knowledge can be captured for these queries.
While for long documents, external knowledge is cap-
tured, which results in more noises are introduced for
each query word. This is harmful to PACRR and DR-
MMTKS, which capture the strongest matching signals
with query dimension and are less adaptable to noises.

• The context embedding significantly boosts the per-
formance. For instance, P@3 increases by 13.3% for
PACRR-B on HealthQA and 16.1% for KNRM-B on
NFCorpus.

• With context embedding, we achieve better perfor-
mance by adding the [CLS] token. The P@3 of KNRM-
B increases from 31.95% to 32.69% for KNRM-BC on
HealthQA and from 17.85% to 18.16% on NFCorpus.

• When both context and knowledge embeddings are in-
corporated, the performance has a significant increase.
For example, the MAP result of PACRR-BC-U increases
by 29.3% on HealthQA, more compared with PACRR-
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BC (i.e., 27.9%) and PACRR-W (i.e., 12.9%). This find-
ing confirms the efficacy of our joint model, which
incorporates context embeddings with knowledge em-
beddings.

• The models with the context embedding perform much
better than the models with knowledge embedding. For
example, the MAP of PACRR-W increases by 12.9%,
while 27.9% of PACRR-BC on HealthQA.

5.2.3 Effect of domain-specific context and knowledge
To analyze the effect of domain-specific knowledge graphs,
we follow Section 5.1.4 and choose domain-specific SciBERT
along with BERT as the context language representation
models and the medical knowledge graph UMLS and open-
domain knowledge graph Wikidata in the knowledge rep-
resentation models. The results are reported as the CK
category in Tables 2 and 3. In most cases, SciBERT+UMLS
outperforms other associations (i.e., PACRR-SC-U, KNRM-
SC-U, DRMMTKS-SC-U in NFCorpus and PACRR-SC-U in
HealthQA). The result is unsurprising as SciBERT provides
the bio-medical context information, while UMLS further
introduces the medical knowledge beyond the context.
This shows that the combination of domain-specific context
language representation and domain-specific knowledge
representation does contribute to HQA. However, simply
using the domain-specific context language representation
or domain-specific knowledge representation does not al-
ways perform better. It could be attributed to the context
or knowledge information. Sometimes the knowledge in-
formation may contribute more, therefore the introduction
of domain-specific context information seems to have less
effect and vice versa.

5.2.4 Effect of the Question Length on NFCorpus
To investigate the poor performance on NFCorpus, we
study the performance w.r.t. question lengths over NF-
Corpus. Figure 5 presents the results on three evaluation
metrics ofMAP ,NDCG@3 and Precision@3. We evaluate
the performance by comparing DRMMTKS, DRMMTKS-W,
DRMMTKS-BC and DRMMTKS-BC-W. From the results, we
observe that there is a strong gap for different question
lengths. All the models perform poorly for single-word
questions, but incur a significant improvement when ques-
tion lengths become longer. For instance, the MAP result
is far less than 10% for single-word questions, but more
than 50% for questions which contain more than 5 words.
This is because the shorter questions fail to provide enough
information for retrieving relevant answers, while for longer
questions more context and knowledge information can
be utilized. However, a high proportion of questions in
NFCorpus only contains one single word, which leads to
the poor performance in Table 3.

5.3 Efficiency
Table 4 shows the time cost and MAP result based on
DRMMTKS ranking architecture with different embeddings.
The training time is the time cost of model training and the
query time is the time for answering a query. We choose
DRMMTKS as the baseline and compare it with other mod-
els both on time cost and MAP performance. Incorporated

with both the context embedding and knowledge embed-
ding, DRMMTKS-BC-W, DRMMTKS-BC-U, DRMMTKS-
SC-W, and DRMMTKS-SC-U achieve the best performance,
at the expense of off-line training and query time. For
instance, the MAP result increases by 22% with almost 20
times training time cost and 40 times query time cost on
HQA. We also find that the context embedding takes much
more time than the knowledge embedding. For example, the
training time is only 4 times with knowledge embedding
while 16 times with context embedding on HealthQA. This
is because pre-training deep context embedding is more
complex. However, context embedding is more powerful
than knowledge embedding. In HealthQA, the MAP re-
sult gets 20.04% absolute rise with context embedding in
DRMMTKS-B while gets 1.13% improvement with knowl-
edge embedding in DRMMTKS-W.

5.4 Case Study
DRMMTKS provides an intuitive way to inspect the soft-
alignment between the question and answers by visualizing
the attention weight. The attention weight comes from the
interaction matrix in DRMMTKS [34]. We finally visualize
the attention weight with a relevant question-answer pair
from HealthQA in Figure 6. The depth of colors indicates
the relevance degree of token pair. The darker the color is,
the more relevant the token pair is.

We summarize the observations as below. First, DR-
MMTKS performs the worst among the four models and
fails to highlight relevant token pairs. Second, by incor-
porating the knowledge embedding, DRMMTKS-W can
find the relatedness between word “cancer” and “cancer-
ous” that DRMMTKS ignores. Third, by incorporating the
context embedding, DRMMTKS-BC highlights more token
pairs and shows a stronger relevance between the ques-
tion and answer. Finally, the relevant token pairs found
in Figure 6(d) are fewer than those in Figure 6(c). This
is because DRMMTKS-BC-W pays much attention to the
relevant token pairs which have a strong correlation in KG.
For example, “bone cancer” is highly connected to “mali
##gant” (tokens for “malignant”) and “tu ##mour” (tokens
for “tumour”) in KG, while the token sequences such as
“what causes” and “starts from” seem to have no external
knowledge information in KG.

5.5 Qualitative Results
Figure 7 shows an example of a question and the re-
trieved top-3 answers, respectively returned by DRMMTKS,
DRMMTKS-W, DRMMTKS-BC and DRMMTKS-BC-W. The
results show the impact of knowledge embedding, context
embedding, and our knowledge-enhanced context embed-
ding. We observe that except for DRMMTKS, other three
methods DRMMTKS-W, DRMMTKS-BC, and DRMMTKS-
BC-W all return relevant answers to the question (The
test question has only one relevant answer in the human-
annotated dataset). DRMMTKS-BC and DRMMTKS-BC-W
both rank the correct answer as the most relevant (i.e., TOP-
1), while DRMMTKS-W ranks the correct answer as the
third relevant answer in the top-3 results. This is caused
by the non-factoid nature of the test question. DRMMTKS
simply utilizes traditional features, hence it may focus more
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Fig. 5: Performance by question length on the NFCorpus dataset

TABLE 4: Time cost and evaluation results on DRMMTKS ranking model with different embeddings. The TT (training
time) is measured in minutes and the QT (query time) is measured in milliseconds. For MAP, the number in the parenthesis
indicates the improvements compared with DRMMTKS.

Cat Model HQA NFCorpus
TT QT MAP TT QT MAP

F DRMMTKS 6.38 0.48 76.76 6.60 0.48 23.59
K DRMMTKS-W 25.4 3.02 77.62 (1.13%) 25.14 2.14 21.74 (-7.85%)

C DRMMTKS-B 107.86 16.46 92.14 (20.04%) 108.88 21.52 23.82 (0.96%)
DRMMTKS-BC 98.92 16.51 94.21 (22.74%) 98.48 16.55 24.34 (3.17%)

CK

DRMMTKS-BC-W 129.99 19.42 94.3 (22.86%) 116.83 19.49 24.59 (4.23%)
DRMMTKS-BC-U 122.98 19.84 94.13 (22.64%) 117.44 19.65 23.96 (1.56%)
DRMMTKS-SC-W 125.64 24.81 94.25 (22.79%) 125.81 19.70 24.65 (4.48%)
DRMMTKS-SC-U 116.89 19.47 94.11 (22.61%) 124.11 19.65 25.10 (6.39%)

on the keywords in the query and fail to discriminate
similar answers whose topic is related to the keywords.
With knowledge embedding, DRMMTKS-W can incorpo-
rate external knowledge to capture the relevant information
between the question and answers, which can help under-
stand the non-factoid question. With context embedding,
DRMMTKS-BC and DRMMTKS-BC-W utilize the deep con-
text information to capture the matching information be-
tween the question and answers, which is crucial for HQA.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we comprehensively studied state-of-the-art
neural network models and their applicability to HQA.
Then we proposed a new neural ranking framework with
a joint model, which combines context and knowledge
embeddings into existing neural ranking architectures for
HQA. The experimental results show that our joint model
achieves the best performance against state-of-the-art HQA
systems. We also provide new insights about domain-
specific context and knowledge implementation in our
framework and the trade-off between performance and time
cost. Researchers can select appropriate models for various
HQA scenarios based on our findings.

We summarize several HQA model design guidelines
for future research: (I) interaction feature extraction between
the query and answer can help improve the performance
for long documents, but degrade the performance for short
questions; (II) incorporating external knowledge into exist-
ing neural networks can enhance the HQA performance,

but domain-specific KGs does not always boost the perfor-
mance compared against open-domain KGs; (III) significant
performance gains can be achieved by incorporating context
embedding with existing neural networks; (IV) the joint
model that combines knowledge and context embeddings
can further boost the performance of existing models.
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,

Question How common is Henoch-Schönlein Purpura

Answers DRMMTKS DRMMTKS-W DRMMTKS-BC DRMMTKS-BC-W
TOP-1 Henoch-Schönlein purpura

(HSP) is an immune-mediated
condition. This means that
it develops because of an
abnormal reaction of the
body’s defence (immune)
system. It is not clear exactly
what causes this reaction but
it is thought that something
acts as a trigger for HSP. For
example, the trigger may be a
particular infection or certain
medicines, such as certain
antibiotics.

Someone with Henoch-
Schönlein purpura (HSP)
will often have had an upper
respiratory tract infection
within the few weeks before
they develop the condition.
So, for example, they may
have had a cough, runny nose,
and high temperature (fever)
and have been feeling tired.

HSP is not very common. Be-
tween 8 and 20 in 100,000 peo-
ple will develop HSP each year.
HSP mostly a�ects children,
especially children under the
age of 10 years. But HSP can
also a�ect older children and
adults. It is more common in
boys than in girls. Children
under the age of 2 years tend
to develop milder symptoms.
Adults with HSP tend to de-
velop more severe symptoms
and are more likely to develop
complications.

HSP is not very common. Be-
tween 8 and 20 in 100,000 peo-
ple will develop HSP each year.
HSP mostly a�ects children,
especially children under the
age of 10 years. But HSP can
also a�ect older children and
adults. It is more common in
boys than in girls. Children
under the age of 2 years tend
to develop milder symptoms.
Adults with HSP tend to de-
velop more severe symptoms
and are more likely to develop
complications.

TOP-2 Someone with Henoch-
Schönlein purpura (HSP)
will often have had an upper
respiratory tract infection
within the few weeks before
they develop the condition.
So, for example, they may
have had a cough, runny nose,
and high temperature (fever)
and have been feeling tired.

enoch-Schönlein purpura
(HSP) is an immune-mediated
condition. This means that
it develops because of an
abnormal reaction of the
body’s defence (immune)
system. It is not clear exactly
what causes this reaction but
it is thought that something
acts as a trigger for HSP. For
example, the trigger may be a
particular infection or certain
medicines, such as certain
antibiotics.

Norovirus is the most com-
mon virus causing infection
of the gut (gastroenteritis) in
adults in the UK. However,
norovirus infection can occur
in anyone of any age. You can
get norovirus infection more
than once because your body
is not able to maintain immu-
nity to norovirus infection for
a long time once you have had
it.

Norovirus is the most com-
mon virus causing infection
of the gut (gastroenteritis) in
adults in the UK. However,
norovirus infection can occur
in anyone of any age. You can
get norovirus infection more
than once because your body
is not able to maintain immu-
nity to norovirus infection for
a long time once you have had
it.

TOP-3 In many people with HSP,
no complications develop.
But, complications sometimes
develop. They can include
the following: Kidney in-
volvement - in around half of
people with HSP, the kidneys
become a�ected. If immune
complexes are deposited in
the kidneys, this can lead to
in�ammation of the kidneys,
known as nephritis. This
complication usually develops
within one month after the
rash starts but can sometimes
develop up to six months
afterwards.

HSP is not very common. Be-
tween 8 and 20 in 100,000 peo-
ple will develop HSP each year.
HSP mostly a�ects children,
especially children under the
age of 10 years. But HSP can
also a�ect older children and
adults. It is more common in
boys than in girls. Children
under the age of 2 years tend
to develop milder symptoms.
Adults with HSP tend to de-
velop more severe symptoms
and are more likely to develop
complications.

Henoch-Schönlein purpura
(HSP) is an immune-mediated
condition. This means that
it develops because of an
abnormal reaction of the
body’s defence (immune)
system. It is not clear exactly
what causes this reaction but
it is thought that something
acts as a trigger for HSP. For
example, the trigger may be a
particular infection or certain
medicines, such as certain
antibiotics.

Someone with Henoch-
Schönlein purpura (HSP)
will often have had an upper
respiratory tract infection
within the few weeks before
they develop the condition.
So, for example, they may
have had a cough, runny nose,
and high temperature (fever)
and have been feeling tired.

Fig. 7: An example of a question and its top-3 results. The correct answers are colored in red.
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