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Abstract—In this modern era, traffic congestion has become a major source of severe negative economic and environmental impact
for urban areas worldwide. One of the most efficient ways to mitigate traffic congestion is through future traffic prediction. The research
field of traffic prediction has evolved greatly ever since its inception in the late 70s. Earlier studies mainly use classical statistical
models such as ARIMA and its variants. Recently, researchers have started to focus on machine learning models because of their
power and flexibility. As theoretical and technological advances emerge, we enter the era of deep neural network, which gained
popularity due to its sheer prediction power which can be attributed to the complex and deep structure.
Despite the popularity of deep neural network models in the field of traffic prediction, literature surveys of such methods are rare. In this
work, we present an up-to-date survey of deep neural network for traffic prediction. We will provide a detailed explanation of popular
deep neural network architectures commonly used in the traffic flow prediction literatures, categorize and describe the literatures
themselves, present an overview of the commonalities and differences among different works, and finally provide a discussion
regarding the challenges and future directions for this field.

Index Terms—Deep Neural Network, Deep Learning, Traffic Flow Prediction, Traffic Prediction, Road Network.
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1 INTRODUCTION

Traffic congestion is a major problem faced by metropoli-
tan cities. In 2015, it is estimated that the avoidable cost
of traffic congestion for Australian capital cities is approx-
imately $16.5 billion, up from the 2010 estimate of $12.8
billion. Furthermore, this value is estimated to increase to
about $30 billion by 2030 [1]. Most congestion mitigation
measures are costly, difficult to implement, or both. For
instance, Singapore implemented regulations on the number
of vehicles on roads [2], which is infeasible for countries
with poor public transportation systems. Constructing new
roads to ease congestion is also difficult due to the extremely
high cost. As an example, the estimated per mile cost of a
standard one lane road in New Jersey, USA is $220,490 [3].

With the advancements and widespread adoption of
traffic sensors, access to large traffic databases is now avail-
able. This has led to the development of traffic prediction
as a research field. Educated traffic decision made through
accurate prediction is a far cheaper and easier to implement
alternative for reducing road congestion. Future traffic pre-
diction involves creating a prediction model from historical
traffic data to predict the short-term future traffic state rang-
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ing from 5 to 60 minutes into the future. Traffic prediction
is different from conventional time-series analysis in that
traffic prediction is subject to spatial as well as many other
external factors. For instance, the prediction of traffic at
one site depends on the traffic at other sites and all of the
sites are affected by external factors such as weather and
holidays.

Amongst all the available traffic prediction methods,
deep neural network is the most prominent. This is due
to its sheer predictive power that can model the com-
plex and nonlinear traffic patterns [4][5][6][7][8]. The three
most common deep neural network models used for traffic
prediction are Convolutional Neural Networks, Recurrent
Neural Networks, and Feedforward Neural Networks. The
increasing popularity of deep neural network models for
traffic prediction has led to numerous publications, but is-
sues such as the wide variety of hybrid deep neural network
structures have made it difficult to assess the current state
and future directions of this research field. This problem
is compounded by the fact that survey works focusing
specifically on deep neural network models are rare.

In this work, we attempt to address these issues by pre-
senting a comprehensive overview of the area. The main au-
dience for our paper are practitioners interested in applying
deep neural networks to the problem of traffic prediction.
As such, we have organized our paper accordingly. We will
first outline the problem definition and a short history of
traffic prediction. Then, we will describe the three most
popular deep neural network models used in traffic predic-
tion research. Afterwards, we will discuss traffic prediction
by listing out, categorizing and discussing 37 state-of-the-
art deep neural network for traffic prediction literatures
based on the dataset and the model. These literatures mainly
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cover work from the transportation research field such as
the Transportation Research Part C journal, but we also
cover several publications from the neural network and
knowledge management field. All of the covered literatures
are from the years 2014 to 2019. Finally, we will discuss the
present and future challenges facing this research field. The
insights that readers can extract from this paper are:

• The deficiencies of current traffic prediction survey
work, especially with regards to the models covered.

• The development of the traffic prediction research
field from its beginnings in the 1970s.

• The strengths and weaknesses of the three most
common deep neural network models in traffic pre-
diction.

• The commonly used dataset in traffic prediction
research, the associated parameters and how these
affect the prediction task.

• The different ways current literatures utilize the deep
neural network models for the prediction task.

• The current challenges facing the traffic prediction
task and how these challenges have been solved, or
partially solved, by the introduction of deep neural
network methods.

• The future challenges facing traffic prediction and
how to deal with these challenges.

In Section 2, we first provide an overview and history of
the traffic prediction field. Section 3 describes the workings
of the three main deep neural network models: Convolu-
tional Neural Networks, Recurrent Neural Networks and
Feedforward Neural Networks. Our work is focused on
Section 4, where we categorize and discuss the literature.
We split this section into two: Section 4.1 discusses the
datasets used in the literature, while Section 4.2 discusses
the models. We also provide a short discussion on Section
4.3. Then, in Section 5, we will describe the challenges of
traffic prediction research. Section 5.1 describes the current
challenges of traffic prediction research and how they have
been addressed or partially addressed through the adoption
of deep neural networks. Afterwards, Section 5.2 discusses
the future challenges and how they can be addressed. Fi-
nally, we conclude our work in Section 6.

Comparison to other survey work. One of the most
important literature surveys of this field is the work of
Vlahogianni et al. [9]. Their work mainly discussed the chal-
lenges of traffic prediction, focusing more on the research
field rather than the models. Additionally, the authors cov-
ered the literatures from 2006 to 2013, which do not include
the now ubiquitous deep neural network models. Another
difference is in the model taxonomy; their work categorized
the models based on several criteria such as the type of
model (e.g. statistical, neural network, hybrid model) and
the problem (e.g. time series, function approximation). This
taxonomy is outdated because modern traffic prediction
models are mainly based on deep neural network, which
under their taxonomy will all fall under the neural network
category of model and function approximation category of
problem. Our taxonomy on the other hand, is designed to
provide a more up-to-date categorization of models.

A recent paper by Nagy and Simon [10] is a more
up-to-date survey on traffic prediction. They provided an

overview of the different types of models used for this task.
However, their model taxonomy only has a few points of
comparison, which are: whether or not the model integrates
environmental data, contains spatial property, handles non-
linearity and handles nonstationarity. We perform a more
comprehensive comparison on both the models and the
data, totaling eleven points of comparison. Additionally,
their work does not have a future challenges section that
discusses how the field can be advanced. We provide this
discussion in Section 5.

The work of Zhu et al. [11] provides another up-to-date
survey of the field. However, their work focuses on big
data analytics without much focus on the actual models.
Our work provides a more balanced approach by discussing
both the models and the datasets in Section 4. We also
discuss the field as a whole, through the discussion of future
challenges, in Section 5.

Finally, we would like to express the importance of
comparisons between different hybrid deep neural network
model implementations. Due to the availability of deep neu-
ral network libraries such as Keras [12], PyTorch [13], and
TensorFlow [14], development of complex neural network
models has become much easier. Consequently, the trend
is to use different hybrid models to capture the different
aspects of the data, such as the temporal aspect and the
spatial aspect. Because of this reason, it is very important
to perform a thorough comparison among different hybrid
models that capture different aspects of the data, or even
the same aspects using different ways. To the best of our
knowledge, our work is the first one to attempt such task.

2 BACKGROUND

In this Section, we first describe the problem formulation
of traffic prediction. Then, we briefly outline the history
of traffic prediction and show why deep neural network
became the benchmark category of methods.

Traffic prediction concerns the usage of a learnable
function that takes as input the historical traffic data from
several previous time-steps in order to predict the traffic in
the future. Two main types of traffic data used are traffic
flow and traffic speed. Traffic flow is denoted as the total
number of vehicles detected in a target detection site during
a certain time period. Traffic speed is denoted as the average
traveling speed of vehicles detected in a target detection site
during a certain time period. In this section, we will use the
general term “traffic” to refer to both traffic flow and traffic
speed. The traffic prediction problem can be denoted as:

ŷt+T ′ = f([Xt−T+1, Xt−T , ..., Xt])

The objective is to find the model parameters which
minimize the error between the predicted traffic and the
observed traffic:

θ∗ = argmin
θ∗

L(yt+T ′ , ŷt+T ′ ; θ
∗)

• yt : The observed traffic at time t
• ŷt : The predicted traffic at time t
• T : Input sequence length, i.e., how many time steps

of past traffic data are used as the input.
• T ′ : Prediction horizon, i.e., how many time steps in

the future the prediction is for.
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• f : An arbitrary function that calculates the traffic
prediction based on the input data.

• L : Loss function, which is the function that calculates
the quality of the prediction.

• θ∗ : The optimal set of parameters for the function f

All of f , L, and θ∗ depend on the actual model used. We
will be discussing the different types of prediction models
that have been used for traffic prediction.

The field of traffic prediction has existed for almost five
decades and covers a wide array of methodologies which
can be divided into three main categories. The first category
belongs to the classical statistical models, of which the
Autoregressive Integrated Moving Average (ARIMA) family
of models is the most popular. Ahmed and Cook are the
first researchers to apply ARIMA to traffic prediction [15].
Shortly after, Levin and Tsao [16] applied ARIMA on two
freeway locations and found that the ARIMA(0,1,1) model
is the most statistically significant.

Other authors also applied different versions and im-
provements to ARIMA. Lee and Fambro [17] applied subset
ARIMA and found that it provides stable and accurate
results. Williams [18] discovered the impact of upstream
traffic sensors to downstream ones and applied ARIMAX
model for traffic flow prediction. Williams and A. Hoel
[19] applied Seasonal ARIMA to the United States and the
United Kingdom traffic data. Kamarianakis and Prastacos
[20] discussed and compared the Vector Autoregressive
Moving Average and Single space-time ARIMA model.

Despite the popularity, classical statistical models are rel-
atively weak. This is because they are simple linear models
which assume that the traffic is stationary. Consequently,
they frequently fail when handling the complex, nonlinear
traffic data [6] [21] [22] [8]. Additionally, these models were
proposed at a time where traffic data were simpler and
much smaller in size [23], a condition that no longer holds
true in the present day where the ubiquity of traffic sensors
has caused an explosion in traffic flow data.

Due to the aforementioned deficiencies of classical sta-
tistical models, researchers flocked to machine learning
models. Machine learning models are flexible as they can
learn from the data. That is, the parameters of the prediction
function are adjusted automatically as the model traverses
through the dataset, as opposed to the classical statistical
models in which the function parameters are manually
defined a priori [24]. The main weakness is that machine
learning models are data intensive [25]. However, as previ-
ously mentioned, large traffic flow data are now available.
For more differences between classical statistical models and
machine learning models, we refer readers to the work of
Karlaftis and Vlahogianni [21].

Out of the different machine learning models, neural
network is the most commonly used. The reason behind
its prominence is that many other machine learning models’
feature extraction phase, which helps extract useful patterns
and information from the data to help the prediction, is done
manually (i.e., using manually tuned kernels). On the other
hand, neural networks perform automatic feature extraction
as well as the actual prediction in one model.

One of the first neural network applications in traffic
flow prediction was by Dougherty et al. [26]. Since then,

various improvements to the neural network structure have
been proposed. Vlahogianni et al. [27] proposed a genetic
algorithm approach to optimally tune the network. Zheng
and Lee [28] used multiple neural network predictors which
are combined using the theory of conditional probability
and the Bayes rule. Time delay neural network model was
applied to traffic prediction in 2005 by Zhong et al. [29].
Chan et al. [30] imbued a neural network model with
the hybrid exponential smoothing method to preprocess
training data and the Levenberg-Marquardt algorithm to
train the network weights. Other types of machine learning
models aside from neural network were also used, such as
the k-Nearest Neighbor [31] [32] [33] and the support vector
regression [34] [35] [36].

While machine learning models, and especially neural
network, are more powerful compared to statistical mod-
els, they are very hard to train efficiently. Thus, machine
learning models during the 2000s utilize shallow and simple
structures, limiting their prediction power. However, the
increasing computational power, as well as theoretical and
software improvements in recent times had made increas-
ingly complex neural network models feasible to train.
Thus, in the middle of the 2010s, researchers started to apply
deep neural network models for traffic prediction.

Deep neural networks consist of complex neural net-
work models with a large number of layers. Some examples
are Recurrent Neural Network (RNN), Convolutional Neu-
ral Network (CNN), Feedforward Neural Network (FNN),
and hybrids of these models. Some of the deep neural
network models can explicitly capture different aspects of
traffic data, which made them even more attractive. For
instance, CNN can explicitly capture the spatial aspect of
traffic data while RNN can explicitly capture the temporal
aspect of traffic data. Additionally, the increased number
of layers improves the models’ prediction capability. This
factor allows them to model traffic fluctuations more accu-
rately.

While the strengths of deep neural network models
made them attractive, they also possess several disadvan-
tages compared to the older methods:

• Deep neural network models require a large
amount of data that covers all traffic conditions.
If the amount of data is too small or if the data
is not diverse enough, the model’s generalization
capability is compromised.

• Deep neural network models still take a long time
to train. As deep neural network models are complex
and have a large number of layers, the training time
can be very long. This problem is compounded on
hybrid deep neural network models. As classical
statistical and older machine learning models are not
as complex, their training time is much shorter.

• Deep neural network models are difficult to inter-
pret. This is because of two reasons: the number of
internal parameters is very large, and the parameters
are learned from training, not set manually. Thus,
while they can predict well, it is hard to understand
their parameters. Understanding the parameters may
reveal important information such as the spatiotem-
poral dynamics in the road network.
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Summary. Traffic prediction is a task of training an arbitrary
function to predict future traffic given past traffic data. The
earliest class of models used is the classical statistical mod-
els. Afterwards, machine learning models improve upon the
performance of classical statistical models. Then, the deep
neural network class of models dominates the field due to its
capability in capturing the complex and nonlinear patterns
in traffic data.

3 DEEP NEURAL NETWORK

In the following subsections, we will discuss different core
deep neural network structures, their intuitions and appli-
cations in the context of traffic prediction as preliminaries.

3.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) has the capability to
learn inherent features progressively, starting from low level
features and then building up to more abstract concepts through a
series of convolutional layers. Although this strength contributes
to its popularity in image recognition, CNNs have been regularly
applied to traffic flow prediction. The intuition is, traffic flow
readings can be modeled as an image, where each pixel corresponds
to the traffic intensity at a certain block of area. Thus, similar
techniques developed for image recognition can be easily applied.

A CNN consists of several “convolution” and “pooling”
layers. Convolution’s purpose is to extract features from the input,
whereas pooling’s purpose is to reduce the dimensionality of each
feature map but preserve the most important information. Given a
road network, the input of a CNN is preprocessed by partitioning
the network as a grid, which is essentially a set of cells with each
cell representing an area in the data space and the value associated
with the cell representing the number of vehicles detected in thatR2D1
cell at a certain point in a time period (e.g., 5×5 cells in Figure 1).
The traffic flow reading for each time period will be represented
with the same grid but different number of vehicles. Thus, the
entire traffic data modeled this way can be seen as several images
with the same size but different pixel values.

Applying the convolution and pooling layers results in a
smaller output that represents higher-level latent features. As an
example, in traffic flow prediction, the first few layers may summa-
rize the traffic condition of several city blocks. Further applications
may summarize the traffic of these city blocks into traffic condition
for an entire city district and so on. Mathematically, convolution
layers extract features by computing the dot product between a
matrix of some preset values (referred to as filter) and a subset of
cells from the original grid, which produces a matrix that is called
feature map. The example in Figure 1 shows, (i) the top-left 3× 3
subset of cells produces the value 470, and (ii) the bottom-right
3 × 3 subset of cells produces the value 170 in the feature map.
This can be interpreted as the top-left subset having a much higher
number of vehicles in that region than the bottom-right subset.

Unlike most neural networks, CNN’s layers are not fully
connected. Consequently, the number of parameters and
training time are significantly reduced. Additionally, CNN
uses a weight sharing mechanism, which further reduces the
number of required parameters. Since CNN’s layers are not
fully connected, one layer of CNN does not learn from all of
the previous layer’s features. However, this actually proves
to be an advantage in many applications as CNN can learn

100 50 10 10 50

100 50 10 10 50 0.5 1 0.5 470 170 170

100 50 10 10 50 * 1 3 1  = 470 170 170

100 50 10 10 50 0.5 1 0.5 470 170 170

100 50 10 10 50 Filter

Image

Feature 

map

Fig. 1. An example of a convolution process.

how the different aspects of the input relate to each other
spatially.

In the application of traffic prediction, CNN is often
used as a component in a hybrid deep neural network,
whose task is to capture the spatial aspect of traffic data.
This is because different roads in different locations may
be correlated and these correlated roads share similar traffic
trend. Therefore, the traffic of the correlated roads may rise
or fall, depending on their historical data [37]. For instance,
during the evening, there is a strong correlation between the
road traffic of commercial and residential districts because
employees are heading off from work.

3.2 Recurrent Neural Network and Long Short-Term
Memory

Recurrent Neural Networks (RNN) are commonly applied
to sequence data because of their memorization capability,
which can learn both long and short term dependencies
between parts of the sequence. Additionally, RNN is able
to scale to longer sequences compared to other network
architectures. Its unique capability makes it one of the most
popular deep neural networks.

An RNN consists of a single node with a recurrent
connection, but is often visualized as a chain of nodes, with
each node representing the network state at a particular
recurrence/time step. This visualization can be seen in
Figure 2. The node state st processes the input data xt at time t,
as well as a ‘summary’ of all the information obtained up to time
t − 1. This summary is stored in st−1, and it memorizes which
parts of the sequence are important. Node st then has the summary
up to time t and this information is passed to the next node state
st+1. Thus, the node state st stores the state of nodes for all the R2D1
previous time steps until the beginning of the input (i.e., st−1,
st−2, . . . ). The output ot is then compared with the ground truth
yt in order to calculate the loss, which is used to fine-tune the
model parameters. In traffic prediction applications, the input
to an RNN consists of past traffic readings. A continuous
time period is divided into discrete time blocks and the
traffic flow reading from each block is fed into the RNN.

By its nature of being able to take in possibly very
long sequences, RNN suffers from the vanishing gradient
problem, which hinders the network’s ability to memorize
information for a long time. For this reason, Hochreiter and
Schmidhuber [38] proposed the Long Short-Term Memory
(LSTM), which was further improved in [39].
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Fig. 2. A recurrent neural network
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Fig. 3. Visualization of how information propagates through an LSTM

LSTM also contains multiple layers, each possessing a
cell with the memorization capability. In addition, it con-
tains three gates, which control how information propagates
throughout the network. These gates are the input gate i,
which controls the importance of the inputs xt and ht−1,
forget gate f which controls how much of the previous
information Ct−1 is to be forgotten, and the output gate,
which controls how relevant is the current information Ct
for the next step. As can be seen in Figure 3, it maintains the
RNN’s recurrent structure, but introduces the three gates to
control the cell value.

RNN-based methods in general possess the major ad-
vantage in the form of its memorization capability. The
ability of learning important parts of the sequence and
knowing when to memorize or forget them had led RNN
to be the prime choice for sequence data. Due to this,
RNN based models have been applied in many fields such
as named entity recognition [40], voice recognition [41],
music composition [42], and image caption generation [43].
However, RNN’s recurrent structure leads to significantly
longer training time compared to other deep neural network
models.

In the field of traffic prediction, LSTM as well as other
RNN-based methods are commonly used as a component
in hybrid deep neural network models. Its task is to capture
the temporal patterns of traffic data; learning how traffic
evolves over time.

3.3 Feedforward Neural Network (FNN)

A Feedforward Neural Network (FNN), which is also com-
monly referred to as Fully Connected Neural Network (FC
or FCNN), is one of the earliest and simplest neural net-
work models. It consists of several layers of fully connected
computational nodes organized in many layers. The value

of every node in the hidden or output layers is computed by
taking the weighted sum of all of the previous layer’s nodes
and then passing the value to a nonlinear function such as
sigmoid, tanh and relu.

The FNN’s fully connected structure enables each of
its layers to process the combination of all the previous
layer’s features. However, this also serves as a weakness
because its full connection results in a large amount of
parameters. Consequently, the training process of FNNs can
be quite time consuming. In addition, FNNs do not have the
capability of explicitly capturing spatial or temporal data.
Because of this, FNNs are rarely used as the main predictor
in deep neural network literatures.

For traffic flow prediction, FNNs usually serve a utility
role in a hybrid deep network, whose main purpose
is to perform tasks such as aggregating outputs from
different components within the network, dimensionality
transformation and incorporating external data such as
weather. This is because the size of input layer or output
layer can be set manually, which gives FNN the capability
to transform inputs of an arbitrary dimensionality to an
output of an arbitrary dimensionality. When used to integrate
external data, the input depends on the type of external data.
Numerical values can be provided as it is while categorical values
need to be transformed first (e.g., using one-hot encoding). For
aggregating outputs and dimensionality transformation, the
inputs depend entirely on the model. More details on FNN’s
application in the traffic prediction domain can be found in
Section 4.2.3.

Summary. In this section, we described three popular deep neural
network architectures, their strengths, weaknesses, and applica-
tions. RNN is commonly used to capture the temporal trends of
traffic data–the dynamics of how past traffic can influence future
traffic. CNN is commonly used to capture the spatial trends of
the data–how traffic propagates through the road network. FNN
can aggregate the output from different subnetworks and also
can process external data such as weather information. We will
describe the typical usage of these models in Section 4.2.

4 DEEP NEURAL NETWORK FOR TRAFFIC FLOW
PREDICTION

In this Section, we will describe 37 literatures and the
methodologies used to predict traffic flow. We only consider
recent (2014 to 2019) papers that provide sufficiently novel
improvements and contributions to the field. In the first
subsection, we will discuss the datasets in terms of the
main and secondary datasets, as well as the dataset-related
parameters and how they affect the prediction task. Then, in
the second subsection, we discuss how these different deep
neural network models are used.

4.1 Traffic Flow Prediction – Data

Tables 4 and 5 provide an overview of 37 existing works,
with each column representing a decision that researchers
have to make with regards to traffic flow prediction data.
Do note that when a work uses more than one datasets,
the settings for those datasets may differ. Hence, we use
numbers to denote the different datasets and their settings.

Authorized licensed use limited to: RMIT University Library. Downloaded on February 11,2021 at 22:39:40 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3001195, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

For instance, [61] uses the LA traffic data from Mar 2012 -
Jun 2016, and the Caltrans PEMS data from Jan 2017 to May
2017. Thus, we assign the number 1 to LA traffic data and
number 2 to Caltrans PEMS data, and their corresponding
settings in other applicable columns will be represented
with these numbers as well. In the case of [5], they use two
different datasets, but both have the same parameters, so we
only use the numbers for the “Primary Dataset” column.

Main Dataset. As can be observed from Tables 4 and 5, the
Caltrans data1 is by far the most commonly used dataset.
This is because of its public availability, ease of download,
simple structure and long historical data. The Caltrans data
provides information regarding date, time stamp, traffic
flow per lane, and aggregated traffic flow. Traffic flow is
the most commonly used field, but occupancy and speed
information is also available. The data granularity can be set
to 5 minutes, hourly, daily, weekly and monthly depending
on user requirements.

Numerous authors use data from Beijing. However, it is
unclear as to whether or not all of the Beijing-based datasets
come from one unified dataset source. These datasets usu-
ally cover the Ring Road area, as can be seen in the works
[44][45][46][47] and [48]. The dataset used by Ma et al.
[44] contains the traffic volume, occupancy and speed data,
similar to Caltrans.

Unlike point data that has a dataset being considered
as the standard, the trajectory data used in these traffic
prediction experiments do not have a standard dataset. Dif-
ferent works use different datasets with different properties,
including the origin country (mostly America or China),
method of transportation (cars, taxis or bicycles) and time
range. Amongst these works, trajectory data from Beijing
is relatively more popular. We summarize the top-3 most
popular main datasets in Table 1, which cover 70% of the
literature works we surveyed. Please take note that many
works use more than one main datasets.

TABLE 1
Popular Main Datasets

Main Dataset Data Type Sample References Popularity
Caltrans PEMS Point [5], [49], [50], [51] 14 out of 37
Beijing dataset Point [44], [45], [46] 6 out of 37
Beijing dataset Trajectory [4], [52], [53] 6 out of 37

Secondary Dataset. Secondary dataset is not commonly
used in the literate studies. Among the 37 works we sur-
veyed, only 10 use secondary dataset, as observed from
Tables 4 and 5. We list the top-3 popular secondary datasets
in Table 2. Please take note that multiple secondary datasets
might be used by one work.

According to our observations, the low usage of sec-
ondary dataset is mainly caused by the difficulty of inte-
grating the main data with the secondary data. For instance,
one model that uses the Caltrans data covering a long
highway will need to match the time stamp, the latitude,
and the longitude of each reading in order to find the
appropriate weather and accidents data. This task is very
difficult. Furthermore, there is some added time complexity
of aggregating the different data together, which is undesir-

1. http://pems.dot.ca.gov/

able, especially in an already time-consuming hybrid deep
neural network structure.

Conversely, time-of-day and day-of-week data are much
easier to incorporate. They can be very useful as the in-
clusion of time-of-day data allows the model to learn the
difference between traffic conditions during various periods
within a day while the inclusion of day-of-week data allows
the model to learn the traffic patterns of different days,
which is especially important in distinguishing weekdays
and weekends traffic. These features are used by Yu et al.
[54], and their experiments show that the inclusion of these
factors improves the prediction performance.

TABLE 2
Popular Secondary Datasets

Secondary Dataset Sample References Popularity
Weather [46], [51], [55] 6 out of 37
Time of day/day of week [54], [55] 3 out of 37
Road network [7], [56] 3 out of 37

Data Time Range. One major deficiency we have observed
in the field of deep neural network for traffic flow prediction
is the insufficient data time range. 26 out of 37 literatures
in Tables 4 and 5 use less than one year’s worth of data.
This deficiency will have an adverse impact on sub-tropical
regions, as seasonal changes may affect temperature and
weather, which in turn can affect traffic. By using data from
only one or several months, the model cannot generalize
to different seasons. This can be mitigated by incorporating
weather data, but as mentioned before, this is a difficult and
time-consuming task.

Some authors also use data from only a certain range of
hours or use data from weekdays only. This will also cause
problems as the model cannot generalize well to situations
outside the boundaries of the provided data. For instance,
using traffic data from 07.00 AM to 11.00 PM only may
reduce the model’s performance on the excluded hours,
and using only weekdays data may adversely impact the
model’s performance when predicting weekend traffic. In
table 3, we summarize the data time ranges from the chosen
literatures.

TABLE 3
Data Time Ranges

Data Time Range Sample References Popularity
One month [44], [52] 5 out of 37
Several months [49], [51] 22 out of 37
One year [5], [57] 6 out of 7
More than one year [6], [53] 4 out of 37

Deep neural network models are flexible and can adapt
well to data. Consequently, using vastly different datasets
may result in an entirely different model. Thereby, for a
model to be applicable to real application scenarios, it is
important to use a dataset that closely resembles those
scenarios.
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Reference Authors Year Primary
Datatype

Primary
Dataset

Data Time
Range

Data
Granularity

Secondary
Dataset

Input Sequence
Length

Prediction
Horizon

[5] Huang et al. 2014 Point 1) Caltrans PEMS
2) China highways 2011 15 minutes None 60 minutes 15 minutes

[49] Yisheng et al. 2015 Point Caltrans PEMS
Jan - Mar
2013
(weekdays)

5 minutes None

a) 15 minutes
b) 15 minutes
c) 20 minutes
d) 15 minutes

a) 15 minutes
b) 30 minutes
c) 45 minutes
d) 60 minutes

[44] Ma et al. 2015 Point Beijing Ring Road June 2013 2 minutes None 2 minutes 2 minutes

[50] Tian and Pan 2015 Point Caltrans PEMS 2014 (workdays) 5 minutes None

a) 180 minutes
b) 180 minutes
c) 180 minutes
d) 180 minutes

a) 15 minutes
b) 30 minutes
c) 45 minutes
d) 60 minutes

[45] Jia et al. 2016 Point Beijing traffic Jun - Aug
2013 2 minutes None

a) 16 minutes
b) 24 minutes
c) 50 minutes

a) 2 minutes
b) 10 minutes
c) 30 minutes

[51] Soua et al. 2016 Point Caltrans PEMS 1 Aug 2013 -
25 Nov 2013 15 minutes - Weather data

- Tweets data Unknown Unknown

[52] Wang et al. 2016 Trajectory Beijing taxi November 2013 (weekdays) 5 minutes None 10, 20, 30, 40
and 50 minutes

10, 20, 30, 40
and 50 minutes

[6] Wu and Tan 2016 Point Caltrans PEMS Apr 2014 - Jun 2015 5 minutes None 75 minutes (short-term)
30 minutes (daily/weekly) 5 minutes

[7] Cheng et al. 2017 Traffic condition Beijing map app Mar - Jun
2016 5 minutes - Road network data

- Speed limit data

a) 15 minutes
b) 30 minutes
c) 60 minutes
d) 90 minutes

a) 15 minutes
b) 30 minutes
c) 45 minutes
d) 60 minutes

[8] Dai et al. 2017 Point Caltrans PEMS First 16 weeks
of 2016 5 minutes None 60 minutes 5 minutes

[58] Du et al. 2017 Point Caltrans PEMS 1 Feb 2013 - 29 Aug 2013 5 minutes None 100 minutes 5 minutes

[59] Fouladgar et al. 2017 Point Caltrans PEMS 15 Aug 2016 - 14 Oct 2016 30 minutes None 150 minutes 30 minutes

[46] Jia et al. 2017 Point Beijing traffic June - August 2013 2 minutes Weather data

DBN:
a) 10 minutes
b) 18 minutes
c) 22 minutes
LSTM:
a) 12 minutes
b) 20 minutes
c) 24 mintues

a) 2 minutes
b) 10 minutes
c) 30 minutes

[60] Kang et al. 2017 Point Caltrans PEMS Oct - Nov 2009 5 minutes None Unknown 15, 30, 60
minutes

[61] Li et al. 2017 Point 1) LA traffic
2) Caltrans PEMS

1) Mar 2012 - Jun 2016
2) Jan 2017 - May 2017 5 minutes None Unknown 15, 30 and 60

minutes

[53] Ma et al. 2017 Trajectory Beijing Taxi GPS 1 May 2015 - 6 Jun 2015 2 minutes None

a) 30 minutes
b) 40 minutes
c) 30 minutes
d) 40 minutes

a) 10 minutes
b) 10 minutes
c) 20 minutes
d) 20 minutes

[54] Yu et al. 2017 Point Caltrans PEMS 19 May 2012 - 30 Jun 2012 5 minutes

- California accidents
- Los Angeles accidents
- Time of day
- Day of week

1 week

a) 5, 15, 30, 60 minutes
(w/o accident data)
b) 5, 30, 60, 90,
120, 150, 300 minutes
(w/ accident data)

TABLE 4
Data categorization for the covered literature
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[4] Yu et al. 2017 Trajectory Beijing floating cars Jun - Aug 2015
(6 AM - 10 PM) 2 minutes None 30 minutes

- 2, 4, 6 minutes
(short term)
- 20, 40, 60 minutes
(long term)

[47] Yu et al. 2017 Point 1) Beijing loop detectors
2) Caltrans PEMS

1) Jul - Aug 2014
2) May - Jun 2012
(weekdays)

5 minutes None 60 minutes 15, 30 and 45
minutes

[55] Zhang and
Kabuka 2017 Point Caltrans PEMS Nov - Dec 2016 60 minutes Weather 100 hours 12 hours

[62] Zhang et al. 2017 Trajectory 1) Beijing taxi
2) New York bike

1) Jul - Nov 2013,
Mar - Jun 2014,
Mar - Jun 2015,
Nov 2015 - Apr 2016
2) Apr - Sep 2014

1) 30 minutes
2) 1 hour

- Weather
- Day of week

Short: 90, 120, 150 minutes
Medium: Previous 1, 2, 3, 4 days
Long:Previous 1, 2, 3, 4 weeks

30 minutes and 1 hour

[48] Zhao et al. 2017 Point Beijing traffic Jan 2015 - Jun 2015 5 minutes None

a) 10 minute
b) 15 minutes
c) 25 minutes
d) 30 minutes

a) 15 minutes
b) 30 minutes
c) 45 minutes
d) 60 minutes

[63] Cui et al. 2018 1) Point
2) Road link

1) Seattle traffic
2) INRIX GPS

1) 2015
2) 2012 5 minutes None 50 minutes 5 minutes

[23] Cui et al. 2018 1) Point
2) Road link

1) Seattle traffic
2) INRIX GPS 2015 5 minutes None 50 minutes 5 minutes

[57] Kim et al. 2018 Point Santander city
traffic 2016 15 minutes None 15 minutes 150 and 210 minutes

[56] Liao et al. 2018 Point Beijing traffic April - May 2017 15 minutes
- Map query data
- Events data
- Road network

1 day 2 hours

[64] Ren et al. 2018 Point Singapore traffic 182 days (date not mentioned) 5 minutes None 60 Minutes 5, 10, 15 and 20
minutes

[65] Wang et al. 2018 Trajectory 1) Washington D.C. bike
2) Chicago bike 2015 - 2016 30 minutes - Check-in data

- Weather Unknown 30 minutes

[66] Wu et al. 2018 Point Caltrans PEMS Apr 2014 - Jun 2015 5 minutes None 105 minutes 45 minutes

[67] Yao et al. 2018 Trajectory 1) New York taxi
2) New York bike

1) 1 Jan 2015 - 1 Mar 2015
2) 1 Jul 2016 - 29 Aug 2016 30 minutes None 210 minutes 30 minutes

[68] Zhao et al. 2018 1) Trajectory
2) Point

1) Shenzen taxi
2. LA traffic detector

1) 1 Jan 2015 - 31 Jan 2015
2) 1 March 2012 - 7 March 2012

1) 15 minutes
2) 5 minutes None Unknown 15, 30, 45 and 60

minutes

[69] Pan et al. 2019 1) Trajectory
2) Point

1) Beijing taxi
2) METR-LA dataset

1) 2 Jan 2015 - 2 Jun 2015
2) 1 Mar 2012 - 30 Jun 2012

1) 1 hour
2) 5 minutes

1) Beijing POI and
road network data
2) Road network data

1) 12 hours
2) 1 hour

1) 3 hours
2) 1 hour

[70] Liang et al. 2019 Trajectory 1) Beijing taxi
2) HappyValley dataset

1) July 2013 - Oct 2013,
Feb 2014 - Jun 2014,
Mar 2015 - Jun 2015,
Nov 2015 - Mar 2016
2) Jan 2018 - Oct 2018

1) 30 minutes
2) 1 hour

1) Weather, holidays
day of week, time of day
2) Weather, holidays,
ticket price, day of week
time of day

Not applicable Not applicable

[71] He et al. 2019 Point Hong Kong traffic 1 Jan 2017 - 30 Jun 2018 10 minutes None 120 minutes 30, 60, 90 and
120 minutes

[72] Do et al. 2019 Point VicRoads
Melbourne traffic 2016 5 minutes None 180 minutes 5, 15, 30 and

60 minutes

[73] Xie et al. 2019 Trajectory Beilin taxi 1 Sep 2017 - 30 Nov 2017 5 minutes Road width, road length,
road category 2 hours 1 hour

[74] Xu et al. 2019 Point Hangzhou traffic June 2017 15 minutes None 45 minutes 15 minutes

TABLE 5
Data categorization for the covered literature contd.
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Data Granularity. Most of the literatures in Tables 4 and 5
use a data granularity of 5 minutes. This is likely caused
by the availability of that granularity as a default setting
in common datasets such as Caltrans. Although, The High-
ways Capacity Manual [75] recommended a data granular-
ity of 15-minutes, which saw some authors aggregate the
5-minute readings from Caltrans to 15-minute readings.

Depending on the dataset, the data granularity is a
potentially important hyperparameter. Using a data gran-
ularity that is too small may cause a lot of zero values,
especially during conditions where traffic is very sparse.
For example, it is highly likely for a traffic loop detector
to not detect any cars in 2 or 5 minute periods during off-
peak hours (e.g. 02:00-04:00 AM) while this becomes less
likely if the granularity is increased to 15 minutes or more.
On the other hand, using a granularity that is too high
might result in the smoothness of the traffic flow reading
where important trends are lost. For instance, if the traffic
experiences periodic shifts during 12:30PM, this trend might
not be detected if the data granularity is one hour.

Data granularity also impacts the number of possible
data points as well as the size of the input sequence. Using
a smaller granularity will increase the length of the required
data sequence. For instance, one hour’s worth of data can
be captured with only a sequence of length 4 when the
granularity is 15 minutes, but when the granularity is 5
minutes, the sequence length is 12. This can impact training
time, especially for RNN-based models.

Due to the aforementioned reasons, choosing the correct
data granularity becomes a decision based on trade-offs and
should be considered carefully depending on the data, the
model, as well as the application scenarios.

Input Sequence Length and Prediction Horizon. As can be
seen in Tables 4 and 5, many authors perform experiments
with different prediction horizons and use different input
sequence lengths for each of the selected prediction hori-
zons. Hence, for the works that use a certain input sequence
length for a certain prediction horizon, we use the alphabets
to denote that these parameters are paired. For instance, in
[49], for predicting traffic 15 minutes in the future, they use
15 minutes of input data and for predicting the traffic 45
minutes into the future, they use 20 minutes of input data.
There are some works such as [52] where the alphabets
are not used. In this case, the input sequence length and
prediction horizon are parameters that the authors explore
separately.

Intuitively, as we increase the prediction horizon, the
input sequence length also needs to be increased. This is
because the increase in prediction horizon means predicting
the traffic of further time frame in the future and thus,
increasing the task complexity. Increasing the size of the
data points by extending the input sequence may help in
tackling the complex problem.

Some authors use data from multiple granularities and
for each granularity, they may use different input sequence
length. For instance, Wu and Tan [6] use the data from same
day, previous day and previous week. The input sequence
lengths are 75, 30 and 30 minutes respectively. Zhang et al.
[62] use the same data selection scheme. For the same day
data, they use input sequence length of 90, 120 and 150

minutes. For the day and week, they use the previous 1,
2, 3 and 4 days’ and week’s data.

Unfortunately, the relationship between the input se-
quence length and the prediction horizon is rarely explored
by the literature. Most of the input sequence lengths were
chosen arbitrarily without iterating through different pos-
sible values. This is because hybrid deep neural network
structures take a long time to train, which makes iterat-
ing through different settings unwieldy. Despite this issue,
hyperparameter search remains an important facet of deep
neural network development that cannot be omitted. One
possible remedy of this problem is to first use a smaller data,
chosen randomly from the main dataset, to find the optimal
parameter setting.

4.2 Traffic Flow Prediction – Model
The models used by the surveyed works are listed in Table 6.
As observed, the two most commonly predicted values are
traffic flow and traffic speed. This is because these two val-
ues are available in many popular traffic datasets. However,
there are several works deviated from these conventional
values. For example, the work of Cheng et al. [7] predicted
traffic condition, which consists of four categories: fluency,
slow, congestion and extreme congestion. Zhang et al. [62]
and Wang et al. [65] predicted crowd flow instead of traffic
flow. Crowd flow measurements are the same as traffic flow,
but they are designed for general human mobility instead of
automobile mobility. In a more recent work by Liang et al. [70]
for predicting crowd flow, a fine-grained prediction is performed
using a coarser data (e.g., predicting crowd flow of different school R1D1
buildings given crowd flow of the entire university area) instead
of using historical data.

The column “Spatial / Temporal” in Table 6 specifies if
the spatial and/or temporal factors were explicitly captured
within the model. A model is said to explicitly capture
spatial or temporal aspect if it satisfies at least one of the
following two conditions.

• The model or at least one of its sub-components is
specifically designed for capturing the spatial and/or
temporal aspect.

• The data is modeled in such a way that it inherently
contains the spatial and/or temporal information
(e.g. using adjacency matrices to capture spatial in-
formation).

This is important as different models are proficient with
capturing different aspects of the data. We will discuss the
different models next.

4.2.1 RNN
Amongst the RNN-based methods, LSTM is by far the most
popular one, totaling 18 out of the 37 literatures. Variants
such as Gated Recurrent Unit are used in several works,
but it is far less common. LSTM is the most common choice
for not only capturing temporal aspect but also traffic flow
prediction in general.

We speculate that this is because traffic data constitutes
a temporal sequence, which fits LSTM’s purpose. Addi-
tionally, most available traffic flow data is compatible with
LSTM, as these traffic flow data can easily be modeled
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Model Category Reference Year Value to
Predict

Spatial / Temporal Main
Datatype

Model Subcategory

Deep
neural
network

[5] 2014 Traffic flow None Point Deep Belief Network
[49] 2015 Traffic flow None Point Stacked Autoencoder
[44] 2015 Traffic speed Temporal Point LSTM
[50] 2015 Traffic flow Temporal Point LSTM
[45] 2016 Traffic speed None Point Deep Belief Network

[46] 2017 Traffic speed Temporal Point - Deep Belief Network
- LSTM

[60] 2017 Traffic flow Both Point LSTM
[53] 2017 Traffic speed Both Trajectory CNN
[48] 2017 Traffic flow Both Point LSTM
[65] 2018 Crowd flow Both Trajectory LSTM with convolution
[70] 2019 Crowd flow Both Trajectory Residual CNN

Deep neural network,
clustering and
probability theory

[51] 2016 Traffic flow None Point
Deep Belief Network,
K-means Clustering and
Dempster-Shafer Theory

Deep neural network
and clustering

[52] 2016 Traffic speed Both Trajectory
CNN and Pearson
Correlation-based
clustering

Deep neural network
and graph theory

[47] 2017 Traffic speed Both Point CNN and Graph
Convolution

[63] 2018 Traffic speed Both 1) Point
2) Road link

LSTM and Graph
Convolution

[74] 2019 Traffic flow Both Point RNN and Deepwalk

Hybrid deep
neural network

[6] 2016 Traffic flow Both Point LSTM, 1-D CNN and FNN
[8] 2017 Traffic flow Temporal Point LSTM and FNN
[58] 2017 Traffic flow Temporal Point LSTM and 1-D CNN

[59] 2017 Traffic speed Both Point LSTM, CNN and
FNN

[54] 2017 Traffic speed Temporal Point LSTM and Stacked
Autoencoder

[4] 2017 Traffic speed Both Trajectory LSTM, CNN and FNN

[55] 2017 Traffic flow Temporal Point Gated Recurrent Unit
and FNN

[62] 2017 Crowd flow Both Trajectory Residual CNN
and FNN

[23] 2018 Traffic speed Both 1) Point
2) Road link

LSTM and bidirectional
LSTM

[57] 2018 Traffic speed Spatial Point Capsule network, CNN
and FNN

[64] 2018 Traffic speed Both Point CNN with binary mask
and FNN

[66] 2018 Traffic flow Both Point Gated Recurrent Unit,
1-D CNN and FNN

[67] 2018 Traffic flow Both Trajectory LSTM, CNN and FNN

[71] 2019 Traffic flow Both Detector
Encoder-Decoder LSTM
and FNN-based attention
modules

[72] 2019 Traffic flow Both Detector
Encoder-Decoder GRU,
GRU with convolution,
and attention module

Hybrid deep
neural network
and graph theory

[61] 2017 Traffic speed Both Point Encoder-Decoder GRU and
graph diffusion

[7] 2017 Traffic condition Both Traffic condition LSTM, CNN, FNN and
graph based data modeling

[56] 2018 Traffic speed Both Point Encoder-Decoder LSTM,
FNN and Graph CNN

[68] 2018 Traffic speed Both Trajectory and point Gated Recurrent Unit,
FNN and Graph CNN

[69] 2019 1) Traffic flow
2) Traffic speed

Both 1) Trajectory
2) Point

Encoder-Decoder GRU,
FNN and Graph Attention
Network

[73] 2019 Traffic speed Both Trajectory
Encoder-Decoder RNN,
and graph-based data
modeling

TABLE 6
Traffic Flow Prediction Models
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as a sequence of traffic flow readings. For instance, the
traffic flow between 11:00 and 12:00 can be captured as
the aggregated traffic reading for four periods, including
11:00-11:15, 11:15-11:30, 11:30-11:45, and 11:45-12:00. This
data can be fed into an RNN, resulting in an RNN with
four recurrences.

Basic RNN. To the best of our knowledge, the work of
Ma et al. [44], and that of Tian and Pan [50] were the first
few applications of basic LSTM. Since then, LSTM has been
mostly applied in a hybrid setting, but there are still some
applications of basic LSTM where the core of the model lies
in how the data is modeled. For example, Fouladgar et al.
[59] and Kang et al. [60] use an LSTM that takes in readings
from multiple time slots as well as multiple detectors. The
data is modeled in a matrix, which captures both the spatial
and temporal aspects of the data.

RNN in a hybrid setting. As complex deep neural networks
are becoming viable to train, most authors have utilized
the hybrid neural network setting, which combines different
neural network structures into a larger entity, to maximize
the prediction performance. From Table 6, we can see that 21
out of 37 literatures utilize hybrid neural network. The pop-
ularity of hybrid neural network structure is contributed by
its power and flexibility of utilizing the different strengths
of its individual components. In a hybrid setting, RNN is
used in one of the following ways:

1) Outputting features to be fed into a fusion layer.
2) Outputting features to be fed into subsequent com-

ponents within the model.
3) Used as the main predictor, but with modifications

to the internal structure.

The first method is the simplest because models that
fall into this category usually consist of several simpler
subnetworks that only interact at the final fusion layer. Wu
and Tan [6] used a combination of a CNN and two LSTMs
to capture spatial features, the short-term temporal feature,
and the periodic temporal feature respectively. The outputs
from these three networks are then fed into a FNN to fuse
the features. This demonstrates one of the common usages
of FNN we have discussed in Section 3.3 previously. Du
et al. [58] used a combination of a CNN component and an
LSTM component to capture spatial features and temporal
features respectively. The outputs from these networks are
combined to form the prediction. Another example is work
[54] which used a combination of a Stacked Autoencoder to
encode traffic accidents data and an LSTM to capture the
temporal aspect of the data.

The second method treats LSTM as a pipeline that trans-
forms one feature representation to another. Cheng et al.
[7] used an LSTM to process the outputs from a CNN
before passing them to a max-pooling layer. Dai et al. [8]
performed a detrending process on the input before passing
it to the LSTM layer. Yu et al. [4] first used a CNN to encode
the spatial aspect of the data and then fed this processed
information to an LSTM to learn the temporal aspect. Cui
et al. [23] performed masking to fill in missing values in the
data before passing it to a bidirectional LSTM for feature
transformation and then a regular LSTM for the prediction.
Zhao et al. [68] used a Gated Recurrent Unit which takes

input from a Graph Convolution Network and outputs the
predicted traffic. Yao et al. [67] used multiple LSTMs that
represent the daily traffic features. Finally, Wu et al. [66]
used a Gated Recurrent Unit to learn feature representation
from an attention model which are then fused with the CNN
spatial component. As observed, in this category of method,
some preprocessing steps such as the masking of missing
values can be a part of the architecture.

The third method is the most complex one, as it requires
modifying the internal LSTM structure. Cui et al. [63] mod-
ified the LSTM calculation to include a graph convolution
process as well as using a novel Real-Time Branching Learn-
ing (RTBL) which modifies the backpropagation process. Li
et al. [61] replaced the matrix multiplication inside Gated
Recurrent Unit with the diffusion convolution operation.

In addition to these methods, the encoder-decoder RNNs are
also used in many recent studies. Encoder-decoder RNNs are
partly inspired by autoencoders. Autoencoders are deep neural
network structures that consist of two parts: the encoder that
takes an input and produces a vector representation of it (usually
with a smaller dimension), and the decoder that takes the vector OD1
representation and produces an approximation of the original
input. In encoder-decoder RNNs, both input and output are
sequences, and instead of approximating the original input, the
target output is a ground-truth sequence (e.g., prediction for 5,
10, 15, 20, 25, and 30 minutes into the future). This model is
used in [61], [56], [71], [69], [72] and [73], and has demonstrated
state-of-the-art performance.

Other RNN uses. Some authors have used RNNs to capture
both the temporal and the spatial aspects of the data. Kang
et al. [60] captured the temporal aspect by feeding data
from multiple traffic loop detectors at once into an LSTM.
Zhao et al. [48] used one LSTM for each traffic loop detector
and incorporates an Origin Destination Correlation (ODC)
matrix, which weighs how much the traffic of one loop
detector’s location affects another. Finally, Wang et al. [65]
replaced the dense kernels in LSTM with convolutional ones
to successfully use an LSTM to capture both the spatial and
the temporal aspects of traffic data.

In addition, RNN has been used to capture the temporal
aspect of the data using different granularities. As discussed
in Section 3.2, RNN-based methods are commonly used to
learn the temporal patterns of traffic data. However, we also
mentioned that RNN-based methods are time-consuming.
Consequently, RNN-based methods are not usually fed
very long input sequences. Several data modeling-based
approaches have been explored to mitigate this problem.
The most common method is to use multiple LSTMs with
each taking shorter sequences from a specific granularity.
As an example, if we want to predict the traffic at 09:00 AM
at December 25, one RNN can be used to capture the data
from 06:00, 07:00, and 08:00 AM at December 25 (hourly
granularity), one RNN can be used to capture the data from
09:00 AM at 22, 23 and 24 December (daily granularity) and
one RNN can be used to capture the data from 09:00 AM at
4, 11 and 18 December (weekly granularity). This method is
used by Wu and Tan [6], Yao et al. [67] and Wu et al. [66].
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4.2.2 CNN
A CNN is the optimal choice for capturing the spatial
aspect of the data. As mentioned in Section 3.1, CNN is
able to capture the correlation between different regions in
the road network. By utilizing this strength, a CNN can
learn the spatial dynamics of traffic in order to improve the
prediction accuracy. However, the way CNN captures this
aspect strongly depends on the type of the data.

In traffic flow prediction, there are two main data types,
point and trajectory, which cover the majority of the works
we surveyed. The only exception is [63] and [23], which
use road link data in addition to point data as the main
datasets. As we can derive the traffic speed from road link
data by averaging the speed of vehicles on each road link,
we also regard road link data as a special type of point
data. Deep neural network models, hybrid or otherwise,
that are applicable for one data type are incompatible for
the other without major modifications. Consequently, we
categorize works related to CNN based on the type of the
main datasets.

CNN with Point data. From Table 6, we can see that most
authors use point data in their work. Point data consists
of traffic readings from road-installed sensors. This data is
popular due to its availability and compatibility with deep
neural network models; usually, point data does not require
major data transformation step and can be used as is.

For point data, spatial aspect is typically captured by
collating data from multiple detection points into vectors.
Sometimes, matrices can be used when capturing both the
spatial and the temporal aspects. In addition, tensors can
also be used when there are multiple matrices to be used
all at once, such as when we are inputting the spatio-
temporal traffic data from multiple days at once. These
vectors/matrices/tensors are then fed as input into the
network where a CNN resides.

The advantages of using point data are:

• Common public data are available. For instance,
the Caltrans data is very commonly used in the
literature. Although each work uses different subsets,
the availability of one unified data source makes it
easier to establish a benchmark data.

• Data transformation is simpler. To obtain an input
data that contains both the temporal and the spatial
trends, the common procedure is just collating the
data into vectors/matrices/tensors.

• Works better for methods that are based on the
graph space. Point data often constitutes traffic de-
tectors installed on roads, which can be easily con-
verted to graphs; each detector site can be treated
as a vertex and every two adjacent detectors define
an edge. We will discuss graph-based methods in
Section 4.2.5.

Although point data has multiple advantages as detailed
above, it also has some limitations as listed below:

• Almost exclusive highways data. Since traffic loop
detectors are difficult and expensive to install, they
are not commonly available for arterial roads.

• Not compatible with methods that conform to the
Euclidean space (e.g. 2D CNN). This is because most

point-based data are highways data where the traffic
detectors are spatially organized in a line.

There are two main methods to utilize point data in
a CNN. The first method is to use a 1D CNN as it is
compatible with point data which are commonly organized
in a line. This method is used by [6] and [58]. The second
method is to capture both the spatial and the temporal
aspects of the data in a 2D matrix to be fed into a CNN.
That is, one axis of the matrix captures the different traffic
detection sites and the other is used to capture the different
time steps. This method is used by [59], [57], [52] and [64].
The work of Wu et al. [66] used both of these methods for
different purposes.

CNN with trajectory data. For trajectory data, utilizing
the Euclidean space is common. Each trajectory needs to
be mapped onto a 2D plane which represents the region
(e.g. city, country) where the data resides. This region is
divided into grids where each grid represents a subregion.
Processing the data this way yields a matrix that represents
the traffic state of a region, which can be fed into a CNN to
capture the spatial aspect.

The advantages of trajectory data are:

• Not exclusive to highways data. Trajectory data are
usually GPS data, which cover both arterial roads
and highways.

• Works better for methods that are based on the
euclidean space. After the data processing, the spa-
tial correlation is inherently captured within the
resulting 2D plane. Additionally, the resulting data
transformation output is a matrix, which naturally
fits 2D CNN. Finally, trajectory data usually cover
city regions, which usually conform to the 2D shape.

• Results are easily interpretable. By visualizing the
values assigned to each grid in the 2D map, the re-
gion’s traffic flow prediction can be observed directly.

The disadvantages of trajectory data are:

• Complex data transformation. The process of map-
ping each trajectory point to the 2D plane is complex
and time consuming.

• Not compatible with methods that model their
data using graph-based methods. Points in the road
network can be transformed into vertices and the
connections between them can be mapped to edges.
This is not possible for trajectory data.

Yu et al. [4] mapped a road link to a 2D grid and assigned
to each grid the average traffic speed of the associated road
link. Zhang et al. [62] and Liang et al. [70] defined a 2D
rectangular space that encompasses all the trajectory points.
This space is then divided into grids. Finally, for each grid,
the traffic flow for a certain period of time is calculated
as the number of trajectory points that are recorded within
the grid during that period. Using this modeling, the entire
space can be seen as a city and the grids represent small
regions within the city. Yao et al. [67] used a similar method
as the previous, but they also modeled the traffic volume
using CNN by using data of a trajectory’s start and end.
These four literatures represent one of the major advances
of the traffic flow prediction field from the earlier classical
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statistical and machine learning days; an easily visualizable
traffic flow prediction that utilizes trajectory data is now
available due to the introduction of CNN. Although, as can
be seen from Table 6, there are only a few works that utilize
trajectory data. This is mainly due to the difficulty of the
mapping.

Other CNN Uses. Some authors have also attempted to use
CNNs to capture the temporal aspect of the data, a task
usually reserved to the RNN class of methods. Ma et al. [53]
included both the spatial and the temporal dimensions by
modeling the traffic data as a tensor, where the rows repre-
sent the spatial aspect, the columns represent the temporal
aspect and the depth represents the different days. They ar-
gued that using RNNs requires long input sequences which
can impact training time greatly and instead applied CNN
to capture both the spatial and the temporal aspects of the
data. Zhang et al. [62] captured the temporal aspect using
CNNs which are fed data from different time granularities
(e.g. weekly, daily, hourly) and Yu et al. [47] used a one
dimensional convolution on the time axis in order to capture
the temporal aspect.

4.2.3 Feedforward Neural Networks
FNNs perform three main utility roles in hybrid neural
networks for traffic prediction: aggregating the output of
one or more subnetworks, incorporating external data–such
as weather and holidays data–to the network, and as a
component in the model’s submodule.

FNNs as Output Aggregator. FNNs are commonly used to
aggregate the output of one or more subnetwork compo-
nents in a deep neural network. For instance, Wu and Tan
[6] used an FNN to combine the outputs from one CNN
component and two LSTM components. FNNs are also a
natural component for CNNs and RNNs, since FNNs can
take the output from these networks and output a smaller
representation. FNNs’ usage to aggregate the output of a
CNN is displayed in [59], [57], [64], [67] and [4]. On the
other hand, FNNs’ usage to aggregate the output of an RNN
is diplayed in [55], [56], and [68].

FNNs for Incorporating External data. FNNs are also com-
monly used to incorporate external data to the network,
because it can take inputs of an arbitrary dimensionality and
perform a transformation to ensure that the dimensionality
of the external data and that of the other components within
the network match. Wu and Tan [6], Zhang et al. [62] and
Yao et al. [67] used an FNN to perform this task.

FNNs as a submodule component. FNNs are often used as a
component in a model’s submodule, such as attention network
modules. For instance, Pan et al. [69] used an FNN to learn
features from a road network, which enables the network to learnOD2
which nodes in a road network are important. He et al. [71] used
an FNN for the same purpose, although they do not use the graph
structure.

4.2.4 Other Deep Neural Networks
Two other types of deep neural networks, Stacked Autoen-
coder (SAE) and Deep Belief Network (DBN), are also used
in traffic flow prediction [5] [45] [46][49][51]. However, these

models are rarely used; out of the 37 covered literatures,
only 6 of them use these methods. The main contributing
factor of this rarity is that SAEs and DBNs do not explicitly
capture the spatial or the temporal aspect of the data and
thus tend to perform worse than the neural networks that
capture such aspects. This has been demonstrated through
several experiments, such as in [4], [7], and [76].

In fact, SAEs and DBNs receive attention mostly at the
earlier years of deep neural network for traffic flow pre-
diction. We speculate that this is because early researchers
are concerned with the computation time optimization of
the training methodology. SAEs and DBNs use the greedy
layer-wise training method [77] to pre-train their network
weights, which accelerates the training in the long run.
However, as more and more complex techniques were intro-
duced and as hardware and software optimization reduce
the computational time of these methods, the middling
performance of SAEs and DBNs resulted in the two being
phased out.

4.2.5 Other Techniques

As this paper focuses on deep neural networks, we will not
discuss cases where other, non-deep-learning based meth-
ods are used as the main predictor. Rather, we discuss what
other techniques have been used to assist in the prediction
task alongside deep neural networks.

One of the most significant breakthroughs of recent work
in deep neural network for traffic flow prediction is the
graph-based methods; in particular, the graph convolution
operation. When applied to road networks, graph convolu-
tion works on the graph domain while regular convolution
works on the Euclidean domain. However, road networks
do not conform to the Euclidean space as roads and high-
ways that are close to each other may connect different parts
of the city and thus have very different traffic characteristics.

Li et al. [61] performed a graph diffusion process based
on a bidirectional graph random walk. Then, the resulting
graph diffusion was used in a convolution process which
is then incorporated into a Gated Recurrent Unit RNN.
Cui et al. [63] used a similar idea of graph convolution,
but instead of using the diffusion process, they proposed
a method which involves calculating whether or not it
is possible to reach one node from another under a cer-
tain number of time-step when the traffic is on free-flow
condition. Cheng et al. [7] used a directed graph which
represents how traffic flows between locations. Through this
directed graph, it is possible to find the upstream and the
downstream locations. This information is incorporated in a
convolution layer. Yu et al. [47] modeled the traffic network
as a graph and proposed a spatial graph convolutional layer.
Pan et al. [69] modeled road network as a graph and used a graph
attention network to model spatial correlations in the network.
Zhipu et al. [73] used a novel component called GN block that
takes a road network graph as input and outputs another graph R1D1
with the same topology but different graph features. Finally, Xu
et al. [74] used Deepwalk to transform a graph into a vector
representation, which makes it easier to be incorporated into the
deep neural network model.
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4.3 Discussion

In this subsection, we discuss the overall trend of traffic
prediction research from several different perspectives.

4.3.1 Complex vs. Simple Models
As technology advanced on both the hardware and the software
front, complex deep neural network models are becoming easier to
train. This has prompted researchers to combine the capabilities
of multiple deep neural networks, and even add some novel
components of their own creation. In Table 6, we can see that
the simpler “deep neural network” category consists of papers
from the earlier years of traffic prediction research while “hybrid
deep neural network” and “hybrid deep neural network and graph
theory” mostly contain more recent papers. Hybrid deep neural
networks combine different types of simple deep neural network
structures in order to combine the strengths of each. In recent
works, graph theory is often applied as graphs can conform to the
road structure better.

While complex models are expensive to train, their perfor-
mance improvements have proven that the investment is worth-
while. For instance, Li et al. [61] have demonstrated that their
encoder-decoder model with graph diffusion managed to outper-
form simple FNN and LSTM. Not only that, they also per-
formed an ablation test to demonstrate that their novel diffusion
convolution module manages to outperform simpler variations.
Similarly, Do et al. [72] have compared their method against
simple FNN, LSTM and GRU, showing similar trends. While
we provide only two examples due to space constraints, we can
attest that many complex hybrid deep neural network models have
managed to outperform simpler deep neural network models and
that many novel modules designed to capture spatial and temporal
correlations (e.g., spatial and temporal attention) have resulted in
further performance improvement.

4.3.2 Benchmark Model Structures
We have observed that several of the most recent and best per-
forming models use the Encoder-Decoder RNN. In addition to the
capability of processing sequential input data as regular RNN,
Encoder-Decoder RNN can output sequences instead of a single
result. This means that Encoder-Decoder RNNs can take input
data from multiple steps and also output predictions multiple steps
ahead.

To imbue Encoder-Decoder RNN with the capability to cap-
ture spatial data, most of these works also utilize graph-based
methods. Graph-based methods are more appropriate for traffic
data compared to the more conventional methods of dividing an
area into spatial grids. The reason is that roads close to each other
may connect entirely different parts of a city. It is more accurate to
capture spatial correlations in terms of the connectivity of different
parts of the area, which graph-based methods provide. Encoder-
Decoder RNNs and graph-based methods have been used by [61],
[56], [69], and [73].

Graph-based models can be complex to implement as it
requires additional data as well as data preprocessing. An
alternative to this method is some sort of an attention module
that can model the spatial and temporal correlations in the data.
Encoder-Decoder RNNs and attention modules have been used
by He et al. [71], and Do et al. [72]. Despite the complexity
of Encoder-Decoder RNNs and graph-based methods, we have
observed that this combination has shown to be very proficient at

predicting future traffic and is one of the more important recent
developments of traffic prediction.

Summary. In this section, we list out and categorize
37 recent literature works on deep neural network for
traffic prediction. In the first subsection, we discuss the
datasets, the related hyperparameters and how they affect
the prediction task. In the second subsection, we discuss the
models, focusing on the three main deep neural network
models. Then, we described the less commonly used deep
neural networks as well as other accompanying techniques.
Finally, we provide a discussion section, in which we state
that graph based models are one of the most important
recent contributions to the traffic prediction field.

5 CHALLENGES AND FUTURE DIRECTIONS

In this section, we will first state several of the challenges
outlined by Vlahogianni et al. in their 2014 survey paper
[9] and discuss only the challenges that have been solved
or partially solved using deep neural network. Afterwards,
we will list several new challenges that the field of deep
neural network for traffic prediction faces. Please refer to
the original paper for the complete list of the ten challenges.

5.1 Existing Challenges

Developing responsive algorithms and prediction
schemes. Several of the recent works have attempted to
address the problem of algorithm responsiveness in the
face of unexpected traffic incidents such as accidents and
weather changes. This is mainly done by using weather
and accidents data as additional inputs to the traffic flow
prediction models.

Soua et al. [51] combined weather and traffic flow data
using the Dempster-Shafer theory. On the other hand, Wang
et al. [65] simply concatenated weather and traffic flow
data while Zhang et al. [62] performed simple addition.
However, these works lack ablation tests which can reveal
the effectiveness of utilizing weather data.

Conversely, the work of Zhang and Kabuka [55] incor-
porated weather data by embedding them into the traffic
flow data in their test and performed a simple ablation
test, which proved that the inclusion of weather data does
improve prediction performance. Additionally, Yu et al. [54]
performed a network stimulation test to understand the
effect of sudden traffic accidents.

As we can see, several authors have tested the impacts
of weather and accidents in traffic flow prediction. Although
several experiments have proven that the addition of these
data can increase the prediction power of the models and in-
crease their responsiveness to unexpected changes in traffic,
this facet of traffic prediction has not been explored in great
depth. This is due to the difficulty of incorporating these
external data. Overcoming the challenge of data incorpora-
tion is the first step in utilizing weather and non-recurring
incidents data in general to improve model responsiveness.

Freeway, arterial and network traffic predictions. The au-
thors mentioned several related sub-challenges: the com-
plexity of urban arterial traffic prediction, network-level
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traffic prediction and the incorporation of network dynam-
ics on traffic prediction. We will discuss them below.

While the prediction of traffic in urban arterial roads and
network-level traffic prediction are dissimilar challenges,
the cause is the same: the lack of traffic detectors on urban
arterial roads. This is because installing traffic detectors is
costly and thus, is often done only on highways. However,
the increasing amount of trajectory data has resulted in
an alternative solution for network-wide prediction, as car
trajectories cover both arterial and highways alike. The
literatures that utilize trajectory data are: [53], [4], [62], [65]
and [67].

The third challenge, incorporation of network dynamics
on traffic prediction, is caused by traffic flow readings not
inherently containing road network data. Therefore, this
operation has to be done manually through data modeling.
The most popular method to capture network data is to use
graph-based methods. The literatures that cover this method
are: [7], [47], [61], and [63]. Due to this ability of capturing
the dynamics of road network, graph-based method is a
promising future research direction.

Temporal characteristics and spatial dependencies. The
advances of deep neural network have brought forward
two crucial network structures: RNN and CNN. These two
networks can model the temporal and spatial patterns of the
data, respectively. Please refer to Sections 4.2.1 and 4.2.2 for
a more detailed description of how these models are used to
capture temporal characteristics and spatial dependencies.

Explanatory power, associations and causality. Neural
network’s prominence in traffic flow prediction can be
attributed to the model’s flexibility. This is because the
functional form of neural network models is approximated
via learning, as opposed to classical statistical models which
assume the functional form a priori [24]. Consequently, neu-
ral network models’ internal parameters are rarely explored
because they are hard to interpret as their focus is mostly on
raw prediction performance rather than interpretability.

Performing explanatory analyses on neural networks
may uncover useful traffic patterns. Li et al. [61] observed
the traffic diffusion along the road network and the correla-
tion between several adjacent traffic sensors. Cui et al. [63]
visualized the network weights pertaining to different de-
tector sites to find key road segments in the traffic network.
Cheng et al. [7] visualized the attention weights of upstream
and downstream stations to observe how traffic flow moves
across several traffic stations.

While neural networks have proven to be a very effective
prediction model, they are infamously known as black-box
models; models that are difficult to dissect and explain.
Although the aforementioned authors managed to explain
the traffic phenomena to some degree, their observations
are mostly limited to the spatial aspect; observing how the
traffic at one site affects another and how traffic propagates
across the road network. To the best of our knowledge, there
is no work that observes other aspects of the prediction, such
as the dynamics of abrupt weather changes and accidents.

5.2 Future Challenges

The power of deep neural network as prediction models has
brought forward new challenges, both for the models and
for the field as a whole. We will discuss these challenges
below.

A. Lack of a benchmark dataset. The availability of a wide
range of traffic data supports traffic prediction. However,
this availability also poses a challenge to comparative work.
Due to the fact that different works use different datasets, it
is very hard to assess the relative performance of different
state-of-the-art models. The Caltrans data is the closest to a
benchmark dataset, as it is used by 14 out of 37 literatures
we have covered. However, different works use different
subsets of the Caltrans from different periods of time and
from different traffic detector sites.

Choosing a subset of data within a larger dataset also
poses a challenge. As temporal and spatial correlation af-
fects traffic greatly, the period of the data and the traffic
detector locations become important considerations. For
instance, when using data that covers a period of less than
a year, there is a risk of not capturing the seasonal effects
on traffic, and when using only weekdays data, the models
cannot learn weekend traffic well. For the spatial aspect, the
choice of roads or highways can greatly affect the traffic
flow as metropolitan roads have significantly busier traffic
compared to rural areas, and long interstate highways tend
to cover both rural and metropolitan areas. Models that are
trained on a certain traffic condition may not perform well
when used to predict traffic on significantly different traffic.

Both point and trajectory data have their advantages and
disadvantages. Point data generally comes from traffic de-
tectors installed by the transportation bureau. Consequently,
the system is well-established, resulting in better temporal
coverage. However, as traffic detectors are costly to install,
they are mostly limited to highways. Conversely, trajectory
data has a more general spatial coverage as drivers pass
through arterial, urban and highway roads alike. However,
the temporal coverage is limited, ranging from a month
[68] [67] to several months [4] [67] [62] and up to one year
[52] [65], compared to the Caltrans data, for instance, which
contains more than five years’ worth of data for its detectors.

For deep neural network models to perform well on real
applications, the dataset needs to mimic real data. Therefore,
it is important for benchmark datasets to cover enough time
frame and locations so that the models can generalize well
to any traffic situations. To overcome this challenge, the
following criteria are important:

• The data covers both urban and rural areas.
• The data covers both weekdays and weekends.
• The data covers all hours of the day.
• The temporal range is at least one year.

The installation of traffic detectors is expensive, and
point data’s spatial limitation is difficult to address.
Therefore, we recommend focusing on trajectory data.
Floating car data collected from GPS is the most widespread
and efficient source of trajectory data. However, researchers
must take into account the required preprocessing to use
trajectory data for traffic prediction.
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B. Difficulty of incorporating external information with
traffic data. In traffic prediction, commonly used external
information include weather, accidents, events, day of the
week, time of the day and social media data. While the
inclusion of day of the week and time of the day is rela-
tively simple, data that are bound to a specific geographical
coordinate or a geographical area is difficult to incorporate
with traffic data. This is because the process requires the
coordinates of detection points (in the case of point data) or
trajectory points (in the case of trajectory data) to be mapped
to the secondary data. A benchmark data that covers a
specific area within a specific period, complete with relevant
secondary data will greatly benefit the traffic flow field. We
recommend the following sequence of actions:

1) Establish a benchmark dataset that has sufficient
spatial and temporal coverage based on the require-
ments mentioned in the previous challenge.

2) Add day of the week and time of day data by
concatenating them with the traffic reading data.

3) Add geographical-related data, such as weather and
accidents data to every traffic data reading. For
instance, one reading at a particular time stamp
and location will have both the traffic flow, current
weather and accident type, if any accident occurs at
the location.

C. Online learning. With the widespread installation of
traffic loop detectors, traffic data will continuously grow. In
this setting where new data is incrementally added, traffic
trends will shift over time. This is applicable even for the
same traffic detector site. This idea is called concept drift
and it causes the relationship between the input and output
data to change over time, rendering models that are trained
on past data to degrade in performance on present and
future data.

One way to mitigate this problem is to incrementally
update the prediction model with new data in real-time,
in a process often called online learning. However, to the
best of our knowledge, there is no work that explores
online learning in the traffic prediction domain. This can
be attributed to the time complexity of training hybrid
deep neural network model and the lack of attention to
the concept drift problem. Online learning is a promising
subtopic to explore in the field of traffic prediction as this
will ensure that complex deep neural network models are
always up-to-date. Experiments that seek to identify the
viability of online training will need to take into account
the following factors:

• The frequency of which the deep neural network
models need to be retrained. Practitioners need to
ask the question “How often do we need to update
our prediction model to ensure that it is always up-
to-date?”

• The number of data points required for the update,
which is affected by the frequency and has to re-
flect real life scenario. Practitioners need to ask the
questions “How much data can we acquire during a
certain period?” and “How long will it take to collect
and preprocess the data to fit it into the prediction
models?”

• The time required for the model to be re-trained us-
ing the specified number of data points and whether
or not it is suitable for real life scenario. Practitioners
need to ask the question “With the available amount
of data, will the training of the model be fast enough
such that daily operations are not hindered?”

D. Using graph-based methods to capture spatial aspect
of the data. As we have discussed in Section 4.2.5, graph
based methods are a promising development of traffic flow
prediction, because they naturally conform to traffic dy-
namics. However, the difficulty lies in the data requirement
and the additional preprocessing step. The road topology
data, which captures how different traffic detection sites are
connected by roads, is often not readily available and has
to be manually curated. While this challenge is significant,
it is important to measure and understand how well graph-
based methods improve the traffic prediction performance.

E. Exploring other traffic prediction tasks. Currently, the
Intelligent Transportation Systems (ITS) field greatly focuses
on traffic flow prediction, neglecting the other traffic pre-
diction tasks. Exploring these subproblems may bring new
insights that are able to help the main traffic prediction task.
As we mentioned before, deep neural network models are
black-box models. Models that are trained on the traffic
flow prediction may not be able to explain the intricacies
of traffic patterns. Additionally, each of the subproblems
is interesting by itself as its results can be directly used
by drivers and traffic management bureau alike to make
educated decisions. One example of these prediction tasks is
traffic congestion analysis. Knowing how traffic congestion
moves throughout the network can assist in the traffic
prediction task.

F. Lack of up-to-date experimental evaluation. The in-
troduction of deep neural network libraries such as Keras
[12], PyTorch [13] and TensorFlow [14] has simplified the
implementation of complex hybrid deep neural network
models. As we have observed, this has resulted in numerous
unique hybrid structures, each focusing on specific ideas to
improve prediction performance. However, there is a lack
of up-to-date and comprehensive experimental evaluation,
making it difficult to assess how promising these specific
ideas are.

Experimental evaluation in traffic flow prediction is com-
plex due to two factors. The first is the lack of benchmark
dataset, a problem that we have discussed above. The sec-
ond is the lack of code availability. One might attempt to
recreate the model from the author’s description. However,
while the deep neural network aspect can be recreated
relatively easy, novel components, such as graph diffusion,
are difficult to build in a way that is faithful to the source
material.

This lack of experimental evaluation is perhaps the
largest challenge that the traffic flow prediction community
faces. Addressing this problem will enable practitioners to
easily identify the effectiveness of new ideas in improving
prediction performance, model efficiency, and the overall
applicability of deep neural network models in real-time
traffic prediction applications. A benchmark experimental
evaluation needs to take into account the following insights:
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• The impact of each model’s novel ideas to the predic-
tion power, particularly for models that use a similar
network structure.

• The impact of using a certain neural network type
such as CNN and RNN.

• The viability in real life applications with respect to
the retraining time. That is, online learning using a
realistically sized batch of data, e.g. data from one
week.

• The impact of using external information such as
weather and accidents data. This can be observed by
performing an ablation test on models that utilize
these external information.

G. Applying Emerging Techniques There are several emerg-
ing techniques that have been applied to the problem of traffic flow
prediction. However, as these technologies are still in their infancy,
they are much rarer compared to the more conventional deep
neural network structures discussed in the previous sections. Two
promising new techniques are Transformers [78] and Generative
Adversarial Networks (GAN) [79].

Transformers are similar to encoder-decoder RNNs in that
they take sequences as inputs and outputs sequences. The differ-
ence is that Transformers are designed with attention mechanisms
in mind and can be parallelized. The original paper by Vaswani
et al. [78] applied Transformers to machine translation, but it has
since been applied to traffic flow prediction by Xu et al. [80].

Generative Adversarial Networks consist of two neural net-
works that are trained to compete with each other. The two
networks are generative networks, designed to capture the dataR1D2
distribution, and discriminative network, which judges whether
a given sample came from the true data or from the distribution
generated by the generative network [79]. This method has been
used by Liang et al. [81], which use LSTMs for both the generative
and discriminative network, and by Yilun et al. [82], where a
GAN is used to enable traffic flow prediction that is more robust
to outliers. Zhang et al. [83] combine GAN with graph CNN, and
use sequence-to-sequence autoencoder for the generative network.

While state-of-the-art models that commonly use encoder-
decoder LSTM combined with graph-based methods, have achieved
excellent performance, these promising new techniques may be
able to further improve the performance of traffic flow prediction.

6 CONCLUSION

Traffic flow prediction is one of the easiest and cheapest
measures to address traffic congestion. In this work, we
have explored how the field of traffic flow prediction had
evolved over the time from classical statistical models, to
machine learning models and finally to deep neural network
models; described the common deep neural network struc-
tures, how they work and how they are able to learn specific
features from traffic data; listed out and compared the
numerous deep neural network for traffic flow prediction
literatures; and identified the existing and future challenges
faced by the traffic flow prediction field.

We believe that the future of the traffic flow prediction
field lies on determining a more standardized approach that
ensures that the significance of every novel idea can be
identified. The first step is to establish a comprehensive
benchmark dataset that enables the multitude of traffic

factors to be explored; not only from the spatiotemporal
side, but incorporating social media data, weather data, ac-
cidents data and many other external data that might affect
traffic prediction. Then, the next step is to provide more
transparency in this research field. Implementation details
and publicly accessible codes will be necessary. The final
step is then to provide readers and practitioners alike with
an up-to-date, thorough snapshot of the current advances
in the field. Continuous survey and especially experimental
evaluation work contribute to this goal.

We hope that the advances of the traffic flow predic-
tion field will inspire confidence and eventual widespread
implementation of real-time prediction systems that can
directly contribute to the improvements of traffic condition
worldwide.
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