
1

Towards an Optimal Bus Frequency Scheduling:
When the Waiting Time Matters

Songsong Mo, Zhifeng Bao, Baihua Zheng, and Zhiyong Peng

Abstract—Reorganizing bus frequencies to cater for the actual travel demands can significantly save the cost of the public transport
system. Many, if not all, previous studies formulate this as a bus frequency optimization problem that tries to minimize passengers’
average waiting time. On the other hand, many investigations have confirmed that the user satisfaction drops faster as the waiting time
increases. Consequently, this paper studies the bus frequency optimization problem considering the user satisfaction. Specifically, for
the first time to our best knowledge, we study how to schedule the buses such that the total number of passengers who could receive
their bus services within the waiting time threshold can be maximized. We propose two variants of the problem, FAST and FASTCO, to
cater for different application needs and prove that both are NP-hard. To solve FAST effectively and efficiently, we first present an
index-based (1− 1/e)-approximation algorithm. By exploiting the locality property of routes in a bus network, we further propose a
partition-based greedy method that achieves a (1− ρ)(1− 1/e) approximation ratio. Then we propose a progressive partition-based
greedy method to further boost the efficiency while achieving a (1− ρ)(1− 1/e− ε) approximation ratio. For the FASTCO problem, two
greedy-based heuristic methods are proposed. Experiments on a real city-wide bus dataset in Singapore have been conducted to
verify the efficiency, effectiveness, and scalability of our methods in addressing FAST and FASTCO respectively.

Index Terms—bus frequency scheduling optimization, user waiting time minimization, approximation algorithm.

F

1 INTRODUCTION

PUBLIC transport is not only an important contributing
factor to urban sustainability, but also an essential part

of tackling both pollution and congestion. To encourage
more commuters to take public transport (e.g., buses), it is
critical to make travelling by public transport a convenient
choice for commuters. In this paper, we study bus frequency
optimization with a focus on rescheduling bus frequencies
to meet the actual travel demands, which is expected to
achieve significant savings in cost. Taking New York City
as an example, the cost of each bus is around $550,000 and
the operating cost of transit agencies reaches $215 per hour1.
If we re-organize the bus frequencies based on real travel
demands and save 10% bus departures, we can save $20
operating costs per hour and $55,000 per vehicle.

In the past, there have been several studies on bus
frequency optimization. Most of them share a common
objective of minimizing the average travel cost (in term of
waiting time) of passengers [1], [2], [3], [4], [5]. In addition,
their solutions are usually heuristic rather than approximate
algorithms with theoretical guarantees. However, most, if
not all, existing studies ignore user satisfaction, a very im-
portant aspect. Meanwhile, the commuter satisfaction report
has confirmed that the user satisfaction drops faster as the

This work was done when Songsong Mo was a visiting student at RMIT.

• S. Mo and Z. Peng (corresponding author) are with the school of computer
science, Wuhan University, Wuhan 430000, Hubei, China.
E-mail: {songsong945, peng}@whu.edu.cn

• Z. Bao is with the Computer Science and Information Technology, RMIT
University, Melbourne, VIC 3000, Australia.
E-mail: zhifeng.bao@rmit.edu.au

• B. Zheng is with Singapore Management University, Singapore, Singa-
pore.
E-mail: bhzheng@smu.edu.sg

Manuscript received xx, 2020.
1. https://www.liveabout.com/bus-cost-to-purchase-and-operate\

-2798845

waiting time increases [6], [7], [8]. Motivated by this finding,
we aim to schedule the buses in a way to serve more
passengers within a given waiting time threshold θ, which is
an input that could be changed based on user or application
needs.

To this end, we focus on studying the satisfaction-
boosted bus scheduling. To be more specific, we propose
the SatisFAction-BooSTed Bus Scheduling (FAST) problem and
SatisFAction-BooSTed Bus Scheduling under the COnstraint of
Limited Vehicles (FASTCO) to cater for two different scenar-
ios.

Given a bus service database B, a bus route databaseR, a
passenger database P , and a waiting time threshold θ, FAST
takes a vectorN 〈n1, n2, · · · , ni, · · · , n|R|〉 that specifies the
expected number of bus departures for each bus route as
an input and it schedules ni bus departures for each route
ri ∈ R such that the whole bus system is able to serve the
most passengers within the threshold θ. FASTCO takes a
terminal database T and a vector N〈n1, n2, · · · ,ni,· · · ,n|T |〉
with ni (≥ 1) denoting the initial number of buses parking
at terminal ti as inputs, and it arranges buses to serve
the bus services under the condition that a bus parking
at a terminal ti could serve any route that starts from the
terminal ti such that the whole bus system is able to serve
the most passengers within the threshold θ. In short, FAST
assumes the number of bus departures for each bus route
is fixed; FASTCO assumes the number of buses parking at
each bus terminal is fixed but buses could be scheduled to
serve different routes started from the same terminal. Our
analysis shows that the objective functions of both FAST and
FASTCO are submodular, and both FAST and FASTCO are
NP-hard.

To resolve the FAST problem, we develop a range of
approximate algorithms with non-trivial theoretical guar-
antees. First, we propose an index-based greedy method

https://www.liveabout.com/bus-cost-to-purchase-and-operate\-2798845
https://www.liveabout.com/bus-cost-to-purchase-and-operate\-2798845

2

(Greedy) as the baseline, which can provide (1 − 1/e)
approximation factor. Then, we propose two enhanced algo-
rithms, namely PartGreedy and ProPartGreedy. PartGreedy
is inspired by the fact that a bus network is designed to
cover different parts of the city and avoid unnecessary
overlapping among routes [9], [10], [11], [12]. It adopts
a partitioning algorithm to divide the bus network into
several disjoint partitions. Accordingly, it invokes a local
greedy search within each partition to effectively reduce
the computation cost of the original Greedy. On the other
hand, ProPartGreedy adopts a different strategy to address
the efficiency issue. Instead of finding one bus that con-
tributes the most to the objective function in each iteration
of the local greedy search, it fetches multiple buses in each
iteration of the local greedy search to cut down the total
number of iterations required. Meanwhile, ProPartGreedy
has a tunable parameter that could determine roughly how
many buses could be fetched in each iteration and hence
provides a trade-off between efficiency and effectiveness.

Next, to resolve the FASTCO problem, we design two
greedy-based heuristic methods. First, we extend basic
greedy method (GreedySel) to solve FASTCO as a baseline.
GreedySel, in each greedy iteration, checks all the bus routes
that can be served by currently available physical buses
and chooses the route with the maximal marginal gain.
GreedySel simply selects the buses based on the contribu-
tion to the objective function. However, it might schedule
a bus to serve a bus route in a much later time slot, which
significantly affects the utility of buses. In order to improve
the utilization of physical buses, we present a composite
score based greedy method (ScoreSel) to strike a balance
between the idle time and the marginal gains of each bus.

In summary, we make the following contributions.

• We propose and study the FAST and FASTCO prob-
lems. To the best of our knowledge, this is the first
study on bus frequency optimization that considers
commuters’ tolerance on waiting time. We prove that
both FAST and FASTCO are NP-hard (Section 3).

• We propose an index-based greedy method (Greedy),
a partition-based greedy method (PartGreedy) and a
progressive partition-based greedy method (ProPart-
Greedy) to solve the FAST problem efficiently. They can
achieve an approximation ratio of (1− 1

e), (1−ρ)(1−
1
e),

and (1 − ρ)(1 − 1
e − ε) respectively, where ρ and ε are

two user-defined parameters (Sections 4-5).
• We design two greedy-based heuristic methods to solve

the FASTCO problem effectively and efficiently (Sec-
tion 6).

• We conduct extensive experiments on real-world bus
routes and bus touch-on/touch-off records in Singapore
(396 routes, 28 million trip records of one week) to
demonstrate the effectiveness, efficiency and scalability
of our methods (Section 7).

This paper extends our previous preliminary study [13]
by introducing a new problem called FASTCO, and present-
ing two greedy-based heuristic methods as the solutions,
along with the corresponding experimental studies. In ad-
dition, we have also developed a system that implements
the main ideas [14].

2 RELATED WORK

In this section, we will review existing studies related to
this paper and present the main difference between existing
works and our study presented in this paper.

We cluster the literature into two categories based on the
overall optimization goal, i.e., travel time driven bus frequency
optimization problem (Travel-BFO) and transfer time driven
bus frequency optimization problem (Transfer-BFO). The former
treats each ride as a new trip and aims to minimize the
average/total travel time of passengers for either one bus
route or a bus route network, based on passenger demands.
Here, a commuting journey from the origin to the destina-
tion is different from a bus ride, as a commuting journey
could involve multiple rides if transfers are required. The
latter tries to minimize the total transfer time of the transfer
passengers, who have to take more than one bus in order to
travel from their origins to the destinations.

Travel-BFO. Here, the passenger demand is usually ab-
stracted as an origin-destination (OD) pair. The model
proposed in [1] treats the travel time of passengers as an
aggregation of the walking time, the waiting time, and
the on-board travel time. The problem is formulated as a
nonconvex objective function with linear or convex con-
straints, and a heuristic method is proposed by refining a
set of frequencies according to a descent strategy. In [2], it
is modelled as a nonlinear bi-level problem: the upper level
represents the planner who wants to ensure the minimum
total travel time under fleet size constraints; the lower level
represents the users who act by minimizing the travel time.
In [3], a multi-objective model is proposed, seeking to mini-
mize the overall travel time of the users and the operational
cost of the operators (assumed to be linearly proportional
to the frequencies). The salient characteristic of this work
is the internalization of the congestion in the behavior of
the users. The proposed heuristic solution starts with an
initial set of frequencies, which is successively improved by
a sensitivity analysis procedure. Martı́nez et al. [4] study
the transit frequency optimization problem to determine the
time interval between subsequent buses for a set of bus
routes. They propose a mixed-integer linear programming
(MILP) formulation for an existing bilevel model [2], and
present a meta-heuristic method. A new model considering
user behavior is proposed in [5]. It assigns a user’s trip to
three stages (pre-trip, on-board and end-trip) and aims to
minimize users’ total travel costs of the target bus route.
In [15], [16], [17], they aim to plan some routes to minimize
some objectives, such as the total travel time and the maxi-
mum flow time.

Differences. Although different bus frequency optimization
models have been proposed, they share a very similar
optimization goal, i.e., minimizing the average/total travel
cost of passengers. Different from the above studies, we aim
to improve the overall passenger satisfaction by scheduling
the buses such that they can serve more passengers within
a given waiting time threshold. Our work is mainly mo-
tivated by the following two findings. First, waiting time
has a direct impact on the user satisfaction, as evident by
many consumer satisfaction surveys [6], [7], [8]. Second, the
waiting time threshold is tunable, hence the bus company

3

TABLE 1: Notations for problem formulation and solutions

Symbol Description

R A bus route database
P A passenger database
B A bus service database
F A bus service frequency
T A bus terminal database
G(F) The total number of passengers served by F
θ The waiting time threshold

can adjust thresholds to cater to various concerns on budget,
government needs, passengers’ tolerance of waiting, etc.

Transfer-BFO. The transfer time driven bus frequency op-
timization problem is an extension of single bus route
scheduling. It determines the departure time of each trip of
all the bus routes in the bus network with the consideration
of passenger transfer activities at transfer stations [11]. This
problem is modelled by mixed integer programming models
to maximize the number of synchronized bus arrivals at
transfer nodes [18]. Ibarra-Rojas et al. [19] extend [18] to ad-
dress a flexible Transfer-BFO problem with almost evenly-
spaced departures to prevent bus bunching. The model
proposed in [20] tries to minimize the total transfer time
experienced by passengers. Parbo et al. [21] study a bi-level
bus timetabling problem to minimize the weighted transfer
waiting time of passengers, and applies a Tabu Search algo-
rithm to solve this bi-level problem. Recently, a non-linear
mixed integer-programming model has been proposed to
maximize the total number of transfer passengers with small
excess transfer time [22].

Differences. The above studies on the Transfer-BFO problem
mainly focus on minimizing the total transfer cost for pas-
sengers on transfer, which can only improve the satisfaction
of the transfer passengers. In contrast, our problem aims
to improve overall passenger satisfaction by serving them
within a given waiting time threshold.

Remark. (1) Methodology-wise, all the above studies in
both categories only propose heuristic methods without the-
oretical guarantees, although they have different problem
settings. On the other hand, most of our approaches are
approximate algorithms with non-trivial theoretical guar-
antees. (2) Scalability-wise, our approaches by design have
superior scalability as they are proposed to handle city-scale
datasets with hundreds of bus routes and millions of travel
records; in contrast, most of the existing studies are not able
to handle large datasets.

3 PROBLEM FORMULATION

In this section, we first formally define FAST and FASTCO.
Then we analyze the monotonicity and submodularity of
the respective objective function and prove the NP-hardness
for both problems. To facilitate our presentation, frequently
used notations are listed in Table 1.

3.1 Problem Definition
In a bus route database R, a route r is represented as a
sequence of bus stations (s1, s2, · · · , si, · · · , sm), where each
bus station si is represented by (latitude, longitude). In a
passenger database P , a passenger p ∈ P is in the form of a
tuple {sb, se, rt}, where sb denotes the boarding station, se
denotes the alighting station, and rt denotes the time when

p reaches sb. A bus service bsij is in the form of a tuple
{ri, dtj}, where ri and dtj denote the bus service route and
the departure time from ri.s1 respectively.

Definition 3.1. We define that a bus service bsij can serve
a passenger p, if ri contains p.sb and p.se in order, and
0 ≤ dtj + T (ri.s1, p.sb) − rt ≤ θ, where T (ri.s1, p.sb)
denotes the travel time required by the bus service bsij
from ri.s1 to p.sb via the bus route ri, and θ is a given
waiting time threshold.

There are multiple ways available to approximate
T (ri.s1, p.sb). In this paper, we utilize the average historical
travel time from ri.s1 to p.sb via the route ri to compute
T (s1, sb). Based on Definition 3.1, we formally introduce
S(bsij , pk) to denote the service of bsij to passenger pk, as
presented in Equation (1).

S(bsij , pk) =
{

1 if bsij can serve pk
0 otherwise (1)

Next, we introduce the concept of bus service frequency
in Definition 3.2.

Definition 3.2. A bus service frequency (fi) for bus route ri
refers to a set of bus services (bsi1, bsi2, · · · , bsini

) that
serve the route ri, where ni (ni ≥ 1) denotes the total
number of bus departures corresponding to the route ri
within a day.

Given a bus route database R, fi represents the bus
service frequency corresponding to a bus route ri ∈ R.
Consequently, ∪∀ri∈Rfi forms a set, denoted as the bus
service frequency F . Then, the bus services scheduled based
on F to a passenger pk can be computed by Equation (2).
Note that S(F , pk) = 1 as long as any bsij ∈ F can serve
pk; otherwise, S(F , pk) = 0.

S(F , pk) = 1−
∏

bsij∈F
(1− S(bsij , pk)) (2)

To this end, we proceed to formalize FAST and FASTCO
in Definition 3.3 and 3.4, respectively, and show their NP-
hardness in Section 3.2.

Definition 3.3 (SatisFAction-BooSTed Bus Scheduling
(FAST)). Given a bus service database B, a bus route
database R, a passenger database P , a waiting time
threshold θ, and a vector N〈n1, n2, · · · ,ni, · · · , n|R|〉
where ni denotes the total number of bus departures
of bus route ri ∈ R, FAST aims to find a bus service
frequency F that can maximize

G(F) =
∑

pk∈P
S(F , pk),

where G(F) denotes the total number of passengers
served by F .

Example 1. Assume we have a bus route database R =
{r1, r2}, a bus service database B = {bs11, bs12, bs21,
bs22, bs23}, and a passenger database P = {p1, p2,
p3, p4}, as shown in Figure 1. Given a vector N〈1, 2〉
that indicates the expected number of departures for
bus routes, we need to select one bus service from
{bs11, bs12} and two bus services from {bs21, bs22, bs23}
to F such that G(F) could be maximized according
to Definition 3.3. In this example, we should output

4

Stops
{ }
{ }

R

B dt
12:30
14:45
9:30
15:35
21:25

8min 10min

7min

15min

12:30
9:30
9:30

P rt

15:35

Fig. 1: An example of FAST

F = {bs11, bs21, bs22}, which can serve the maximum
number of passengers (G(F) = 4), as the optimal result.

FAST focuses on the case where the number of depar-
tures for each bus route is fixed and known in advance. It
tries to find the proper departure times for each route in
order to serve the maximum number of passengers within
the given waiting time threshold.

Apart from this case, another different, yet equally im-
portant, case is that, a certain scheduling might allow a bus
vehicle to serve multiple bus routes. Taking Singapore as an
example, many bus routes share common starting and/or
ending locations (e.g., bus terminus or bus interchanges).
For example, there are 24 routes starting from Bedok Bus
Interchange and 31 routes starting from Jurong East Bus
Interchange. Motivated by the above observation, we intro-
duce the concept of bus terminal, which refers to the bus
stations that normally serve as the starting station and/or
terminating station of bus routes. With the help of bus
terminals, we further assume that buses parking at a given
bus terminal could be scheduled to serve any bus routes that
starts from that bus terminal. Consequently, we consider the
case where the number of bus vehicles is limited and study
how to maximize the user satisfaction by fully utilizing the
limited buses. To cater to the bus scheduling problem with
limited number of buses constraint, we formulate FASTCO
in Definition 3.4.

To be more specific, let T = {t1, t2, · · · , ti, · · · , t|T |}
denote the set of bus terminals (i.e., T = ∪∀ri∈R(ri.s1 ∪
ri.sm)). We further introduce ti.routes to represent the set
of routes starting from terminal ti, i.e., ∀rj ∈ ti.routes,
rj .s1 = ti, and ti.buses to denote the set of physical buses
parking at terminal ti. A physical bus b is represented
by (id, at), where at denotes the time that b arrives at a
terminal. Note that ti.buses changes its buses as buses are
scheduled to serve different routes. For example, when a bus
b is scheduled to serve a route ri that is from one terminal
ta to another terminal tb at time dtj , bus b will be removed
from ta.buses at dtj to reflect the fact that b departs from
the terminal ta, and it will be included into tb.buses at time
dtj + T (ri.s1, ri.sm) to reflect the fact that bus b arrives
at terminal tb at dtj + T (ri.s1, ri.sm). Then, we define the
following problem to output a bus service frequency F that
can maximize the total number of passengers served by F
subject to the number of vehicle constraint.

Definition 3.4 (SatisFAction-BooSTed Bus Scheduling under
the COnstraint of Limited Vehicles (FASTCO)). Given
a bus service database B, a bus route database R, a

Stops

{ }

{ }

R

8min 10min

7min

15min

Bus at

5:30

12:30

9:30

9:30

P rt

15:35

B dt

12:30

14:45

9:30

15:35

21:25Stops
{ }
{ }

R

B dt
12:30
14:45
9:30
15:35
21:25

8min 10min

7min

15min

12:30
9:30
9:30

P rt

15:35

Bus at
5:30

Fig. 2: An example of FASTCO

passenger database P , a terminal database T , a waiting
time threshold θ, and a vector N〈n1, n2, · · · ,ni,· · · ,n|T |〉
where ni (≥ 1) denotes the initial number of buses
parking at terminal ti, FASTCO aims to find a bus service
frequency F that can maximize

G(F) =
∑

pk∈P
S(F , pk),

under the condition that a bus parking at a terminal ti
could serve any route in ti.routes. Here, G(F) denotes
the total number of passengers served by F .

Example 2. Assume we have a bus route database R =
{r1, r2}, a bus service database B = {bs11, bs12, bs21,
bs22, bs23}, a passenger database P = {p1, p2, p3,
p4} (same as Example 1), and a terminal database
T = {t1, t2, t3}, as shown in Figure 2. There is only
one bus b1, parking at terminal t1, i.e., t1.buses = {b1},
t2.buses = t3.buses = ∅. According to Definition 3.4,
we can first arrange b1 to serve either bus service
bs11 or bs12, as t1.routes = {r1}, b1.at ≤ bs11.dt
and b1.at ≤ bs12.dt. Here b1.at denotes the arrival
time of bus b1. Once the selection is made (say bs11
is selected and added to F), bus b1 will reach t2 at
12:48. As t2.routes = {r2} and b1.at =12:48, bus b1
could serve either bs22 or bs23. Suppose bs22 is selected,
F = {bs11, bs22} achieves the best performance by
serving two passengers in total.

3.2 Problem Hardness

In this section, we proceed to conduct theoretical analysis
on the hardness of FAST and FASTCO.

Theorem 3.1. The objective function G of FAST is monotone
and submodular.

Proof. We skip the proof of the monotonicity of G as
it is straightforward. In the following, we prove that G
is submodular. Let V ⊆ T ⊂ B, where B denotes the
universe of bus services, and b refers to a bus service in
B\T . According to [23], G(V) is submodular if it satisfies:
G(V ∪ b)− G(V) ≥ G(T ∪ b)− G(T). To facilitate the proof,

5

we define Vb = V ∪ b and Gb(V) = G(V ∪ b)− G(V). Then,
we have:

Gb(V)− Gb(T) = (
∑

pk∈P
S(Vb, pk)−

∑
pk∈P

S(V, pk))

−(
∑

pk∈P
S(Tb, pk)−

∑
pk∈P

S(T, pk))

=
∑

pk∈P
(S(Vb, pk)− S(V, pk)− S(Tb, pk) + S(T, pk)).

(3)
To show the submodularity of G, we first prove Inequal-
ity (4).

S(Vb, pk)− S(V, pk)− S(Tb, pk) + S(T, pk) ≥ 0 (4)

According to whether pk can be served by bus services in
V or bus services in T\V or bus serviceb, there are in total
four cases corresponding to Inequality (4).

Case 1: pk can be served by a bus service b0 ∈ V . Then
we have S(V, pk) = S(Vb, pk) = S(T, pk) = S(Tb, pk) =
1, because V ⊂ Vb and V ⊆ T ⊂ Tb. Thus, S(Vb, pk) −
S(V, pk)− S(Tb, pk) + S(T, pk) = 0.

Case 2: pk cannot be served by any bus service b0 ∈ V
but it can be served by a bus service b1 ∈ T\V . Then
we have S(V, pk) = 0, S(Vb, pk) ≥ 0 and S(T, pk) =
S(Tb, pk) = 1. Thus, S(Vb, pk) − S(V, pk) − S(Tb, pk) +
S(T, pk) ≥ 0.

Case 3: pk cannot be served by any bus service b0 ∈ T
and can be served by the bus service b. Then we have
S(V, pk) = S(T, pk) = 0 and S(Vb, pk) = S(Tb, pk) = 1.
Thus, S(Vb, pk)− S(V, pk)− S(Tb, pk) + S(T, pk) = 0.

Case 4: pk cannot be served by any bus ser-
vice b0 ∈ T or the bus service b. Then we have
S(V, pk)=S(Vb, pk)=S(T, pk) = S(Tb, pk) = 0. Thus,
S(Vb, pk)− S(V, pk)− S(Tb, pk) + S(T, pk) = 0. The above
shows the correctness of Inequality (4).

Based on Equation (3) and Inequality (4), we have
Gb(V)−Gb(T) ≥ 0 and hence G is a submodular function. �

Theorem 3.2. The FAST problem is NP-hard.

Proof. It is worth noting that the minimum unit of time
is second in daily life. Therefore, B is a finite set. Based
on this, we prove it by reducing the Set Cover problem
to the FAST problem. In the Set Cover problem, given a
collection of subsets S1, · · · , Si, · · · , Sj of a universe of
elements U , we wish to know whether there exist k of the
subsets whose union is equal to U . We map each element
in U in the Set Cover problem to each passenger in P , and
map each subset Si to the set of passengers served by a
bus service b ∈ B. Consequently, if all passengers in U are
served by S, the total number of passengers served by S is
|U |. Subsequently, n =

∑|R|
i=1 ni is set to k (selecting k bus

services). The Set Cover problem is equivalent to deciding
if there is a k-bus service set with the maximum served
passenger number U in FAST. As the Set Cover problem is
NP-complete, the decision problem of FAST is NP-complete,
and the optimization problem is NP-hard. �
Theorem 3.3. The objective function G of FASTCO is mono-

tone and submodular.

The proof of Theorem 3.3 is similar to the proof of
Theorem 3.1. We omit it here for space saving.
Theorem 3.4. The FASTCO problem is NP-hard.

Algorithm 1: Greedy (B,R,P,N)

1.1 Input: a bus service database B, a bus route database R,
a passenger database P , and a vector N 〈n1, n2, · · · ,
n|R|〉

1.2 Output: a bus service frequency F
1.3 Initialize F ← φ, n←

∑|N|
i=1 ni

1.4 Initialize a |N |-dimension vector 〈k1, k2, · · · , k|N|〉 with
zero

1.5 for i← 1 to n do
1.6 Select a bus service

bsjl ← argmaxbs∈B\F (G(F ∪ bs)− G(F))
1.7 kj ++
1.8 if kj ≤ nj then
1.9 F ← F ∪ bsjl

1.10 if kj ≥ nj then
1.11 remove all the bus services serving route rj from

B
1.12 return F

Proof. We prove the NP-hardness of FASTCO by reducing
the Set Cover problem to FASTCO problem. The proof of
Theorem 3.4 is similar to that of Theorem 3.2. The only
difference is the way to set the number of subsets. In the case
where all routes start from different terminals and no route
starts from other routes’ end terminals, the total number of
physical buses in all terminals from which routes start is set
to k (selecting k bus services). �

4 BASIC GREEDY METHOD FOR FAST
To address FAST, we first present a basic greedy method.
To accelerate the marginal gain computation, we propose
a mapping structure to index the bus service and the pas-
senger databases. The basic greedy method is guaranteed to
achieve (1 - 1/e)-approximation, as proved by Nemhauser
et al. [23].

The pseudo-code of the greedy method is listed in
Algorithm 1. In each iteration, it selects a bus service
bsjl ∈ B\F with the largest marginal gain, such that
bsjl = argmaxbs∈B\F (G(F ∪ bs) − G(F)), and inserts it to
the current service frequency F . In lines 1.8-1.11, it checks
whether the number of bus departures of route rj , which
bsjl serves, has reached the total number of bus departures
required by this route. If so, it removes all bus services
corresponding to the route rj from B. Such an iteration
is repeated n times, with n being the total number of bus
departures required by all the bus routes. Finally, it returns
F as the solution.
Time Complexity. In each iteration, Algorithm 1 needs
to scan all the bus services in B\F and computes their
marginal gain to the chosen set. Each marginal gain com-
putation needs to traverse P once in the worst case. Thus,
adding one bus service into F takes O(|P| · |B|) time, and
the total complexity is O(n · |P| · |B|).
Index for Efficient Marginal Gain Computation. It is
noticed that the computation of the marginal gain for
scheduling one bus service to serve a bus route is the main
bottleneck of Algorithm 1. To address this issue, we propose
two mapping indexes, forward list and inverted list, as shown
in Fig. 3 and Fig. 4 respectively. The former is for bus
services bsi ∈ B, maintaining a list of passengers LP that
could be served by bus service bsi. Note that a passenger

6Bus Service List NToBeServed LP
bs1 3 p1, p3, p|P|
bs2 2 p1, p2
bs3 1 p3
· · · · · · · · ·
bs|B| 1 p2

Fig. 3: Forward list

Passenger List IsServed Optional Bus Services
p1 false bs1, bs2
p2 false bs2, bs|B|
p3 false bs1, bs3
· · · · · · · · ·
p|P| false bs1

Fig. 4: Inverted list

could be served by multiple bus services. To avoid counting
the same passenger multiple times when calculating the
marginal gain, we maintain another parameter NToBeServed
to capture the number of passengers in LP that are still
waiting for services. Given one bus service bsi, the initial
value of NToBeServed is set to be the cardinality of the
corresponding LP , and its value will be reduced every time
when a passenger in LP is served by another bus service
bsj .

The latter is for passengers p ∈ P , maintaining a
list of bus services that could serve the passenger p. The
boolean IsServed associated with each passenger is to
indicate whether any of the desired bus services has been
scheduled and its initial is false to reflect the fact that
the passenger is waiting for buses. For example, if bus
service bs1 is selected, it could serve three passengers based
on NToBeServed’s value associated with bs1 in forward
list. Meanwhile, IsServed’s value of passengers in LP of
bs1 (i.e., p1, p3, p|P|) will be changed to true, and all the
buses that could serve p1 or p3 or p|P| have to update
NToBeServed’s value to reflect the fact that some of their
potential passengers have already been served.

5 PARTITION-BASED METHODS FOR FAST
As reported in the aforementioned time complexity analy-
sis, the basic greedy suffers from low efficiency and poor
scalability for FAST. For example, as to be reported in
Figure 13(a), it cannot complete the scheduling within 3
hours when the number of departures required by each
bus route reaches 300. Therefore, we further propose two
efficient partition-based methods, inspired by [24], [25], both
of which hold a theoretical guarantee on the approximation
ratio. Moreover, they offer tunable parameters to cater to
different degrees of tradeoff between efficiency and effec-
tiveness of the solution.

5.1 Partition-based Greedy Method
In practice, a bus network is designed to cover different
parts of a city in order to meet residents’ various travel
demands and to avoid unnecessary overlapping among
routes [9], [10], [11], [26]. For example, Figure 5 plots three
popular bus routes in Singapore. A passenger whose travel
demand could be served by route 67 will not consider route
161 or route 147, because these routes have zero overlap.
This observation suggests that it might not be necessary to
scan the entire bus network when calculating the marginal
gains of certain bus services. This motivates us to design a
partition-based greedy method. In the following, we first in-
troduce a novel concept namely service overlap ratio to guide
the partitioning process, and then present the algorithm.

The main idea is to partition the bus routes (and bus
services) into disjoint clusters, and use a divide-and-conquer
strategy to find local optimal frequencies for routes in each
partition. This approach is expected to reduce the time

complexity of the basic greedy by a factor of m2 with m
being the number of partitions. Note when m = 1, the
time complexity of ProPartGreedy is the worst, which is
the same as that of Greedy. The speedup is contributed
by the fact that it invokes the greedy algorithm for each
partition and hence it only needs to scan the bus services
and passengers corresponding to the routes in a partition
during the greedy search. Meanwhile, in terms of accuracy,
we introduce a novel concept called service overlap ratio and
use it to derive an approximation ratio with a non-trivial
theoretical guarantee.
Definition 5.1 (Partition). A partition of a set S is denoted as

a cluster set C ={C1, C2, · · · , Cm}, where m denotes the
total number of clusters, such that S = ∪mi=1Ci, ∀Ci ∈ C,
Ci 6= φ, and ∀Ci, Cj ∈ C with i 6= j, Ci ∩ Cj = φ.

To better illustrate the service overlap ratio, we define
a function Serve(P , R) that takes a passenger set P and a
route set R as inputs and returns the passengers in P that
could be served by any route in R without considering the
temporal factor. To be more specific, a passenger p will be
returned by Serve(P ,R) if there is a route ri ∈ R such that ri
contains p.sb and p.se in order, which is different from the
“bus service serves passengers” defined in Definition 3.1.
We name the set of passengers returned by Serve(P , R) as
the passenger pool w.r.t. bus routes R.

Intuitively, the service overlap ratio ρi of a bus route
cluster CRi tries to measure the number of passengers in
the passenger pool w.r.t. CRi that actually also belong to
the passenger pools w.r.t. other clusters. Let |A| denote the
cardinality of the set A, and F i denote a bus service fre-
quency returned by Greedy(CBk , CRk ,P, Nmin). G(Fk), and
CPi refer to a cluster of bus services, a cluster of routes and a
cluster of passengers respectively, and Nmin refers to a |CRi |-
dimensional vector in the form of 〈nmin, nmin, · · · , nmin〉.
The parameter nmin is set to the minimum number of
bus services required by any route. To this end, we define
the service overlap ratio to quantify the overlaps between
clusters.
Definition 5.2 (Service overlap ratio). Given a partition
CR = {CR1 , · · · , CRm} of the original bus route database
R, for a cluster CRi ∈ CR, the ratio of the service overlap
between CRi and the rest clusters is

ρi =

∣∣∣⋃CRj ∈CR\CRi Serve(P, CRi) ∩ Serve(P, CRj)
∣∣∣

G(F i)
.

Partitioning of bus routes and bus services. Algorithm 2
lists the pseudo-code of a bus route partitioning method,
guided by service overlap ratio. It first partitions the routes
using the finest granularity by forming a cluster for each
bus route. Thereafter, it checks the service overlap ratio
ρi for each cluster CRi and picks the one with the largest
ρi, denoted as CRk , for expansion (Line 2.9). It selects the

7

(a) Bus Route 67 (b) Bus Route 147 (c) Bus Route 161

Fig. 5: Visualization of three popular bus routes in Singapore

Algorithm 2: BusRoutePartitioning (B,R, nmin, ρ)
2.1 Input: a bus database B, a bus route database R, an

integer nmin, and a controlling threshold ρ
2.2 Output: a partition CB of B and a partition CR of R
2.3 for each bus route ri ∈ Route do
2.4 initialize CRi ← {ri}, CBi ← {bab ∈ B|a = i},

Si ← Serve(P, ClusterRi)
2.5 F i ← Greedy(CBi , CRi ,P,Nmin)
2.6 initialize CR ← ∪ri∈RCRi
2.7 for CRi ∈ CR do
2.8 ρi ←

∣∣∣⋃CRj ∈CR\CRi Si ∩ Sj∣∣∣/G(F i)
2.9 k ← argmaxCR

k
∈CR ρk, Max← ρk

2.10 while Max > ρ do
2.11 j ← argmaxCRj ∈CR\C

R
k
|(Sj ∩ Sk)|

2.12 CRk ← CRk ∪ CRj , CR ← CR − CRj , CBk ← CBk ∪ CBj ,
CB ← CB − CBj

2.13 G(Fk)←
max{G(Fk) + G(Fj)− |Sk ∩ Sj |,G(Fk),G(Fj)}

2.14 Sk ← Sk ∪ Sj , ρk ←

∣∣∣∣⋃CR
l
∈CR\CR

k
Sl∩Sk

∣∣∣∣
G(Fk)

2.15 k ← argmaxCR
k
∈CR ρk, Max← ρk

2.16 return CB , CR

cluster CRj that shares the largest common passenger pool
with CRk (Line 2.11) and merges CRj with CRk (Lines 2.12 -
2.14). Note that when cluster CRk is expanded, let Fk denote
the new frequency returned by Greedy(CBk , CRk ,P, Nmin).
G(Fk) is actually required when calculating ρk for this
expanded cluster, by Definition 5.2. However, to reduce
the computation cost and the complexity, we use L =
max{G(Fk) + G(F j) − |Sk ∩ Sj |,G(Fk),G(F j)} as an ap-
proximation of G(Fk). According to our merge rules, L is a
lower bound of G(Fk) and it does not affect the accuracy of
our partition algorithm. This merge-and-expansion process
continues until the ρis associated with all the clusters CRi fall
below the input threshold ρ. We use this partition method
instead of the existing ones to enable PartGreedy to get an
approximation ratio, which is introduced in the following.

After the bus routes and bus services are partitioned,
it invokes the basic greedy method (Section 4) to find the
frequency for each cluster, and merges the local frequencies
corresponding to |CR| clusters as the final answer. We name
this approach as PartGreedy. Its pseudo-code is shown in
Algorithm 3 and its approximation ratio is analyzed in
Lemma 5.1.

Lemma 5.1. Given a partition CR = {CR1 , CR2 , · · · , CRi ,
· · · , CRm} of the bus route database R and the max-
imum service overlap ratio ρ, PartGreedy achieves a

Algorithm 3: PartGreedy (B,R,P,N , ρ)
3.1 Input: a bus service database B, a bus route database R,

a passenger database P , and a vector N 〈n1, n2, · · · ,
n|R|〉, a controlling threshold ρ

3.2 Output: a bus service frequency F
3.3 initialize CR ← φ, CB ← φ, SP ← φ,

nmin ←Min1≤i≤|R|ni, F ← φ
3.4 (CB , CR)← BusRoutePartitioning(B,R,nmin, ρ)
3.5 for each cluster CRi ∈ CR do
3.6 SP ← Serve(P, ClusterRi),

F ← F ∪Greedy(CBi , CRi ,SP,N)
3.7 return F

(1 − ρ)(1 − 1/e) approximation ratio to solve the FAST
problem.

Proof. Let Fi denote the solution obtained by Greedy for
cluster CRi , F∗ denote the solution obtained by PartGreedy,
Oi denote the optimal solution for cluster CRi , and O denote
the global optimal solution. In Algorithm 2, it uses the
lower bound of the G(Fk) to compute the upper bound of
ρk and terminates when the upper bound of ρi for every
cluster CRi ∈ CR is no greater than the given threshold
ρ. Then, we have ρ ≥ ρi for any CRi ∈ CR. Recall in
Section 3, the basic greedy is proved to achieve (1 − 1/e)-
approximation. Therefore, we have G(Fi) ≥ (1−1/e)G(Oi).
Because of the submodularity and monotonicity of G, we
have

∑m
i=1 G(Oi) ≥ G(O) and G(Fi) ≥ G(F i). Then, by

Definition 5.2 we have:∣∣∣∣⋃CRj ∈CR\CRi Serve(P, CRi) ∩ Serve(P, CRj)
∣∣∣∣

= ρiG(F i) ≤ ρG(Fi).
(5)

In addition, Inequality (6) holds according to Definition 3.3.∣∣∣∣⋃CRj ∈CR\CRi Serve(P, CRi) ∩ Serve(P, CRj)
∣∣∣∣

≥ G(Fi)− (G(F∗)− G(F∗\Fi))
(6)

Based on Inequality (5) and Inequality (6), we have

G(F∗)− G(F∗\Fi) ≥ (1− ρ)G(Fi).

Using the principle of inclusion-exclusion, we have

G(F∗) = G(F1 ∪ F2 ∪ ... ∪ Fm)

≥
∑m

i=1
(G(F∗)− G(F\Fi))

≥ (1− ρ)
∑m

i=1
G(Fi)

≥ (1− ρ)(1− 1/e)
∑m

i=1
G(Oi)

≥ (1− ρ)(1− 1/e)G(O).
Thus, this lemma is proved. �

8

Function 1: ProGreedy (B,R,N , ε)
1.1 Input: a bus service database B, a bus route database R,

a vector N , and a parameter ε
1.2 Output: a bus service frequency F
1.3 Initialize F ← φ, n←

∑|N|
i=1 ni

1.4 Initialize a |N |-dimension vector 〈k1, k2, · · · , k|N|〉 with
zero

1.5 Sort bs ∈ B based on descending order of G(bs)
1.6 Initialize h← maxbs∈B(G(bs))
1.7 while |F| ≤ n do
1.8 for each bsjl ∈ B do
1.9 if |F| ≤ n then

1.10 Gbjl(F)← G(F ∪ bsjl)− G(F)
1.11 if Gbjl(F) ≥ h then
1.12 F ← F ∪ bsjl, B ← B\bsjl
1.13 kj ++
1.14 if kj ≥ nj then
1.15 remove all bus services serving the

route rj from B
1.16 if G(bjl) < h then
1.17 break
1.18 else
1.19 break
1.20 h← h

1+ε

1.21 return F

5.2 Progressive Partition-based Greedy Method

Although PartGreedy improves the efficiency of basic
greedy by conducting the search within each partition, it still
suffers from a high computational cost. To be more specific,
in each iteration of the greedy search (either a global search
or a local search by Greedy), in order to find the one with
the maximum gain, it has to recalculate the marginal gain
G(F ∪ bs)−G(F) for all the bus services not yet scheduled.

Motivated by this observation, we propose a progressive
partition-based greedy method (ProPartGreedy). It selects
multiple, but not only one, bus services in each local greedy
search iteration to cut down the total number of iterations
required and hence the computation cost. The pseudo-code
of ProPartGreedy is the same as Algorithm 3 except that the
call of Greedy is replaced with Function 1 (ProGreedy) in
line 3.6 of Algorithm 3. Meanwhile, we will prove that it
can achieve an approximation ratio of (1− ρ)(1− 1/e− ε),
where ρ and ε are tunable parameters that provide a trade-
off between efficiency and accuracy.

As presented in Function 1, ProGreedy first sorts bus
services bs ∈ B based on descending order of G(bs) and
initializes the threshold h to the value of maxbs∈B(G(bs)).
Then, it iteratively fetches all the bus services with their
marginal gains not smaller than h into F and meanwhile
lowers the threshold h by a factor of (1+ε) for next iteration
(Lines 1.8-1.20). The iteration continues until there are n bus
services in F .

Unlike the basic greedy that has to check all potential bus
services in B or a cluster of B in each iteration, brute-force
checking is not necessary for ProGreedy as it implements
an early termination (Lines 1.16-1.17). Since bus services are
sorted by their G(bs) values, if G(bsjl) of the current bus
service is smaller than h, all the bus services bs pending
for evaluation will have their G(bs) values smaller than h
and hence could be skipped from evaluation. It is worth

noting that the efficiency of ProGreedy may be very low,
or even lower than that of Greedy, when ε is close to 0. In
the following, we first analyze the approximation ratio of
Function 1 in Lemma 5.2. Based on Lemma 5.2, we show
the approximation ratio of ProPartGreedy in Lemma 5.3.
Lemma 5.2. ProGreedy achieves a (1− 1/e− ε) approxima-

tion ratio.

Proof. Let bi be the bus service selected at a given threshold
h and O denote the optimal local solution to the problem of
selecting n bus services that can maximize G. Because of the
submodularity of G, we have:

Gb(F) =
{
≥ h
≤ h · (1 + ε)

if b = bi
if b ∈ O\(F ∪ bi),

(7)

where F is the current partial solution. Equation (7) implies
that Gbsi(F) ≥ Gbs(F)/(1 + ε) for any bs ∈ O\F . Thus, we
have

Gbsi(F) ≥
1

(1 + ε)|O\F|
∑

bs∈O\F
Gbs(F)

≥ 1

(1 + ε)n

∑
bs∈O\F

Gbs(F).

Let Fi denote the partial solution that bsi has been included
and bsi+1 be the bus service selected at the (i + 1)th step.
Then, we have

G(Fi+1)− G(Fi) = Gbi+1
(Fi)

≥ 1

(1 + ε)n

∑
bs∈O\Fi

Gbs(Fi)

≥ 1

(1 + ε)n
(G(O ∪ Fi)− G(Fi))

≥ 1

(1 + ε)n
(G(O)− G(Fi)).

The solutionF∗ is obtained by Function 1 with |F∗| = n.
Using the geometric series formula, we have

G(F∗) ≥
(
1−

(
1− 1

(1 + ε)n

)n)
G (O)

≥
(
1− e

−n
(1+ε)n

)
G (O)

=
(
1− e

−1
(1+ε)

)
G (O)

≥ ((1− 1/e− ε))G (O) .

Hence, the lemma is proved. �
Lemma 5.3. Given a partition CR={CR1 , CR2 , · · · , CRi , · · · , CRm}

of the bus route database R and the maximum service
overlap ratio ρ, ProPartGreedy achieves a (1 − ρ)(1 −
1/e− ε) approximation ratio to solve the FAST problem.

Proof. Based on Lemma 5.2, this proof is similar to the proof
of Lemma 5.1, so we omit it to save space. �

6 GREEDY-BASED HEURISTIC METHODS FOR
FASTCO
Although the greedy method is able to support FASTCO, it
is not able to guarantee (1 − 1/e)-approximation, because
of the constraint of limited number of vehicles and the
reusability of vehicles to serve different bus routes, as shown
in the following example.

9

Stops

{ }

{ }

R

10:00

8min 10min

7min

15min

Bus at

5:30

13:00

13:00

11:00
11:00

11:00

P rtB dt

10:00

13:00

11:00

15:35

Fig. 6: A counterexample

Example 3. As shown in Figure 6, the greedy strategy will
schedule b1 that is currently parking at terminal t1 to
serve bus route r1 at 13:00 (select bs12 to F), as it is
able to serve the most passengers ({p2, p3}). Thereafter,
b1 will reach t2 at 13:18 and it could not serve any
other passengers. In other words, the total number of
passengers served by the bus service frequency output
by greedy method is 2. On the other hand, we could
schedule b1 to serve route r1 at 10:00 (select bs11 to F),
which allows it to serve one passenger ({p1}). Then,
b1 reaches t2 at 10:18 and is available to serve bus
route r2 at 11:00 (select bs21 to F). This schedule al-
lows three more passengers ({p4, p5, p6}) to be served.
In total, this frequency serves 4 passengers. Obviously,
2/4 = 0.5 < (1−1/e) ≈ 0.63. We could conclude that the
greedy method can not achieve (1− 1/e)-approximation
when supporting FASTCO.

Therefore, we decide to devise heuristic methods for
FASTCO. In this section, we first the extend basic greedy
method (namely GreedySel) to solve FASTCO as a baseline;
we then present a composite score based greedy method
(namely ScoreSel) to trade off the bus’s idle time and
marginal gains of each bus service.

6.1 Basic Greedy Method
Algorithm 4 shows the pseudo-code of the basic greedy-
based heuristic method. It first performs initializations
(Lines 4.3-4.6). For example, it initializes the arrival time of
all the buses in t.buses for all the terminals t ∈ T to τs, the
starting timestamp of all the bus services in a given city (e.g.,
5am in our experimental study); it initializes a temporary
bus service database B0 by including all the bus services
in B with Available(bs)6= ∅. Function Available(bs) takes a
bus service bs as an input and returns whether a physical
bus is available to provide the service. To be more specific,
given a bus service bsij(ri, dtj) to be served in the near
future, if there is at least one bus parking at terminal ri.s1,
it returns the bus that reaches terminal ri.s1 the earliest;
otherwise, it returns an empty set. In other words, given
a bus service bsij (ri, dtj), if ∃b ∈ tx.buses such that
b.at ≤ dtj ∧ tx = ri.s1 ∧ ∀b′ ∈ tx.buses, b′.at ≥ b.at,
Available(bs) returns b.

It then starts iterations until the temporary bus service
database B0 becomes empty. In each iteration, it selects the

Algorithm 4: GreedySel (B,R,P, T ,N)

4.1 Input: a bus service database B, a bus route database R,
a passenger database P , a terminal database T , a vector
N 〈n1, n2, · · · , ni〉, and two constants τs, τe that indicate
the starting time and end time of all the bus services in a
given city respectively

4.2 Output: a bus service frequency F
4.3 Initialize F ← φ, B0 ← ∅
4.4 ∀t ∈ T , ∀b ∈ t.buses, initialize b.at← τs
4.5 for each bs ∈ B do
4.6 B0 ← B0 ∪ {bs} if (Available(bs)6= ∅)
4.7 while B0 6= ∅ do
4.8 Select a bus service

bsij ← argmaxbs∈B0\F (G(F ∪ bs)− G(F))
4.9 F ← F ∪ {bsij}

4.10 bk ← Available(bs)
4.11 Remove bk from tx.buses with tx ← ri.r1
4.12 if dtj + T (ri.s1, ri.sm) ≤ τe then
4.13 bk.at← dtj + T (ri.s1, ri.sm)
4.14 Add bk into ty.buses with ty ← ri.rm
4.15 B0 ← Update(B0, bk)
4.16 return F

bus service (say bsij) in B0 with the largest marginal gain
and inserts it into the current service frequency F (Lines
4.8 - 4.9). The physical bus busk that is returned by Avail-
able(bsij) will be scheduled to serve bsij . We then remove
the bus busk from the departure terminal tx and add it to
the arrival terminal ty (Lines 4.10 - 4.14). Finally, we invoke
function Update(B0, busk) to update the temporary bus
service database B0 because of the dispatch of busk (Line
4.15). Note that there is no need to re-form B0 from scratch,
since the only change is that busk is going to depart from its
original terminal tx and head towards the terminal ty . We
only need to invoke Available(bs) for i) all the services bs′

with the initial return of Available(bs′) being busk and ii)
all the services bs(ra, dtb) ∈ B − B0 with ra.s1 being ty and
dtb ≥ busk.at. Finally, it returns F as the solution.
Time Complexity. In each iteration, Algorithm 4 needs
to scan all the bus services in B0\F and compute their
marginal gain to the chosen set. In the worst case, it needs
to scan |B| bus services. Each marginal gain computa-
tion needs to traverse P once in the worst case. Thus,
adding one bus service into F takes O(|P| · |B|) time.
Let k =

∑
ti∈T |ti.buses| denote the total number of bus

vehicles, and let Tr and Tt denote the time length of service
time range and the shortest route transfer time, respectively.
Then, the maximum value of |F| is (Tr/Tt) · k and the total
complexity is O((Tr/Tt) · k · |P| · |B|).

6.2 Composite Score Based Greedy Method

GreedySel (i.e., Algorithm 4) simply selects the bus service
with maximum marginal gain in each iteration, without
considering the idle time of a bus. Here, the idle time refers
to the duration between the timestamp a bus reaches its
terminal and the timestamp it departs from its terminal
to serve a bus route. Since it only considers the marginal
gain, it is possible that a bus reaching a terminal in the
early morning is scheduled to serve a bus service in the
afternoon during the rush hour as it is expected to achieve
the highest marginal gain. However, it does not consider the

10

fact that this schedule forces a bus to stay in the terminal for
hours and hence causes unnecessary waste of bus resources.
Consequently, the bus frequency returned by Algorithm 4 is
not able to guarantee a high utility rate of buses. In order
to avoid the case that certain buses are forced to stay in
terminals for long hours because they are scheduled to serve
bus services in much later timestamps, we introduce a novel
concept called composite score, which is designed to trade off
between the bus idle time and the marginal gain achieved
by a bus service.

Accordingly, we propose a new algorithm, namely
Greedy Scheduling by Composite Score (in short Score-
Sel), based on composite score. It shares the same pro-
cedure as Algorithm 4, but adopts a different strat-
egy when scheduling bus services. To be more spe-
cific, in each iteration, instead of selecting the bus ser-
vice with the maximum marginal gain, it selects the ser-
vice with the maximum composite score. In other words,
the selection criterion in Line 4.8 of Algorithm 4 will
be replaced by bsij ← argmaxbs∈B0\F (CoScore(bsij ,F , λ).
Here, CoScore stands for the composite score and notations
F and λ refer to the current bus schedule and a controlling
parameter (that adjusts the relative importance of bus idle
time and the marginal gain of a bus service), respectively.
Due to the similarity between GreedySel and ScoreSel, we
skip the pseudo code of ScoreSel.

In the following, we first explain how to compute com-
posite scores for each bus service bs; we then analyze
the time complexity of the composite score based greedy
method.
Composite Score. We introduce It(bsij) to indicate the bus
idle time, which refers to the duration between the time
when a bus reaches a terminal (i.e., b.at) and the time
when the bus is scheduled to leave the terminal to serve
a bus service bsij . In particular, let bk be the output of
Service(bsij). Then, It(bsij) = dtj − bk.at. Recall that in
Algorithm 4, we only scan the bus services that are in the
temporary bus service database B0. The fact that a bus
service bsij ∈ B0 guarantees that Service(bsij) 6= ∅, i.e., the
services bsab with Service(bsab)= ∅ are not considered here.
Given the fact that the departure time dtj of a bus service is
fixed, It(bsij) reflects the idle duration of a bus. A smaller
It(bsij) is preferred in order to achieve a higher utility rate.
On the other hand, we use g(bsij ,F) (= G(F∪bsij)−G(F))
to represent the marginal gain achieved if the bus service
bsij is scheduled. Based on these two notations, we formally
define composite score of a bus service in Definition 6.1.
Thresholds θi and θg are for normalization purpose such
that both It(bsij)

θi
and g(bsij ,F)

θg
are in the range of [0, 1].

Definition 6.1. Given a bus service bsij , a bus service fre-
quency F , an idle time threshold θi and a marginal gain
threshold θg , the composite score corresponding to the
bus service bsij is defined as follows:

CoScore(bsij ,F , λ) = λ(1− It(bsij)

θi
)+(1−λ)g(bsij ,F)

θg
,

where parameter λ ∈ [0, 1] controls the relative impor-
tance of the idle time and the marginal gain.

Time Complexity. Let k =
∑
ti∈T |ti.buses| denote the

total number of bus vehicles. In each iteration, ScoreSel

needs to scan all the bus services in B\F and compute
their composite scores. Each composite score computation
needs to traverse P and k physical buses once in the
worst case. Therefore, adding one bus service into F takes
O((k + |P|) · |B|) time. In practice, P is much larger than
k. Thus, we update the time complexity of adding one
bus service into F to O(|P| · |B|). We use Tr and Tt to
denote the time length of service time range and the shortest
route transfer time, respectively. Then, the maximum value
of |F| is (Tr/Tt) · k and the worst time complexity is
O((Tr/Tt) · k · |P| · |B|).

7 EXPERIMENT

In this section, we first explain the experimental setup; we
then conduct sensitivity tests to tune the parameters to their
reasonable settings, as our algorithms have several tunable
parameters; we finally report the performance, in terms of
effectiveness, efficiency, and scalability, of all the algorithms.

7.1 Experimental setup

Datasets. We collect the terminal and interchange informa-
tion (T) from Land Transport GURU2 in Singapore. We
crawl the real bus routes (R) from Transitlink3 in Singapore.
Each route is represented by the sequence of bus stop IDs it
passes sequentially, together with the distance between two
consecutive bus stops. The travel time from a stop to another
stop via a route ri is estimated by the ratio of the distance
between those two stops along the route to the average bus
speed of the route. We use bus touch-on record data (shown
later) to find the average travel speed of a particular bus
route.

For the passenger database (P), due to the exhibit reg-
ular travel patterns of passengers [27], we use the real bus
touch-on record data in a week of April 2016 in Singapore
that contains 28 million trip records. Each trip record in-
cludes the IDs/timestamps of the boarding and alighting
bus stops, the bus route, and the trip distance. We assume
passengers spend x minutes waiting for their buses, with x
following a random distribution between 1 and 5 minutes.
Then, we generate the bus service candidate set (B) based
on the route and service time range. For each route, we use
buses that depart every minute between 5am and 12am as
the superset of candidate bus services. The statistics of those
datasets are shown in Table 3.

Parameters. Table 2 lists the parameter settings, with values
in bold being default. In all the experiments, we vary one
parameter and set the rest to their defaults. We assume all
bus routes require the same number of bus departures in
our study. Notation 〈20〉 represents the vector 〈20, · · · , 20〉
for brevity.

Algorithms. To the best of our knowledge, this is the first
work to study the FAST and FASTCO problems, and thus
no previous work is available for direct comparison. In
particular, we compare the following five methods for FAST.

2. https://landtransportguru.net/bus-infrastructure/
bus-interchanges-and-terminals/

3. https://www.transitlink.com.sg/eservice/eguide/service idx.
php

https://landtransportguru.net/bus-infrastructure/bus-interchanges-and-terminals/
https://landtransportguru.net/bus-infrastructure/bus-interchanges-and-terminals/
https://www.transitlink.com.sg/eservice/eguide/service_idx.php
https://www.transitlink.com.sg/eservice/eguide/service_idx.php

11

TABLE 2: Parameter settings

Parameter Values
number of bus departures N = 〈n1, n2, · · · 〉 〈10〉, 〈20〉, 〈30〉, 〈40〉, 〈50〉

number of vehicles N = 〈n1, n2, · · · 〉 〈20〉, 〈40〉, 〈60〉, 〈80〉, 〈100〉
total passenger number |P| 100k, 200k, 300k, 400k, 500k

waiting time threshold θ 1min, 2min, 3min, 4min, 5min
tunable parameter used byProPartGreedy ε 10−4, 10−3, 10−2, 10−1

controlling threshold used by PartGreedy ρ 0.1, 0.2, 0.3, 0.4
relative importance used by ScoreSel λ 0, 0.1, 0.2, 0.3, 0.4, 0.5

TABLE 3: Statistics of datasets

Database Amount AvgDistance AvgTravelTime
T 12 N.A. N.A.
B 451k N.A. N.A.
R 396 19.91km 5159s
P 28m 4.2km 1342s

• FixInterval that fixes the time interval between two bus
departures as b(service time range) / (bus number)c for
each service line and chooses the bus that departures at
5am as the first bus;

• Top-k that picks top-k buses, which could serve the
most number of passengers (k = ni);

• Greedy, PartGreedy, and ProPartGreedy, the three al-
gorithms proposed in this paper.

For the FASTCO problem, we compare two heuristic meth-
ods, GreedySel and ScoreSel, proposed in this paper.

Performance measurement. We adopt the total running time
of each algorithm and the total served passenger number
(SPN) of the scheduled bus services (i.e., G(F)) as the main
performance metrics. We randomly choose the trips (in total
28 million) made by 5 million passengers within a week and
pre-process the passenger dataset to build the index, which
takes 5, 690 seconds and occupies 585MB disk space. Each
experiment is repeated ten times, and the average result is
reported.

Setup. All algorithms are implemented in C++. Experiments
are conducted on a server with 24 Intel X5690 CPU and
140GB memory running CentOS release 6.10. We will release
the code publicly once the paper is published.

7.2 Parameter Sensitivity Test
The first set of experiments is to evaluate the sensitivity
of different parameters on different algorithms, including
waiting time threshold θ, controlling threshold ρ that de-
cides the partitioning of bus routes/bus services, control-
ling threshold ε that determines how fast the threshold h
required by ProPartGreedy reduces its value, and parameter
λ that controls the relative importance of the bus idle time
and the marginal gain achieved by a bus service when
calculating the composite score. Note parameter θ affects
both FAST and FASTCO, parameters ρ and ε affect FAST
only, and parameter λ affects FASTCO only. Their impacts
are detailed below.

The impact of θ on FAST. The impact of waiting time
threshold θ on the running time and SPN of the algorithms
for FAST is reported in Figure 7(a) and Figure 7(b), re-
spectively. Parameter θ has an almost-zero impact on the
running time. This is because the value of θ only affects the
value of marginal gain G(F) but not the computation cost of

G(F). This also explains why θ affects SPN. As θ increases,
all the algorithms are able to serve more passengers, which
is consistent with our expectations. In the following experi-
ments, we set θ = 3.

The impact of ρ on FAST. The impact of parameter ρ on
the running time and SPN is reported in Figure 7(c) and
Figure 7(d), respectively. It has a positive impact on the
running time performance but a negative impact on SPN. As
ρ increases its value, PartGreedy and ProPartGreedy both
incur shorter running time but serve less passengers. We
choose ρ = 0.2 as the default setting.

The impact of ε on FAST. Parameter ε only affects ProPart-
Greedy. It controls the trade-off between efficiency and accu-
racy. As ε increases its value, ProPartGreedy incurs shorter
running time and serves less passengers, as reported in
Figure 7(e) and Figure 7(f), respectively. We choose ε = 0.01
as the default setting.

The impact of θ on FASTCO. The impact of waiting time
threshold θ on the running time and SPN of the algorithms
for FASTCO is reported in Figure 8(a) and Figure 8(b), re-
spectively. Parameter θ has a negative impact on the running
time. This is because the value of θ directly affects the size
of the temporary bus service database B0 and the size of
B0 determines the total number of iterations algorithms
GreedySel and ScoreSel (for FASTCO) have to perform. As
θ becomes larger, B0 contains more bus services and hence
both GreedySel and ScoreSel incur longer running time. On
the other hand, as θ increases its value, both algorithms are
able to serve more passengers, which is consistent with our
expectations. We set θ = 3, the mean value.

The impact of λ on FASTCO. Parameter λ only affects
ScoreSel. It controls the relative importance of the bus idle
time and marginal gain achieved by a bus service. It has
a negative impact on the running time performance, as
shown in Figure 8(c). As λ increases, bus idle time plays
a more important role in composite scores. More buses will
be scheduled to serve bus services in the near future, which
increases the scheduling overhead. On the other hand, as
λ increases its value, the effectiveness of ScoreSel increases
first and then decreases, as reported in Figure 8(d). This is
because as λ increases its value from 0 to 0.2, the composite
score starts considering the impact of bus idle time to avoid
scheduling buses to serve bus services that are much later.
The improved bus utility actually has a positive impact on
the number of served passengers. However, as λ further
increases its value, the impact of bus idle time is overly
emphasized which affects the marginal gain. We choose
ε = 0.2 as the default setting, because it achieves high SPN
with a reasonable running time.

12

 6
 7

 8
 9

 1
0

 40 80 120 160 200

G
ai

n

k

FixInterval Top-K Greedy PartGreedy ProPartGreedy

1
0

-1
1

0
0

1
0

1
1

0
2

1
0

3
1

0
4

 1 2 3 4 5

T
im

e
 (

s
)

θ (min)

(a) Running time vs. θ

 0
 4

0
 8

0
 1

2
0

 1
6

0

1 2 3 4 5

S
P

N
 (

k
)

θ (min)

FixInterval
Top-K

Greedy
PartGreedy

ProPartGreedy

(b) SPN vs. θ

 1
0

0
 2

0
0

 3
0

0
 4

0
0

 5
0

0

 0.1 0.2 0.3 0.4

T
im

e
 (

s
)

ρ

PartGreedy
ProPartGreedy

(c) Running time vs. ρ

 6
0

 8
0

 1
0

0
 1

2
0

 0.1 0.2 0.3 0.4

S
P

N
 (

k
)

ρ

PartGreedy
ProPartGreedy

(d) SPN vs. ρ

 0
 1

0
0

 2
0

0
 3

0
0

 4
0

0
 5

0
0

0.001 0.01 0.1 1
T

im
e

 (
s
)

ε

ProPartGreedy

(e) Running time vs. ε

 6
0

 8
0

 1
0

0
 1

2
0

0.001 0.01 0.1 1

S
P

N
 (

k
)

ε

ProPartGreedy

(f) SPN vs. ε

Fig. 7: Effect of parameters for FAST

 2
0

0
 4

0
0

 6
0

0
 8

0
0

 1
0

0
0

 1 2 3 4 5

T
im

e
 (

s
)

θ (min)

GreedySel
ScoreSel

(a) Running time vs. θ

 1
0

 2
0

 3
0

 4
0

 1 2 3 4 5

S
P

N
 (

k
)

θ (min)

GreedySel
ScoreSel

(b) SPN vs. θ

 3
0

0
 5

0
0

 7
0

0
 9

0
0

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

s
)

λ

GreedySel
ScoreSel

(c) Running time vs. λ

 2
5

 2
6

 2
7

 2
8

 0 0.1 0.2 0.3 0.4 0.5

S
P

N
 (

k
)

λ

GreedySel
ScoreSel

(d) SPN vs. λ

Fig. 8: Effect of parameters for FASTCO

 0
 4

0
 8

0
 1

2
0

 1
6
0

<10> <20> <30> <40> <50>

S
P

N
 (

k
)

Number of bus services

FixInterval
Top-K

Greedy
PartGreedy

ProPartGreedy

(a) SPN vs. N

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

100 200 300 400 500

S
P

N
 (

k
)

Number of passengers (k)

FixInterval
Top-K

Greedy
PartGreedy

ProPartGreedy

(b) SPN vs. |P|

Fig. 9: Effectiveness study for FAST: SPN vs. N or |P|

 0
 1

0
 2

0
 3

0
 4

0
 5

0

<20> <40> <60> <80> <100>

S
P

N
 (

k
)

Number of vehicles

GreedySel
ScoreSel

(a) SPN vs. N

 0
 1

0
 2

0
 3

0
 4

0
 5

0

100 200 300 400 500

S
P

N
 (

k
)

Number of passengers (k)

GreedySel
ScoreSel

(b) SPN vs. |P|

Fig. 10: Effectiveness study for FASTCO: SPN vs. N or |P|

7.3 Effectiveness Study

The second set of experiments is to evaluate how effective
the proposed algorithms are. As mentioned previously, both
FAST and FASTCO are NP-hard, and all the algorithms
proposed in this paper provide approximate solutions. SPN
demonstrates their effectiveness.

Effectiveness Study for FAST. We report the effectiveness
of different algorithms in Figure 9. We observe that (1)
FixInterval is significantly less effective than others; (2) the
three algorithms proposed in this work perform much better
than the other two, e.g., ProPartGreedy doubles (or even
triples in some cases) the SPN of FixInterval; and (3) Greedy
performs the best while PartGreedy and ProPartGreedy
achieve comparable performance (only up to 9.4% less than
that of Greedy).

Effectiveness Study for FASTCO. Figure 10 reports the
effectiveness of ScoreSel and GreedySel for FASTCO, un-
der different N or |P| settings. We observe that ScoreSel
outperforms GreedySel by at least 5.2%.

7.4 Efficiency Study
The third set of experiments is to evaluate the efficiency of
different algorithms.

Efficiency Study for FAST. Figure 11 reports the running
time of five algorithms under varying N or |P|. We have
two main observations. First, the time gap among Greedy,
PartGreedy and ProPartGreedy becomes more significant
with the increase ofN . A possible reason is that the increase
of N causes an increase in the number of clusters and
nmin. On the other hand, PartGreedy and ProPartGreedy
only need to scan one cluster when selecting bus services.

13

 6
 7

 8
 9

 1
0

 40 80 120 160 200

G
ai

n

k

FixInterval Top-K Greedy PartGreedy ProPartGreedy

1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

<10> <20> <30> <40> <50>

T
im

e
 (

s
)

Number of bus services

(a) Running time vs. N

1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

 100 200 300 400 500

T
im

e
 (

s
)

Number of passengers (k)

(b) Running time vs. |P|

Fig. 11: Efficiency study for FAST: Total running time vs. N or |P|

 1
0
0

 4
0
0

 7
0
0

 1
0
0
0

 1
3
0
0

<20> <40> <60> <80> <100>

T
im

e
 (

s
)

Number of vehicles

GreedySel
ScoreSel

(a) Running time vs. N

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 100 200 300 400 500

T
im

e
 (

s
)

Number of passengers (k)

GreedySel
ScoreSel

(b) Running time vs. |P|

Fig. 12: Efficiency study for FASTCO: Total running time vs. N or |P|

1
0

2
1
0

3
1
0

4
1
0

5

<100> <200> <300> <400> <500>

T
im

e
 (

s
)

Number of bus services

Greedy
PartGreedy

ProPartGreedy

(a) Running time vs. N

1
0

2
1
0

3
1
0

4
1
0

5

 1 2 3 4 5

T
im

e
 (

s
)

Number of passengers (m)

Greedy
PartGreedy

ProPartGreedy

(b) Running time vs. |P|

Fig. 13: Scalability study for FAST

1
0

2
1
0

3
1
0

4

<100> <200> <300> <400> <500>

T
im

e
 (

s
)

Number of vehicles

GreedySel
ScoreSel

(a) Running time vs. N

 4
0
0

 8
0
0

 1
2
0
0

 1
6
0
0

 1 2 3 4 5

T
im

e
 (

s
)

Number of passengers (m)

GreedySel
ScoreSel

(b) Running time vs. |P|

Fig. 14: Scalability study for FASTCO

Second, the improvement of PartGreedy and ProPartGreedy
over Greedy decreases with the increase of |P|. This is
because the overlap between clusters increases with the
increase of |P|, which leads to a reduction in the number
of clusters and an increase in partition time.

Efficiency Study for FASTCO. We report the efficiency
of GreedySel and ScoreSel in Figure 12. Again, we have
made two main observations. First, the running time of both
algorithms increases almost linearly w.r.t. N and |P|, which
is consistent with the time complexity analysis conducted
in Section 6. Second, the time gap between GreedySel and
ScoreSel becomes more significant with the increase of N .
This is because, compared to GreedySel, ScoreSel takes the
utility of physical buses into consideration and enables each
physical bus to serve more bus services.

7.5 Scalability Study

Our last set of experiments is to evaluate the scalability of
the algorithms proposed in this paper. Ideally, we would
like all the algorithms to have good scalability and are able
to provide approximate solutions even when the number
of passengers and the number of bus services increase
significantly. In the following study, we change N from
〈100〉 to 〈500〉 to demonstrate the increase of bus service
frequency, and change |P| from 1 million to 5 million to
simulate the increase of passengers to be served.

Scalability Study for FAST. As reported in Figure 13(a),
we find that the efficiency of Greedy is more sensitive
to N , as compared to PartGreedy and ProPartGreedy. It’s
worth noting that we skip the results of Greedy when it
cannot terminate within 104 seconds. This is because both
PartGreedy and ProPartGreedy adopt partitioning strategy,
which helps to limit the side effect of N on the running
time incurred. Similarly, as the increases of passengers, all
the algorithms require longer running time because the
computation cost of marginal gains increases. As reported

in Figure 13(b), PartGreedy and ProPartGreedy are about
ten times faster than Greedy under different |P| settings.

Scalability Study for FASTCO. As shown in Figure 14, both
GreedySel and ScoreSel methods can terminate within 104

seconds even when the number of bus departures for each
bus route is increased to 500 and the number of passengers
to be served is increased to 5 million. In addition, GreedySel
is about two times faster than ScoreSel as it does not need
to derive the bus idle time for each physical bus.

8 CONCLUSION

In this paper we studied the bus frequency optimization
problem considering user satisfaction for the first time. Our
target is to schedule the buses in such a way that the total
number of passengers who could receive their bus services
within the waiting time threshold is maximized. The FAST
and FASTCO problems are proposed to cater for different
application needs in this paper. We showed that these
problems are NP-hard, and proposed three approximation
algorithms with non-trivial theoretical guarantees and two
greedy-based heuristic methods for FAST and FASTCO, re-
spectively. Lastly, we conducted experiments on real-world
datasets to verify the efficiency, effectiveness, and scalability
of our methods.

ACKNOWLEDGMENT

Zhiyong Peng is supported in part by the National Key
Research and Development Program of China (Project Num-
ber: 2018YFB1003400), Key Project of the National Natural
Science Foundation of China (Project Number: U1811263)
and the Research Fund from Alibaba Group. Zhifeng Bao
is supported in part by ARC DP200102611, DP180102050,
and a Google Faculty Award. Baihua Zheng is supported in
part by Prime Minister’s Office, Singapore under its Inter-
national Research Centres in Singapore Funding Initiative.

14

Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not reflect the views of National Research Founda-
tion, Singapore.

REFERENCES

[1] S. Schéele, “A supply model for public transit services,” Transporta-
tion Research Part B: Methodological, vol. 14, no. 1-2, pp. 133–146,
1980.

[2] I. Constantin and M. Florian, “Optimizing frequencies in a transit
network: a nonlinear bi-level programming approach,” Interna-
tional Transactions in Operational Research, vol. 2, no. 2, pp. 149–164,
1995.

[3] Z. Gao, H. Sun, and L. L. Shan, “A continuous equilibrium
network design model and algorithm for transit systems,” Trans-
portation Research Part B: Methodological, vol. 38, no. 3, pp. 235–250,
2004.

[4] H. Martı́nez, A. Mauttone, and M. E. Urquhart, “Frequency
optimization in public transportation systems: Formulation and
metaheuristic approach,” European Journal of Operational Research,
vol. 236, no. 1, pp. 27–36, 2014.

[5] N. Lin, W. Ma, and X. Chen, “Bus frequency optimisation con-
sidering user behaviour based on mobile bus applications,” IET
Intelligent Transport Systems, vol. 13, no. 4, pp. 596–604, 2019.

[6] G. Antonides, P. C. Verhoef, and M. Van Aalst, “Consumer percep-
tion and evaluation of waiting time: A field experiment,” Journal
of consumer psychology, vol. 12, no. 3, pp. 193–202, 2002.

[7] M. C. Kong, F. T. Camacho, S. R. Feldman, R. T. Anderson, and
R. Balkrishnan, “Correlates of patient satisfaction with physician
visit: differences between elderly and non-elderly survey respon-
dents,” Health and Quality of Life Outcomes, vol. 5, no. 1, p. 62, 2007.

[8] M. Cantwell, B. Caulfield, and M. O’Mahony, “Examining the fac-
tors that impact public transport commuting satisfaction,” Journal
of Public Transportation, vol. 12, 06 2009.

[9] M. Fletterman et al., “Designing multimodal public transport
networks using metaheuristics,” Ph.D. dissertation, University of
Pretoria, 2009.

[10] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and G. Cong, “Reverse k
nearest neighbor search over trajectories,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 4, pp. 757–771, 2018.

[11] O. J. Ibarra-Rojas, F. Delgado, R. Giesen, and J. C. Muñoz, “Plan-
ning, operation, and control of bus transport systems: A literature
review,” Transportation Research Part B: Methodological, vol. 77, pp.
38–75, 2015.

[12] S. Wang, Z. Bao, J. S. Culpepper, and G. Cong, “A survey on tra-
jectory data management, analytics, and learning,” arXiv preprint
arXiv:2003.11547, 2020.

[13] S. Mo, Z. Bao, B. Zheng, and Z. Peng, “Bus frequency optimiza-
tion: When waiting time matters in user satisfaction,” in Database
Systems for Advanced Applications - 25th International Conference.
Springer, 2020, pp. 192–208.

[14] ——, “FASTS: A satisfaction-boosting bus scheduling assistant,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 2873–2876, 2020.

[15] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proc. VLDB
Endow., vol. 11, no. 11, pp. 1633–1646, 2018.

[16] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, “An efficient
insertion operator in dynamic ridesharing services,” in 35th IEEE
International Conference on Data Engineering, ICDE. IEEE, 2019, pp.
1022–1033.

[17] Y. Zeng, Y. Tong, and L. Chen, “Last-mile delivery made practical:
An efficient route planning framework with theoretical guaran-
tees,” Proc. VLDB Endow., vol. 13, no. 3, pp. 320–333, 2019.

[18] A. Ceder, B. Golany, and O. Tal, “Creating bus timetables with
maximal synchronization,” Transportation Research Part A: Policy
and Practice, vol. 35, no. 10, pp. 913–928, 2001.

[19] O. J. Ibarra-Rojas and Y. A. Rios-Solis, “Synchronization of bus
timetabling,” Transportation Research Part B: Methodological, vol. 46,
no. 5, pp. 599–614, 2012.

[20] Y. Shafahi and A. Khani, “A practical model for transfer opti-
mization in a transit network: Model formulations and solutions,”
Transportation Research Part A: Policy and Practice, vol. 44, no. 6, pp.
377–389, 2010.

[21] J. Parbo, O. A. Nielsen, and C. G. Prato, “User perspectives in
public transport timetable optimisation,” Transportation Research
Part C: Emerging Technologies, vol. 48, pp. 269–284, 2014.

[22] Y. Wu, “Combining local search into genetic algorithm for bus
schedule coordination through small timetable modifications,”
International Journal of Intelligent Transportation Systems Research,
vol. 17, no. 2, pp. 102–113, 2019.

[23] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions - I,”
Math. Program., vol. 14, no. 1, pp. 265–294, 1978.

[24] P. Zhang, Z. Bao, Y. Li, G. Li, Y. Zhang, and Z. Peng, “Trajectory-
driven influential billboard placement,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2018, pp. 2748–2757.

[25] Y. Zhang, Y. Li, Z. Bao, S. Mo, and P. Zhang, “Optimizing im-
pression counts for outdoor advertising,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2019, pp. 1205–1215.

[26] L. Duan, T. Pang, J. Nummenmaa, J. Zuo, P. Zhang, and C. Tang,
“Bus-olap: A data management model for non-on-time events
query over bus journey data,” Data Sci. Eng., vol. 3, no. 1, pp.
52–67, 2018.

[27] X. Tian and B. Zheng, “Using smart card data to model com-
muters’ responses upon unexpected train delays,” in International
Conference on Big Data. IEEE, 2018, pp. 831–840.

Songsong Mo is working towards his Master de-
gree in Computer Science at Wuhan University.
He received his Bachelor of Computer Science
degree from Wuhan University in 2018. His re-
search interests include database and big data
analytics.

Zhifeng Bao received the Ph.D. degree in com-
puter science from the National University of
Singapore in 2011 as the winner of the Best PhD
Thesis in school of computing. He is currently
an Associate Professor at RMIT University. He is
also an Honorary Senior Fellow with University
of Melbourne in Australia. His current research
interests include data usability, spatial database,
graph data analytics and data integration.

Baihua Zheng received the PhD degree in com-
puter science from Hong Kong University of
Science & Technology, China, in 2003. She is
currently a professor in the School of Informa-
tion Systems, Singapore Management Univer-
sity, Singapore. Her research interests include
mobile/pervasive computing, spatial databases,
and big data analytics.

Zhiyong Peng is a professor of computer
school, Wuhan University of China. He re-
ceived B.Sc from Wuhan University, M.Eng. from
Changsha Institute of Technology of China in
1985 and 1988, respectively, and Ph.D degree
from Kyoto University of Japan in 1995. He
worked as a researcher in Advanced Software
Technology & Mechatronics Research Institute
of Kyoto from 1995 to 1997 and a member of
technical staff in Hewlett-Packard Laboratories
Japan from 1997 to 2000. His research interests

include complex data management, web data management, trusted
data management. He is a member of IEEE Computer Society, ACM
SIGMOD and vice director of Database Society of Chinese Computer
Federation. He was general co-chair of WAIM2011, DASFAA2013 and
PC Co-chair of DASFAA2012, WISE2006 and CIT2004.

	Introduction
	Related Work
	Problem Formulation
	Problem Definition
	Problem Hardness

	Basic Greedy Method for FAST
	Partition-based Methods for FAST
	Partition-based Greedy Method
	Progressive Partition-based Greedy Method

	Greedy-based Heuristic Methods for FASTCO
	Basic Greedy Method
	Composite Score Based Greedy Method

	Experiment
	Experimental setup
	Parameter Sensitivity Test
	Effectiveness Study
	Efficiency Study
	Scalability Study

	Conclusion
	References
	Biographies
	Songsong Mo
	Zhifeng Bao
	Baihua Zheng
	Zhiyong Peng

