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In this article, we propose and study the problem of trajectory-driven influential billboard placement: given a
set of billboardsU (each with a location and a cost), a database of trajectories T , and a budget L, we find a set
of billboards within the budget to influence the largest number of trajectories. One core challenge is to identify
and reduce the overlap of the influence from different billboards to the same trajectories, while keeping the
budget constraint into consideration. We show that this problem is NP-hard and present an enumeration based
algorithm with (1 − 1/e ) approximation ratio. However, the enumeration would be very costly when |U | is
large. By exploiting the locality property of billboards’ influence, we propose a partition-based framework
PartSel. PartSel partitions U into a set of small clusters, computes the locally influential billboards for each
cluster, and merges them to generate the global solution. Since the local solutions can be obtained much more
efficiently than the global one, PartSel would reduce the computation cost greatly; meanwhile it achieves a
non-trivial approximation ratio guarantee. Then we propose a LazyProbe method to further prune billboards
with low marginal influence, while achieving the same approximation ratio as PartSel. Next, we propose a
branch-and-bound method to eliminate unnecessary enumerations in both PartSel and LazyProbe, as well as
an aggregated index to speed up the computation of marginal influence. Experiments on real datasets verify
the efficiency and effectiveness of our methods.
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1 INTRODUCTION

Outdoor advertising (ad) has a $500 billion global market; its revenue has grown by over 23% in
the past decade to over $6.4 billion in the US alone [2]. As compared to social, television, and
mobile advertising, outdoor advertising delivers a high return on investment, and according to [1]
an average of $5.97 is generated in product sales for each dollar spent. Moreover, it literally drives
consumers “from the big screen to the small screen” to search, interact, and transact [4]. Billboards
are the highest-used medium for outdoor advertising (about 65%), and 80% people notice them
when driving [5].

Nevertheless, existing market research only leverages traffic volume to assess the performance
of billboards [19]. Such a straight-forward approach often leads to coarse-grained performance
estimations and undesirable ad placement plans. To enable more effective placement strategies,
we propose a fine-grained approach by leveraging the user/vehicle trajectory data. Enabled by
the prevalence of positioning devices, tremendous amounts of trajectories are being generated
from vehicle Global Positioning System devices, smart phones, and wearable devices. The massive
trajectory data provides new perspective to assess the performance of ad placement strategies.

In this article, we propose a quantitative model to capture the billboard influence over a data-
base of trajectories. Intuitively, if a billboard is close to a trajectory along which a user or vehicle
travels, the billboard influences the user to a certain degree. When multiple billboards are close
to a trajectory, the marginal influence is reduced to capture the property of diminishing returns.
Based on this influence model, we propose and study the the Trajectory-driven Influential Bill-
board Placement (TIP) problem: given a set of billboards, a database of trajectories and a budget
constraint L, it finds a set of billboards within budget L such that the placed ads on the selected
billboards influence the largest number of trajectories. To the best of our knowledge, this is the
first work to address the TIP problem. The primary goal of this article is to maximize the influence
within a budget, which is critical to advertisers because the average unit cost per billboard is not
cheap. For example, the average cost of a unit is $14,000 for 4 weeks in New York [3]; the total cost
of renting 500 billboards is $7,000,000 per month. Since the cost of a billboard is usually propor-
tional to its influence, if we can improve the influence by 5%, we can save about $10,000 per week
for one advertiser. The secondary goal is how to avoid expensive computation while achieving the
same competitive influence value, so that prompt analytic on deployment plans can be conducted
with different budget allocations.

In particular, there are two fundamental challenges to achieve the above goals. First, a user’s
trajectory can be influenced by multiple billboards, which incurs the influence overlap among
billboards. Figure 1 shows an example for six billboards (b1, . . . ,b6) and six trajectories (t1, . . . , t6).
Each billboard is associated with a λ-radius circle, which represents its influence range. If any
point p in a trajectory t lays in the circle of b, t is influenced by b with a certain probability.
Thereby, trajectory t1 is first influenced by billboard b1 and then influenced by b3. If the selected
billboards have a large overlap in their influenced trajectories, advertisers may waste the money
for repeatedly influencing the audiences who have already seen their ads. Second, the budget
constraint L and various costs of different billboards make the optimization problem intricate.
To our best knowledge, this is the first work that simultaneously takes three critical real-world
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Fig. 1. A motivating example (w (bi ) = i).

features into consideration, i.e., budget constraint, non-uniform costs of billboards, and influence
overlap of the selected billboards to a certain trajectory (Section 2).

To address these challenges, we first propose a greedy framework EnumSel by employing the
enumeration technique [13], which can provide an (1 − 1/e )-approximation for TIP. However the
algorithm runs in a prohibitively large complexity of O ( |T | · |U |5), where |T | and |U | are the
number of trajectories and billboards respectively. To avoid such high computational cost, we
exploit the locality feature of the billboard influence and propose a partition-based framework. The
core idea works as follows: first, it partitions the billboards into a set of clusters with low influence
overlap; second, it executes the enumeration algorithm to find local solutions; and third, it uses the
dynamic programming approach to construct the global solution based on the location solutions
maintained by different clusters. We prove that the partition based method provides a theoretical
approximation ratio. Moreover, we devise a lazy probe approach by pro-actively estimating the
upper bound of each cluster and combining the results from a cluster only when its upper bound is
significant enough to contribute to the global solution. However, the enumeration and the marginal
influence computation are still two bottlenecks of the proposed algorithms. To overcome these
issues, we try to speed up the above methods by utilizing the distribution of data. The core idea
has two folds: (1) we employ a branch-and-bound method to eliminate unnecessary enumerations
in PartSel and LazyProbe, which can reduce the runtime greatly if the data contains many low
cost-effective billboards; and (2) we build an aggregated index on T to group similar trajectories
together, thus enabling us to compute the marginal influence on trajectory clusters rather than
dealing with each individual trajectory in T one by one.

Beyond billboard selection, our solution is useful in any store site selection problem that needs to
consider the influence gain w.r.t. the cost of the store under a budget constraint. The only change is
a customization of the influence model catered for specific scenarios, while the influence overlap is
always incurred whenever the audiences are moving. For example, in the electric vehicle charging
station deployment, each station has an installment fee and a service range, which is similar to
the billboard in TIP. Given a budget limit, its goal is to maximize the deployment benefit, which
can be measured by the trajectories that can be serviced by the stations deployed. In summary, we
make the following contributions.

• We formulate the problem of TIP (Section 2), and present a greedy algorithm with the enu-
meration technique (EnumSel) as the baseline solution to achieve a (1 − 1/e ) approximation
for TIP (Section 3). To our best knowledge, this is the first work that simultaneously takes
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three critical real-world features into consideration, i.e., budget constraint, unequal costs of
billboards, and influence overlap of the selected billboards to a certain trajectory.

• We propose a partition-based framework (PartSel) by exploiting the locality property of the
influence of billboards. PartSel significantly reduces the computation cost while achieving
a theoretical approximation ratio (Section 4).

• We propose a LazyProbe method to further prune billboards with low benefit/cost ratio,
which significantly reduces the practical cost of PartSel while achieving the same approxi-
mation ratio (Section 5).

• We propose a pruning method to eliminate the candidates inU that would not be in the an-
swer set, thereby reducing the number of enumerations and speeding up EnumSel, PartSel,
and LazyProbe. Moreover, we aggregate the trajectories influenced by the same billboard set
together, and introduce an index structure to accelerate the marginal influence computation
(Section 6).

• We conduct extensive experiments on real-world trajectory and billboard datasets. The re-
sults demonstrate the superiority of the proposed methods over the traditional approaches
(Section 7).

2 PRELIMINARY

In this section, we first formulate our problem, and then review the relevant studies and justify
their differences to our work.

2.1 Problem Formulation

In a trajectory database T , each (human or vehicle) trajectory t is in the form of a sequence of
locations t = {p1,p2, . . . ,p |t | }; a trajectory location pi is represented by {lat , lnд}, where lat and
lnд represent the latitude and longitude respectively. A billboard b is in the form of a tuple {loc,w },
where loc and w denote b’s location and leasing cost respectively. Without loss of generality, we
assume that a billboard carries either zero or one advertisement at any time.

Definition 2.1. We define that b can influence t , if ∃pi ∈ t , such that Distance (pi ,b .loc ) ≤ λ,
where Distance (pi ,b .loc ) computes a certain distance between pi and b .loc , and λ is a given
threshold.

The choice of distance functions is orthogonal to our solution, and we choose Euclidean distance
for illustration purpose.

Influence of a billboard bi to a trajectory tj , pr (bi , tj ). Given a trajectory tj and a billboard bi

that can influence tj , pr (bi , tj ) denotes the influence of bi to tj . The influence can be measured in
various ways depending on application needs, such as the panel size, the exposure frequency, the
travel speed and the travel direction. Note that our solutions of finding the optimal placement is
orthogonal to the choice of influence measurements, so long as it can be computed deterministi-
cally given a bi and tj . By looking into the influence measurement of one of the largest outdoor
advertising companies LAMAR [3], we observe that panel size and exposure frequency are used.
Moreover, these two can be obtained from the real data, hence we adopt them in our influence
model and experiment. (1) For all bi ∈ U and tj ∈ T , we set pr (bi , tj ) as a uniform value (between
0 and 1) if bi can influence tj . (2) Let size (bi ) be the panel size of bi . We set pr (bi , tj ) = size (bi )/A
for tj influenced by bi , where A is a given value that is larger than maxbi ∈U size (bi ).

Influence of a billboard set S to a trajectory tj ,pr (S, tj ). It is worth noting that pr (S, tj ) cannot
be simply computed as

∑
bi ∈S pr (bi , tj ), because different billboards in S may have overlaps when

they influence tj . Obviously pr (S, tj ) should be the probability that at least one billboard in S can
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influence tj . Thus, we use the following equation to compute the influence of S to tj :

pr (S, tj ) = 1 −
∏
bi ∈S

(1 − pr (bi , tj )) (1)

where (1 − pr (bi , tj )) is the probability that bi cannot influence tj .

Influence of a billboard set S to a trajectory set T , I (S ). Let TS denote the set of trajectories in
T that are influenced by at least one billboard in S . The influence of a billboard set S to a trajectory
set T is computed by summing up pr (S, tj ) for tj ∈ TS :

I (S ) =
∑

tj ∈TS

pr (S, tj ) (2)

Example 2.1. Let S = {b1,b2,b3} be a set of billboards chosen from all billboards in Figure 1,
and trajectories t1, t2, and t3 that are influenced by at least one billboard in S . Let pr (b1, t1) = 0.1,
pr (b3, t1) = 0.3, and pr (b2, t1) = 0 (b2 does not influence t1). By Equation (1), we have pr (S, t1) = 1 −
(1 − pr (b1, t1)) × (1 − pr (b3, t1)) = 1 − (1 − 0.1) × (1 − 0.3) = 0.37. Similarly, we have pr (S, t2) =
0.44 and pr (S, t3) = 0.3. Finally, the total influence of S is equal to pr (S, t1) + pr (S, t2) + pr (S, t3) =
1.11.

Definition 2.2 (Trajectory-driven Influential Billboard Placement). Given a trajectory database T ,
a set of billboardsU to place ads and a cost budget L from a client, our goal is to select a subset of
billboards S ⊂ U , which maximizes the expected number of influenced trajectories such that the
total cost of billboards in S does not exceed budget L.

Theorem 2.1. The TIP problem is NP-hard.

Proof. We prove it by reducing the Set Cover problem to the TIP problem. In the Set Cover
problem, given a collection of subsets S1, . . . , Sm of a universe of elements U ′, we wish to know
whether there exist k of the subsets whose union is equal to U ′. We map each element in U ′ in
the Set Cover problem to each trajectory in T . We also map each subset Si to the set of trajec-
tories influenced by a billboard bi . Consequently, if all the trajectories in U ′ are influenced by S ,
the influence of S is |U ′|. Subsequently, the cost of each billboard is set to 1 and budget L in TIP
is set to k (selecting only k billboards). The Set Cover problem is equivalent to deciding if there
is a k-billboard set with the maximum influence U ′ in the TIP problem. As the set cover prob-
lem is NP-complete, the decision problem of TIP is NP-complete, and the optimization problem is
NP-hard. �

2.2 Related Work

Maximized Bichromatic Reverse k Nearest Neighbor (MaxBRkNN). The MaxBRkNN
queries [9, 20, 28, 29] aim to find the optimal location to establish a new store such that it is a
kNN of the maximum number of users based on the spatial distance between the store and users’
locations. Different spatial properties are exploited to develop efficient algorithms, such as space
partitioning [29], intersecting geometric shapes [28], and sweep-line techniques [20]. Recently, the
MaxRKNN query [26] is proposed to find the optimal bus route in term of maximum bus capacity
by considering the audiences’ source-destination trajectory data. Regarding the usage of trajectory
data, most recent work only focus on top-k search over trajectory data [25, 27].

Our TIP problem is different from MaxBRkNN in two aspects. (1) MaxBRkNN assumes that each
user is associated with a fixed (check-in) location. In reality, the audience can meet more than one
billboard while moving along a trajectory, which is captured by the TIP model. Thus it is challeng-
ing to identify such influence overlap when those billboards belong to the same placement strategy.
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(2) Billboards at different locations may have different costs, making this budget-constrained opti-
mization problem more intricate. However, MaxBRkNN assumes that the costs of candidate store
locations are uniform.

Influence Maximization and its variations. The original Influence Maximization (IM) problem
aims to find a size-k subset of all nodes in a social network that could maximize the spread of
influence [12]. Independent Cascade (IC) model and Linear Threshold (LT) model are two common
models to capture the influence spread. Under both models, this problem has been proven to be NP-
hard, and a simple greedy algorithm guarantees the best possible approximation ratio of (1 − 1/e )
in polynomial time. Then the key challenge lies in how to calculate the influence of sets efficiently,
and a plethora of algorithms [6–8, 14, 23] have been proposed to achieve speedups. Some new
models are also introduced to solve IM under complex scenarios. IM problems for propagating
different viral products are studied in [16, 17]. Recently, the IM problem is extended to location-
aware IM (LIM) problems by considering different spatial contexts [11, 15, 19]. Li et al. [15] find
the seed users in a location-aware social network such that the seeds have the highest influence
upon a group of audiences in a specified region. Guo et al. [11] select top-k influential trajectories
based on users’ check-in locations. See a recent survey [18] for more details.

Our TIP differs from the IM problems as follows. (1) The cardinality of the optimal set in IM
problems is often pre-determined because the cost of each candidate is equal to each other (when
the cost is 1, the cardinality is k), thus a theoretically guaranteed solution can be directly obtained
by a naive greedy algorithm. However, in our problem, the costs of billboards at different locations
differ from one to another, so the theoretical guarantee of the naive greedy algorithm is poor [13].
(2) Since IM problems adopt a different influence model to ours, they mainly focus on how to
efficiently and effectively estimate the influence propagation, while TIP focuses on how to optimize
the profit ofk-combination by leveraging the geographical properties of billboards and trajectories.

Maximum k-coverage problem. Given a universe of elements U and a collection S of subsets
fromU , the Maximum k-coverage problem (MC) aims to select at most k sets from S to maximize
the number of elements covered. This problem has been shown to be NP-hard, and Feige [10]
has proven that the greedy heuristic is the most effective polynomial solution and can provide
(1 − 1/e ) approximation to the optimal solution. The budgeted maximum coverage (BMC) prob-
lem [13] further considers a cost for each subset and tries to maximize the coverage with a budget
constraint. Khuller et al. [13] show that the naive greedy algorithm no longer produces solutions
with an approximation guarantee for BMC. To overcome this issue, they devise a variant of the
greedy-based algorithm for BMC, which provides solutions with a (1 − 1/e )-approximation. How-
ever, by a rigorous complexity analysis in Section 3.1.2, we find that this algorithm needs to take
O ( |T | · |U |5) time to solve our TIP problem, which does not scale well in practice (see Section 7).

3 OUR FRAMEWORK

We first discuss two baselines that are extended from the algorithms for the general BMC problem.
In particular, we first present a basic greedy method (Algorithm 1). It is worth noting that the basic
greedy method is proved by Khuller et al. [13] to achieve (1 − 1/

√
e )-approximation; however, we

find it is not correct and we prove it to be 1
2 (1 − 1/e ). As the approximation ratio of this algorithm

is low, we then propose an enumeration algorithm with (1 − 1/e )-approximation (Algorithm 2).
However, the enumeration algorithm incurs a high computation cost as it has to enumerate a
large number of feasible candidate combinations, which is impractical when |U | and |T | are large.
This motivates us to exploit the spatial property between billboards and trajectories to propose
our own framework to dramatically reduce the computation cost, where an overview is shown in
Section 3.2. Important notations used in our framework are presented in Table 1.
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3.1 Baselines

3.1.1 A Basic Greedy Method. A straightforward approach is to select the billboard b which

maximizes the unit marginal influence, i.e., Δ(b |S )
w ( {b }) , to a candidate solution set S , until the budget is

exhausted, where Δ(b |S ) denotes the marginal influence of b to S , i.e., I (S ∪ {b}) − I (S ). Lines 1.3–
1.8 of Algorithm 1 present how it works. However, such a greedy heuristic cannot achieve a guar-
anteed approximation ratio. For example, given two billboards b1 with influence 1 and b2 with
influence x . Let w (b1) = 1, w (b2) = x + 1 and L = x + 1. The optimal solution is b2 which has in-
fluence x , while the solution picked by the greedy heuristic contains the set b1 and the influence is
1. The approximation factor for this instance is x . As x can be arbitrarily large, this greedy method
is unbounded.

To overcome this issue, we modify the above method by considering the best single billboard
solution as an alternative to the output of the naive greedy heuristic. In particular, we add lines 1.9–
1.13 in Algorithm 1 to consider such best single billboard solution. As a result, a complete Algo-
rithm 1 forms our basic greedy method (GreedySel) to solve the TIP problem.

ALGORITHM 1: GreedySel (U , L, S )

1.1 Input: A billboard set U , a budget L and a set S (S = ϕ by default)

1.2 Output: A billboard set S ⊆ U such that w (S ) ≤ L

1.3 repeat

1.4 Select b ∈ U \ S that maximizes Δ(b |S)
w ( {b })

1.5 if w (S ) + w (b) ≤ L then

1.6 S ← S ∪ {b}
1.7 U ← U \ {b}
1.8 until U = ϕ;

1.9 H ← argmax{I ({b}) | b ∈ U , and w ({b}) ≤ L}
1.10 if I (H ) > I (S ) then

1.11 return H

1.12 else

1.13 return S

Time Complexity of GreedySel. In each iteration, Algorithm 1 needs to scan all the billboards
in (U \ S ) and compute their (unit) marginal influence to the chosen set. Each marginal influence
computation needs to traverse T once in the worst case. Thus, adding one billboard into S takes
O ( |T | · |U |) time. Moreover, when L is sufficiently large, this process would repeat |U | times at
the worst case. Therefore, the time complexity of Algorithm 1 is O ( |T | · |U |2).

It is worth noting that the authors in [13] claim that GreedySel achieves an approximation factor
of (1 − 1/

√
e ) for the BMC problem. However, we find that this claim is problematic and the bound

of GreedySel should be 1
2 (1 − 1/e ), as presented in Theorem 3.1.

Theorem 3.1. GreedySel achieves an approximation factor of 1
2 (1 − 1/e ) for the TIP problem.

Discussion on the problematic approximation ratio of (1 − 1√
e

) originally presented in

[13]). Note that Theorem 3.1 is essentially the Theorem 3 introduced in [13] because both try
to find the approximation ratio of the same cost-effective greedy method for a BMC problem.
We first present a proof of Theorem 3.1 which shows that the GreedySel achieves 1

2 (1 − 1/e )-
approximation, then we justify why the approximation ratio of (1 − 1√

e
) originally presented in

[13]) is problematic.
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Proof (Theorem 3.1). Let OPT denote the optimal solution and Mk∗+1 be the marginal influ-
ence of adding bk∗+1 (be consistent to the definition in Lemma 5.3). When applying Lemma 5.2 to
the (k∗ + 1)-th iteration, we get:

I (Sk∗+1) = I (Sk∗ ∪ bk∗+1) = I (Sk∗ ) +Mk∗+1

≥
⎡⎢⎢⎢⎢⎢⎣
1 −

k∗+1∏
j=1

(
1 −

w (bj )

L

)⎤⎥⎥⎥⎥⎥⎦
· I (OPT )

≥
(
1 −

(
1 − 1

k∗ + 1

)k∗+1
)
· I (OPT )

≥
(
1 − 1

e

)
· I (OPT )

Note that the second inequality follows from the fact that adding bk∗+1 to S violates the budget
constraint L, i.e., w (Sk∗+1) = w (Sk∗ ) +w (bk∗+1) ≥ L.

Intuitively, Mk∗+1 is at most the maximum influence of the elements covered by a single bill-
board, i.e., H is found by GreedySel in the first step (line 1.3). Moreover, as Sk∗ ⊆ S (S : the solution
of GreedySel), we have:

I (S ) + I (H ) ≥ I (Sk∗+1) ≥ (1 − 1/e )I (OPT ) (3)

From the above inequality we have that, among I (S ) and I (H ), at least one of them is no less
than 1

2 (1 − 1/e )I (OPT ). Thus it shows that GreedySel achieves an approximation ratio of at least
1
2 (1 − 1/e ). �

In the original proof of Theorem 3 in [13], the authors have tried to prove that GreedySel is
(1 − 1/

√
e )-approximate for the following three cases, respectively.

Case 1: the influence of the most influential billboard in U is greater than 1
2 I (OPT ).

Case 2: no billboard in U has an influence greater than 1
2 I (OPT ) and w (S ) ≤ 1

2L.
Case 3: no billboard in U has an influence greater than 1

2 I (OPT ) and w (S ) ≥ 1
2L.

The authors also proved that the approximate factor in Theorem 3.1 can be further tightened
to 1

2 for Case 1 and Case 2, which are right. However, there is a problem in the proof for Case 3.
Intuitively, if we can prove that GreedySel is (1 − 1/

√
e )-approximate in Case 3, then by the union

bound GreedySel can achieve an approximation factor of (1 − 1/
√
e ).

Let w (Sk∗ ) be equal to γL and γ ∈ (0, 1). By applying Lemma 5.2 to the k∗-th iteration, we get:

I (S ) ≥ I (Sk∗ ) ≥
⎡⎢⎢⎢⎢⎢⎣
1 −

k∗∏
j=1

(
1 −

w ({bj })
L

)⎤⎥⎥⎥⎥⎥⎦
· I (OPT )

≥ �	


1 − �



1 − 1

1
γ
k∗

�
�

k∗

�

�
· I (OPT )

≥
(
1 − 1

eγ

)
· I (OPT )

Note thatw (S ) ≥ 1
2L cannot guarantee γ ≥ 1/2 because Sk∗ ⊆ S . Consequently, the inequality can-

not guarantee I (S ) ≥ (1 − 1√
e

) · I (OPT ). However, it is concluded in [13] that GreedySel achieves

an approximation factor of (1 − 1√
e

) under the assumption of γ ≥ 1/2. Therefore, the proof in [13]

is problematic.
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Fig. 2. A running example of Algorithm 2.

3.1.2 Enumeration Greedy Algorithm. Since GreedySel is only 1
2 (1 − 1/e )-approximation, we

would like to further boost the influence value, even at the expense of longer processing time as
compared to GreedySel. Note that it is critical to maximize the influence as it can save real money,
while keeping acceptable efficiency. Thus we utilize the enumeration-based solution proposed in
[13] to obtain (1 − 1/e )-approximation.

EnumSel runs in two phases. In the first phase (line 2.4), it enumerates all feasible billboard
sets whose cardinality is no larger than a constant τ , and adds the one with the largest influence
to H1. In the second phase (lines 2.5–2.9), it enumerates each feasible set of size-(τ + 1) whose
total cost does not exceed budget L. Then for each set S , it invokes NaiveGreedy to greedily select
new billboards (if any) that can bring marginal influence, and chooses the one that maximizes the
influence under the remaining budget L −w (S ) and assigns it to H2. Last, if the best influence of
all size-(τ + 1) billboard sets is still smaller than that of its size-τ counterpart (i.e., I (H1) > I (H2)),
H1 is returned; otherwise, H2 is returned.

Example 3.2. Figure 2 illustrates an instance of Algorithm 2 on Figure 1’s scenario. We assume
τ = 2 and L = 12, and the cost of a billboard is its id number (e.g., w (b1) = 1). For pr (bi , tj ), we
set the influence value of bi to any trajectory tj as i/10 if tj can pass bi (e.g., pr (b1, t1) = 0.1 and
pr (b2, t2) = 0.2). In the first step, Algorithm 2 enumerates all feasible sets of size less than 3, among
which the billboard set {b3, b5} has the largest influence (I (H1) = pr (b3, t1) + pr (b3, t2) + pr (b3, t3)
+ pr (b5, t5) + pr (b5, t6) = 1.9). In the second step, it starts from the feasible size-3 sets and expands

ALGORITHM 2: EnumSel (U , L)

2.1 Input: A billboard set U , budget L

2.2 Output: A billboard set S ⊆ U with the cost constraint w (S ) ≤ L

2.3 Let τ be a constant /* τ = 2 to achieve the lowest time complexity */

2.4 H1 ← argmax{I (S ′) | S ′ ⊆ U , |S ′| ≤ τ , and w (S ′) ≤ L}
2.5 H2 ← ϕ

2.6 for all S ⊆ U , such that |S | = τ + 1 and w (S ) ≤ L do

2.7 S ← GreedySel(U \ S, L − w (S ),S )

2.8 if I (S ) > I (H2) then

2.9 H2 ← S

2.10 if I (H1) > I (H2) then

2.11 return H1

2.12 else

2.13 return H2
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greedily until the budget constraint is violated. The right part of Figure 2 shows the eventual
billboard set S whose total cost does not violate the budget constraint L (line 2.7 of Algorithm 2).
Here w (S ) = L = 12, and assigns it to H2 (line 2.9), so H2 = {b3,b4,b5} and its influence value
I (H2) = 2.5 which is the largest influence. Since I (H1) < I (H2), Algorithm 2 returns {b3,b4,b5} as
the final result.

Time Complexity of EnumSel. At the first phase, Algorithm 2 needs to scan all feasible sets
with cardinality τ and the number of such sets isO ( |U |τ ). For each such candidate set, we need to
scan T to compute its influence, thus the first phase takesO ( |T | · |U |τ ) time. At the second phase,
there are O ( |U |τ+1) sets of cardinality τ + 1, and Algorithm 2 invokes Algorithm 1 for each set. In
the worse case, the cost of any size-(τ + 1) sets should be much smaller than L and thus these sets
would not affect the complexity of GreedySel in line 2.6. Therefore, the second phase takesO ( |T | ·
|U |2 · |U |τ+1) time. In total, Algorithm 2 takes O ( |T | · |U |τ + |T | · |U |τ+3) = O ( |T | · |U |τ+3).

Selection of τ . It has been proved in [13] that Algorithm 2 can achieve an approximation
factor of (1 − 1/e ) when τ ≥ 2. Note that (1) the approximation ratio (1 − 1/e ) cannot be im-
proved by a polynomial algorithm [13] and (2) a larger τ leads to larger overhead, thus we
set τ = 2. So Algorithm 2 can achieve the (1 − 1/e )-approximation ratio with a complexity of
O ( |T | · |U |5).

3.2 A Partition-based Framework

Although EnumSel provides a solution with an approximation ratio of (1 − 1/e ), it involves high
computation cost, because it needs to enumerate all size-τ and size-(τ + 1) billboard sets and com-
pute their influence to the trajectories, which is impractical when |U | and |T | are large. To address
this problem, we propose a partition-based framework.

Partition-based Framework. Our problem has a distance requirement that if a billboard
influences a trajectory, the trajectory must have a point close to the billboard (distance within
λ). All of existing techniques neglect this important feature, which can be utilized to enhance the
performance. After deeply investigating the problem, we observe that most trajectories span over
a small area in the real world. For instance, around 85% taxi trajectories in New York do not exceed
5 kilometers (see Section 7). It implies that billboards in different areas should have small overlaps
in their influenced trajectories, e.g., the number of trajectories simultaneously influenced by two
billboards located in Manhattan and Queens is small. Thereby, we exploit such locality features
to propose a partition based method called PartSel. Intuitively, we partition U into a set of small
clusters, compute the locally influential billboards for each cluster, and merge the local billboards
to generate the globally influential billboards of U . Since the local cluster has much smaller
number of billboards, this method reduces the computation greatly while keeping competitive
influence quality.

Partition. We first partition the billboards to m clusters C1,C2, . . . ,Cm , where different clus-
ters have no (or little) influence overlap to the same trajectories. Given a budget li for cluster
li , by calling EnumSel (Ci , li ), we select the locally influential billboard set S[i][li ] from cluster
Ci within budget li , where S[i][li ] has the maximum influence ξ [i][li ]. Next we want to assign
a budget to each cluster Ci and take the union of S[i][li ] as the globally influential billboard set,
where l1 + l2 + · · · + lm ≤ L. Obviously, we want to allocate the budgets to different clusters to
maximize

m∑
i=1

ξ [i][li ] (4)

s .t . l1 + l2 + · · · + lm ≤ L
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Table 1. Notations for Problem Formulation and Solutions

Symbol Description

t (T ) A trajectory (database)
U A set of billboards that a user wants to advertise
L the total budget of a user
I (S ) The influence of a selected billboard set S
P A billboard partition
ϑi j The overlap ratio between clusters
Δ(b |S ) The marginal influence of b to S
θ The threshold for a θ -partition
I The DP influence matrix: I[i][l] is the maximum influence of the billboards

selected from the first i clusters within budget l (i ≤ m and l ≤ L)
ξ The local influence matrix: ξ [i][l] is the influence returned by

EnumSel (Ci , l ), i.e., the maximum influence of billboards selected from
cluster Ci within budget l

There are two main challenges in this partition-based method. (1) How to allocate the budgets
to each cluster to maximize the overall influence? We propose a dynamic programming algorithm
to address this challenge (see Section 4). (2) How to partition the billboards to reduce the influence
overlap among clusters? We propose a partition strategy to reduce the influence overlap and devise
an effective algorithm to generate the clusters (see Section 4).

Lazy Probe. Although the partition-based method significantly reduces the complexities over the
enumeration approach, its dynamic programming process has to repeatably invoke EnumSel to
probe the partial solution for every cluster in the partition. It is still expensive to compute the local
influence by calling EnumSel (Ci , li ) many times. We find that it is not necessary to compute the real
influence value for those clusters which have low influence to affect the final result, thus reducing
the number of calls to EnumSel . The basic idea is that we estimate an upper bound ξ ↑[i][li ] of
the local solution for a given cluster Ci and a budget li ; and we do not need to compute the real
influence ξ [i][li ], if we find that using this cluster cannot improve the influence value. This method
significantly reduces the practical cost of PartSel while achieving the same approximation ratio.
There are two challenges in the lazy probe method. (1) How to utilize the bounds to reduce the
computational cost (i.e., avoid calling EnumSel (Ci , li ))? We propose a lazy probe technique (see
Section 5). (2) How to estimate the upper bounds while keeping the same approximation ratio as
PartSel? We devise an incremental algorithm to estimate the bounds (see Section 5).

4 PARTITION-BASED METHOD

This section proposes a partition-based method which contains three steps to reduce the compu-
tation cost:

a. Partition U into a set of clusters according to their influence overlap.
b. Find local influential billboards with regard to each cluster by calling EnumSel.
c. Aggregate these local influential billboards from clusters to obtain the global solution for

TIP.

For convenience sake, this section first presents how to select the billboards based on a given
partition scheme, and then discuss how to find a good partition that can provide a high perfor-
mance and a theoretical approximation ratio for our partition-based method.
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Fig. 3. The relationship of S1, C2, and Ω (S1,C2).

4.1 Partition-based Selection Method

Definition 4.1 (Partition). A partition ofU is a set of clusters {C1, . . . ,Cm }, such thatU = C1 ∪C2 ∪
· · · ∪Cm , and∀i � j,Ci

⋂
Cj = ϕ. Without loss of generality, we assume that the clusters are sorted

by their size, and Cm is the largest cluster.

We follow a divide and conquer framework to combine partial solutions from the clusters. Let
S∗ denote the billboard set returned by EnumSel (U ,L), S[i][l] denote the billboard set returned
by EnumSel (Ci , l ), where l < L is a budget for cluster Ci , as shown in Figure 3. Let ξ [i][l] be the
influence value of the billboard set S[i][l], i.e., ξ [i][l] = I (S[i][l]). If S[i][l] for 1 ≤ i ≤ m have
no overlap, we can assign a budget l for each cluster and maximize the total influence based on
Equation (4).

We note that the costs for billboards are integers in reality, e.g., the costs from a leading out-
door advertising company are all multiples of 100 [3]. Thereby it allows us to design an efficient
dynamic programming method to solve Equation (4). The pseudo code is presented in Algorithm 3.
It considers the clusters in P one by one. Let I[i][l] denote the maximum influence value that can
be attained with a budget not exceeding l using up to the first i clusters (i ≤ m and l ≤ L). Clearly,
I[m][L] is the solution for Equation (4) since the union of the first m clusters is U . To obtain
I[m][L], Algorithm 3 first initializes the matrices I and ξ (line 3.3), and then constructs the global
solution (line 3.7 to 3.17) with the following recursion:

I[0][l] = 0
I[i][l] = max

0≤q≤l
(I[i − 1][l − q] + ξ [i][q]) (5)

ALGORITHM 3: PartSel (P , L)

3.1 Input: A θ -partition P of U , a budget L

3.2 Output: A billboard set S

3.3 Initialize matrices I and ξ

3.4 m ← |P |
3.5 for i ← 1 tom do

3.6 for l ← 1 to L do

/* Ci is the ith cluster in P */

3.7 Invoke EnumSel(Ci , l ) to compute ξ [i][l]

3.8 q = arg max
0≤q≤l

(I[i − 1][l − q] + ξ [i][q])

3.9 I[i][l]← I[i − 1][l − q] + ξ [i][q]

3.10 S ← the corresponding selected set of I[m][L]

3.11 return S
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Table 2. An Example of Algorithm 3. Each cell in ξs and Is record the selected billboards corresponding

to the maximum influence value recorded in each cell of ξ and I.

(a) ξs (b) ξ (c) Is (d) I

1 2 3 1 2 3 1 2 3 1 2 3

- - - - - 0 0 0 i = 0 - - - i = 0 0 0 0

C1 {1} {1, 3} {1, 3, 2} C1 10 18 25 i = 1 {1} {1, 3} {1, 3, 2} i = 1 10 18 25

C2 {6} {4, 5} {4, 5, 6} C2 8 16 21 i ≤ 2 {1} {1, 3} {1, 3, 6} i ≤ 2 10 18 26

C3 {7} {7, 8} {7, 8, 9} C3 5 9 13 i ≤ 3 {1} {1, 3} {1, 3, 6} i ≤ 3 10 18 26

Since the computation at the ith iteration only relies on the (i − 1)th row of each matrix, we can
use two 2 × n matrices to replace I and ξ for saving space.

Example 4.1. Given a partition of U as P = {C1,C2,C3}, where C1 = {1, 2, 3}, C2 = {4, 5, 6} and
C3 = {7, 8, 9}. For simplicity, we assume the cost of each billboard in U is 1. For sake of illus-
tration, we define two more notations: let ξs [i][l] and Is [i][l] denote the sets of selected bill-
boards corresponding to the influence value ξ [i][l] and I[i][l] respectively. As a result we have
four matrices as shown in Table 2. Now we want to find an influential billboard set within
L = 3 by Algorithm 3. Initially, I[0][l] = 0, 0 < l ≤ 3. Clearly, for l = 1, 2 . . . L, I[1][l] is same as
ξ [1][l] and Is [1] is same as ξs [1], as only one cluster is considered. When two clusters are con-
sidered: I[2][1] =max {I[1][1], I[1][0] + ξ [2, 1]} = 10 and Is [1][1] = {ξs [1][1]} = {1}; I[2][2] =
max {I[1][2], I[1][0] + ξ [2, 2], I[1][1] + ξ [2, 1]} = 18 and Is [2][2] = {ξs [2][2]} = {1, 3}. I[2][3] =
I[1][2] + ξ [2, 1] = 26 and Is [2][3] = {Is [1][2] ∪ ξs [2][1]} = {1, 3, 6}. This process is repeated
until all the elements in I and Is are obtained. Finally, Algorithm 3 returns Is [3][3] = {1, 3, 6}
as a solution, and its influence is I[3][3] = 26.

Time Complexity Analysis. Let |Ci | be the cardinality ofCi . To obtain I[i][l], Algorithm 3 needs
to invoke EnumSel (Ci , l ) to compute ξ [i][l] and maximize I[i − 1][l − q] + ξ [i][q]. When τ = 2,
EnumSel (Ci , l ) takes O ( |T | · |Ci |5) and there are mL elements in I. Therefore, the total time cost
of Algorithm 3 is

∑m
i=1 |Ci |5 which is bounded by O (mL · |T | · |Cm |5). It is more efficient than

Algorithm 2 (O ( |T | · |U |5)), since |Cm | is often significantly smaller than |U | and L is a constant.
As shown in our experiment, PartSel is faster than EnumSel by two orders of magnitude when |U |
is 2000.

4.2 θ -partition

A naive partition scheme will lead to poor quality due to large influence overlaps between clusters.
In order to reduce the influence overlap between the clusters, we introduce the concept of Overlap

Ratio. The basic idea is to control the maximum overlap ratio between any subset of a cluster and
all the rest clusters.

Definition 4.2 (Overlap Ratio). For two clusters Ci and Cj , the ratio of the overlap between Ci

and Cj relative to Ci , denoted by ϑi j , is defined as:

ϑi j = arg max
∀Si ⊆Ci

{Ω (Si |Cj )/I (Si )} (6)

where Si is a subset of Ci , and Ω (Si |Cj ) is the overlap between Si to Cj , i.e., I (Si ) + I (Cj ) − I (Si ∪
Cj ). The relationship of Si , Cj , and Ω (Si |Cj ) is illustrated in Figure 3.

Intuitively, the smaller ϑi j is, the lower influence overlap that Ci and Cj have.
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Given the overlap ratio, we present the concept of θ -partition to trade-off between the cluster
size and the overlap of clusters, where θ is a user-defined parameter to control the granularity of
the partitions.

Definition 4.3 (θ -partition). Given a threshold θ (0 ≤ θ ≤ 1), we say a partition P = {C1, ..,Cm }
is a θ -partition, if ∀i, j ∈ [1,m] the overlap ratio ϑi j between any pair of clusters {Ci ,Cj } is less
than θ .

Lemma 4.1. Let P be a θ -partition of U . Given any set S ⊆ U , and the billboards in S belong to

k different clusters of P in total. When k ≤ (1/θ + 1), we have I (S ) ≥ 1/2
∑

Si ∈S I (Si ), where Si =

S ∩Ci .

Proof. To facilitate our proof, we assume S = {S1, S2 . . . Sk } and I (S1) ≥, . . . , ≥ I (Sk ). Let I (S )

denote the average influence among all Si ∈ S , i.e., I (S ) = 1
k

∑k
j=1 I (S j ). According to Definition 4.3,

we observe that I (Si ∪ S j ) ≥ I (Si ) + (1 − θ )I (S j ), as each subset of S j has at most θ percent of
influence overlapping with the elements of Si , or vice versa. Then for all subsets of S , we have:

I (S ) ≥ I (S1) + (1 − θ )I (S2) + (1 − 2θ )I (S3) . . . + [1 − (k − 1)θ]I (Sk )

=

k∑
i=1

I (Si ) − θ[I (S2) + 2I (S3) + · · · + (k − 1)I (Sk )]

=

k∑
i=1

I (Si ) − θ
⎡⎢⎢⎢⎢⎣

∑k

i=2
I (Si ) +

k∑
i=3

I (Si ) + · · · + I (Sk )
⎤⎥⎥⎥⎥⎦

≥
k∑

i=1

I (Si ) − θ[I (S ) + 2I (S ) + · · · + (k − 1)I (S )]

=

k∑
i=1

I (Si ) − θ k (k − 1)

2
I (S )

The second inequality above follows from the fact that I (S ) ≥ 1
k−1

∑k
i=j I (Si ) for j = 2, 3 . . .k , be-

cause we have assumed I (S1) ≥, . . . , ≥ I (Sk ). As k ≤ 1
θ
+ 1, we have θ k (k−1)

2 I (S ) ≤ k
2 I (S ) and

I (S ) ≥
k∑

i=1

I (Si ) − k

2
I (S ) = 1/2

∑
Si ∈S

I (Si ) �

Based on Lemma 4.1, we proceed to derive the approximation ratio of Algorithm 3 in Theo-
rem 4.2.

Theorem 4.2. Given a θ -partition P = {C1, . . . ,Cm }, Algorithm 3 obtains a 1
2
�log(1+1/θ ) m �

(1 − 1/e )-
approximation to the TIP problem.

Proof. Let S∗ and S = S1 ∪ S2 ∪ · · · ∪ Sk S be the solution returned by Algorithm 2 and Algo-
rithm 3 respectively, where Si = S ∩Ci and i ≤ k ≤ m, i.e., S = S1 ∪ S2 ∪ · · · ∪ Sk .

When θ = 0, we have I (S ) =
∑k

i=1 I (Si ). As
∑k

i=1 I (Si ) is the maximum value of Equation (4), thus
I (S ) =

∑k
i=1 I (Si ) ≥ I (S∗). Moreover, I (S∗) ≥ (1 − 1/e )I (OPT ) since S∗ is returned by Algorithm 2,

thus I (S ) ≥ (1 − 1/e )I (OPT ) and the theorem holds.
When θ > 0, we have I (S ) ≤ ∑k

i=1 I (Si ). In this case, let us consider an iterative process. At
iteration 0, we denote S0 as a set of billboard clusters in which cluster S0

j corresponds S j . In

each iteration h, we arbitrarily partition the clusters in Sh−1 and merge each partition to form
new disjoint clusters for Sh . Each cluster Sh

j in Sh contains at most (1 + 1/θ ) clusters from Sh−1.
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Fig. 4. An example to explain the proof of Theorem 4.2.

We note that the clusters in Sh are always θ -partitions since each cluster is recursively merged
from Sh−1 and the clusters in S0 are θ -partitions. Thus, according to Lemma 4.1, we have the
invariant I (Sh

j ) ≥ 1/2
∑

Sh−1
x ∈Sh

j
I (Sh−1

x ). The iterative process can only repeat for d times until

no clusters can be merged. Intuitively, d should not exceed �log(1+1/θ ) m� (as k ≤ m) and thus

I (Sd ) ≥ 1
2
�log(1+1/θ ) m � ∑k

i=1 I (Si ). Moreover, Sd only has one billboard set Sd
1 , then I (Sd ) = I (Sd

1 )

and Sd
1 is equal to S . Therefore, we have I (S ) ≥ 1

2
�log(1+1/θ ) m � ∑k

i=1 I (Si ). Moreover, as
∑k

i=1 I (Si ) ≥
I (S∗) ≥ (1 − 1/e )I (OPT ), we conclude that I (S ) ≥ 1

2
�log(1+1/θ ) m �

(1 − 1/e )I (OPT ). �

Figure 4 presents a running example to explain the iteration process in the above proof. In this
example, S contains 9 clusters and θ = 0.5. At iteration 0, S0 is initialized by S ; at iteration 1, each
cluster of S1 is generated by randomly merging (1/θ + 1 = 3) clusters in S0, i.e., S1

1 = {S0
1 ∪ S0

2 ∪ S0
3 }.

According to Lemma 4.1, we have I (S1
j ) ≥ 1/2

∑
S 0

x ∈S 1
j
I (S0

x ), i.e., I (S1
1 ) ≥ 1

2 (I (S0
1 ) + I (S0

2 ) + I (S0
3 )).

As S1 only contains (1/θ + 1 = 3) clusters, the second iteration merges all the clusters in S1 into
one cluster S2

1 . Since I (S2
1 ) ≥ 1/2

∑
S 1

x ∈S 2
j
I (S1

x ), we have I (S2
1 ) ≥ 1/4

∑9
j=1 I (S

0
j ).

4.3 Finding a θ -partition

It is worth noting that there may exist multiple θ -partitions of U (e.g., U is a trivial θ -partition).
Recall Section 4.1, the time complexity of the partition-based method (Algorithm 3) isO (mL · |T | ·
|Cm |5), where |Cm | is the size of the largest cluster in a partition P . Therefore, |Cm | is an indicator of
how good a θ -partition is, and we want to minimize |Cm |. Unfortunately, finding a good θ -partition
is not trivial, since it can be modeled as the balanced k-cut problem where each vertex in the graph
is a billboard and each edge denotes two billboards with influence overlap, which is found to be
NP-hard [24]. Therefore, we use an approximate θ -partition by employing a hierarchical clustering
algorithm [21]. It first initializes each billboard as its own cluster, then it iteratively merges these
two clusters into one, if their overlap ratio (Equation (6)) is larger than θ . That is, for each pair of
clustersCi ,Cj ⊆ U , if ϑi j is larger than θ , thenCi andCj will be merged. By repeating this process,
an approximate θ -partition is obtained when no cluster in U can be merged.

Note that how to efficiently get a θ partition is not the key point of this article and it can be
processed offline; while our focus is how to find the influential billboards based on a θ -partition.

5 LAZY PROBE

We first propose our lazy probe algorithm to reduce the number of calls to EnumSel (Ci , l ) in Sec-
tion 5.1, and then establish the theoretical equivalence on approximation ratio between LazyProbe
and EnumSel in Section 5.2.
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ALGORITHM 4: LazyProbe(P , L)

4.1 Input: A θ -partition P of U , budget L

4.2 Output: A billboard set S

4.3 Initialize two matrices I and ξ

4.4 for i = 1 tom do

4.5 for l = 1 to L do

4.6 I↓[i][l]← I[i − 1][l]

4.7 for q = 1 to l do

4.8 ξ ↑[i][q]← EstimateBound(Ci ,q)

4.9 if I↓[i][l] ≤ I[i − 1][l − q] + ξ ↑[i][q] then

4.10 if ξ [i][q] has not been computed then

4.11 Invoke EnumSel(Ci ,q) to compute ξ [i][q]

4.12 Update I↓[i][l] by I[i − 1][l − q] + ξ [i][q]

4.13 else

4.14 contiune;

4.15 I[i][l]← I↓[i][l]
4.16 S ← the corresponding selected set of I[i][l]

4.17 return S

5.1 The Lazy Probe Algorithm

Recall that I[i][l] is the maximum influence value that can be attained with a budget not ex-
ceeding l using up to the first i clusters (in Section 4.1), and all clusters are processed in an or-
der of their size (from the smallest to the largest by Definition 4.1). As mentioned in Section 4,
I[i][l] = max0≤q≤l (I[i − 1][l − q] + ξ [i][q]), we need to find a q (0 ≤ q ≤ l ) to maximize this in-
fluence. Note that I[i − 1][l − q] can be easily gotten in the previous computation, but it is expen-
sive to compute ξ [i][q] by calling algorithm EnumSel. To address this issue, instead of computing
the exact influence ξ [i][q] in cluster Ci , we can estimate an upper bound of ξ [i][q] for 0 ≤ q ≤ l
(denoted by ξ ↑[i][q]), and then prune the q that cannot get larger influence by bound comparison.

Algorithm 4 describes how our method works. Similar to PartSel, we employ a dynamic pro-
gramming approach to compute the selected billboard set and its influence value for each cluster
i and each cost l . However, the difference is that we first compute the lower bound I↓[i][l] of
I[i][l]. Obviously I↓[i][l] = I[i − 1][l] is a naive lower bound by setting q = 0 (line 4.6). Initially,
when i = 1, for all l ≤ L, we have I↓[i − 1][l] = I[0][l] = 0. Then we compute an upper bound
ξ ↑[i][q] from q = 0 to q = l by calling function EstimateBound, which will be discussed later.
Next if I↓[i][l] ≥ I[i − 1][l − q] + ξ ↑[i][q], we do not need to compute ξ [i][q], because we cannot
increase the influence using clusterCi , and thus we can save the cost of calling EnumSel (lines 4.13–
4.14). If I↓[i][l] < I[i − 1][l − q] + ξ ↑[i][q], we need to compute ξ [i][q], by calling EnumSel (Ci ,q),
and update I↓[i][l] = I[i − 1][l − q] + ξ [i][q] (lines 4.9–4.12). Finally, we set I[i][l] as I↓[i][l] since
we already know I↓[i][l] is good enough to obtain the solution with a guaranteed approximation
ratio (line 4.16), and return the corresponding selected billboard set as S (line 4.17).

Estimation of Upper Bound ξ ↑[i][q]. A key challenge to ensure the approximation ratio of
LazyProbe is to get a tight upper bound ξ ↑[i][q]. Unfortunately, we observe that it is hard to ob-
tain a tight upper bound efficiently due to the overlap influence among billboards. Fortunately, we
can get an approximate bound, with which our algorithm can still guarantee the (1 − 1/e ) approx-
imation ratio (see Section 5.2). To achieve this goal, we first utilize the basic greedy algorithm
GreedySel to select the billboards S ′ = {b1,b2, . . . ,bk }. Let bk+1 be the next billboard with the
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FUNCTION 5: EstimateBound(U , L)

5.1 Input: A billboard set U , a budget L

5.2 Output: An influence estimator ξ ↑[i][q]

5.3 S ′ = GreedySel (U ,L,ϕ)

5.4 bk+1 is the next billboard with the largest unit marginal influence

5.5 ξ ↑[i][q] = I (S ′) + [L − w (S ′)] Δ(bk+1 |S ′)
w (bk+1 )

5.6 return ξ ↑[i][q]

Fig. 5. A running example for LazyProbe.

maximal marginal influence. If we include bk+1 in the selected billboards, then the cost will ex-
ceed L. If we do not include it, we will lost the cost of L −w (S ′) where w (S ′) =

∑
1≤i≤k w (bi ).

Then we can utilize the unit marginal influence of bk+1 to remedy the lost cost, and thereby we

can get an upper bound as ξ ↑[i][q] = I (S ′) + [L −w (S ′)] Δ(bk+1 |S ′)
w (bk+1 ) . We later show that ξ ↑[i][q] ≥

(1 − 1/e )ξ [i][q]. Moreover, the solution quality of Algorithm 4 remains the same as Algorithm 3.
The details of the theoretical analysis will be presented in Section 5.2.

Example 5.1. Figure 5 shows an example on how Algorithm 4 works. There are three clusters
C1, C2, and C3 in a partition P , and the estimator matrix ξ ↑ is shown in upper right corner. When
Ci (i = 1, 2, 3) is considered, it computes I[i][l], for each l = 1, . . . ,L, by the bound comparisons.
Taking I[2][2] as an example, Algorithm 4 first initializes I↓[2][2] = I[1][2] and then computes
I[1][2 − q] + ξ ↑[2][q] (q = 1, 2) for bound comparisons. For Case 1 (q = 1), as I↓[2][2] ≤ I↑[2][2],
Algorithm 4 needs to compute ξ [2][1] by invoking EnumSel and update I↓[2][2] by I[1][1] +
ξ [2][1]. For Case 2 (q = 2), since I↓[2][2] ≥ I↑[2][2], I↓[2][2] does not need to be updated and
finally I[2][2] = I↓[2][2] = 45.

The complexity of LazyProbe is the same as that of PartSel in the worst case, but the pruning
strategy actually can work well and reduce the running time greatly (as evidenced in our experi-
mental study of Section 7).

5.2 Theoretical Analysis

In this section, we conduct theoretical analysis to establish the equivalence between LazyProbe and
PartSel in terms of the approximation ratio. We first show that if the bound ξ ↑[i][l] in LazyProbe
is (1 − 1/e ) approximate toT IP instance of billboards in cluster i using budget l , then the approx-
imation ratio of LazyProbe and PartSel is the same (Theorem 5.1). We then move on to show that
ξ ↑[i][l] is indeed (1 − 1/e )-approximate in Lemmas 5.2–5.4.
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Theorem 5.1. If ξ ↑[i][l] obtained by Algorithm 5 achieves a (1 − 1/e ) approximation ratio to the

TIP instance for cluster i with budget l , LazyProbe ensures the same approximation ratio with PartSel

presented in Section 4.1.

Proof. Let Ci denote the the ith cluster considered by LazyProbe and Ui =
⋃i

j=1Cj . To prove

the correctness of this theorem, we first prove I[i][l] ≥ (1 − 1/e )I (OPT l
Ui

) for all i ≤ m and l ≤ L,

whereOPT l
Ui

is the optimal solution of the TIP instance for billboard setUi with budget l . Clearly,

if this assumption holds, we have
∑k

i=1 I (Si ) ≥ (1 − 1/e )I (OPT ) (OPT is the globally optimal solu-
tion). S = {S1, . . . , Sk } is the solution returned by LazyProbe. Si = S ∩Ci .

We prove it by mathematical induction. When i = 0, this assumption holds immediately. When
i > 0, we assume that the assumption holds for the first ith recursion, and prove it still holds
for the (i + 1)th recursion. According to the definition, we have ξ ↑[i + 1][l] ≥ (1 − 1/e )I (OPT l

Ci+1
).

Moreover, we have already assumed I[i][l] ≥ (1 − 1/e )I (OPT l
Ui

) (l = 1, . . . ,L), thus I[i + 1][l] =

max0≤q≤l {I[i][l − q] + ξ ↑[i + 1][q]} ≥ (1 − 1/e ) max0≤q≤l {I (OPT l−q

Ui
) + I (OPT

q

Ci+1
)}. Moreover, as

max0≤q≤l {I (OPT l−q

Ui
) + I (OPT

q

Ci+1
)} ≥ I (OPT l

Ui+1
), we have I[i + 1][l] ≥ (1 − 1/e )I (OPT l

Ui+1
). The

assumption gets proof.

Since S comes from k clusters and k ≤ m, we can conclude that I (S ) ≤ 1
2
�log(1+1/θ ) m � ∑k

i=1 I (Si ).
We omit to prove this conclusion here since the proof is similar to that of Theorem 4.2.

Moreover, as
∑k

i=1 I (Si ) ≥ (1 − 1/e )I (OPT ) (the assumption holds), thus I (S ) ≤ 1
2
�log(1+1/θ ) m �

(1 −
1/e )I (OPT ). �

Theorem 5.1 requires that ξ ↑[i][l] is (1 − 1/e )-approximate to the corresponding TIP instance
in a small cluster. To show that ξ ↑[i][l] returned by Algorithm 5 satisfies such requirement, we de-
scribe the following hypothetical scenario for running Algorithm 1 on the TIP instance for cluster
Ci and budget l . Let bk∗+1 be a billboard in the optimal solution set, and it is the first billboard that
violates the budget constraint in Algorithm 1. The following inequality holds [13].

Lemma 5.2 [13]. After the ith iteration (i = 1, . . . ,k∗ + 1) of the hypothetical scenario running

Algorithm 1, the following holds:

I (Si ) ≥
⎡⎢⎢⎢⎢⎢⎣
1 −

i∏
j=1

(
1 −

w ({bj })
L

)⎤⎥⎥⎥⎥⎥⎦
· I (OPT ) (7)

Where Si be the billboard set that is selected by the first i iterations of the hypothetical scenario.

With Lemma 5.2, we analyze the solution quality of running the hypothetical scenario by using
the k∗ + 1 billboards to deduce ξ ↑[i][l].

Lemma 5.3. Let Mk∗+1 denote the unit marginal influence of adding bk∗+1 in the hypothetical

scenario, i.e.,Mk∗+1 = [I (Sk∗ ∪ {bk∗+1}) − I (Sk∗ )]/w ({bk∗+1}). Then I (Sk∗ ) + [L −w (Sk∗ )] · Mk∗+1 ≥
(1 − 1/e )I (OPT).

Proof. First, we observe that for a1, . . . ,an ∈ R+ such that
∑n

i=1 ai = αA, the function

1 −
n∏

i=1

(
1 − ai

A

)

achieves its minimum of 1 − (1 − α/n)n when a1 = a2 = · · · = an = αA/n.
Suppose b ′ is a virtual billboard with cost L −w (Sk∗ ) and the unit marginal influence of b ′ to Si

isMk∗+1, for i = 1, . . . ,k∗. We modify the instance by adding b ′ intoU and letU ∪ {b ′} be denoted
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byU ′. Then after the first k∗th iterations of Algorithm 1 on this new instance, b ′ must be selected
at the (k∗ + 1)th iteration. As L(Sk∗ ) +w ({b ′}) = L, by applying Lemma 5.2 and the observation to
I (S ′) (S ′ = Sk ∪ {b ′}), we get:

I ((S ′) ≥
⎡⎢⎢⎢⎢⎢⎣
1 −

k∗+1∏
j=1

(
1 −

w ({bj })
L

)⎤⎥⎥⎥⎥⎥⎦
· I (OPT ′)

≥
(
1 −

(
1 − 1

k∗ + 1

)k∗+1
)
· I (OPT ′)

≥
(
1 − 1

e

)
· I (OPT ′)

Note that I (OPT ′) is surely larger than I (OPT ), thus I (Sk∗ ) + [L −w (Sk∗ )]Mk∗+1 = I (S ′) ≥ (1 −
1
e

) · I (OPT ′) ≥ (1 − 1
e

) · I (OPT ). �

Finally, we show that the estimator obtained by Algorithm 5 is larger than the bound value
obtained by the hypothetical scenario described in Lemma 5.3, which indicates that Algorithm 5
is (1 − 1/e )-approximate and it further implies Theorem 5.1 hold.

Lemma 5.4. Given an instance of TIP. Let ξ [i][l] be an estimator returned by Algorithm 5, we have

ξ [i][l] ≥ (1 − 1/e )I (OPT ).

Proof. We observe that Mk∗+1 cannot be larger than Mk+1 and I (Sk ) + (L −w (Sk ))Mk+1 ≥
I (Sk∗ ) + (L −w (Sk∗ ))Mk∗+1. Moreover, Lemma 5.3 shows I (Sk∗ ) + (L −w (Sk∗ ))Mk∗+1 ≥ (1 −
1/e )I (OPT ), so I (Sk ) + (L −w (Sk ))Mk+1 ≥ (1 − 1/e )I (OPT ). As ξ [i][l] = I (S ) + [L −w (S )]Mk+1

(Algorithm 5 line 5.5), this lemma is proved. �

6 FASTENUM

To further improve the efficiency, this section introduces an optimization framework FastEnum to
reduce the costs of the enumeration and the marginal influence computation for the above pro-
posed methods, i.e., EnumSel, PartSel, and LazyProbe. It mainly consists of two parts: an EnumSel
early termination and an aggregated trajectory index.

6.1 EnumSel Early Termination

LazyProbe accelerates PartSel by reducing the invocations of EnumSel. However, the runtime of
EnumSel still is a major bottleneck of the partition-based framework because it needs to enumerate
all the feasible size-3 sets about U (see the computation of H2 in Algorithm 2, lines 2.5–2.9). To
overcome this issue, we introduce a branch-and-bound strategy to speed up EnumSel. The core
idea is to skip the enumerations on those billboards that would not be in the answer set, and
thus accelerate the computation of H2. Intuitively, if U can be skipped to one half, the runtime of
EnumSel should be reduced greatly due to the complexity ofO ( |T | |U |5). To this end, we establish
an upper bound for all the solutions that contain b. Clearly, if this bound is worse than the current
solution, b can be eliminated from U since it is impossible for any solution with b to improve the
final influence. As mentioned in Section 5.1, finding a tight upper bound for a given set is not
trivial. Thereby, we turn to compute an approximate bound for b as below.

Definition 6.1. Given a billboard b ∈ U , let Fb denote the set of feasible solutions containing b.
If �fb ∈ Fb such that (1 − 1/e )I ( fb ) > H (b) holds, we say that H (b) is an approximate bound of
Fb .

The following lemma shows that EstimateBound (see Section 5.1) can be utilized to obtainH (b)
if we rewrite the line 5.3 of Function 5 by ‘S ′ = GreedySel (U ,L,b)’.
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Lemma 6.1. Given b ∈ U , Function 5 with the initialized seed b, denoted by

EstimateBound (U ,L,b), returns an approximate boundH (b) of Fb .

Proof. To show the correctness, we generate a hypothetical instance by eliminatingb and its in-
fluenced trajectories from the original instance, w.r.t.U − {b}, T − T{b } . Let us denote the influence
of the optimal solution for this instance as OPT ′. According to Lemma 5.4, EstimateBound (U ′,L)
returns a bound larger than (1 − 1/e )OPT ′, and thus the returned value of EstimateBound (U ,L,b)
would not be less than I (b) + (1 − 1/e )OPT ′. As I ( fb ) ≤ I (b) +OPT ′ for ∀fb ∈ Fb and I (b) + (1 −
1/e )OPT ′ ≥ (1 − 1/e ) (I (b) +OPT ′). We can then conclude that EstimateBound (U ,L,b) must re-
turn an approximate boundH (b) of Fb . �

According to Lemma 6.1, our optimized method uses Function 6 to boost EnumSel to replace the
lines 2.5–2.9 of Algorithm 2. In each iteration, the function deletes b from U if its bound H (b) is
smaller than the current influence. Otherwise, it enumerates all size-3 sets withb and complements
each of them greedily. At last, it updates H2 for the next iteration if a more influential set is found
during the enumeration process.

The following theorem shows that this modification would not be inferior to the original version
in effectiveness, and still can return (1 − 1/e )-approximation for TIP.

Theorem 6.2. By applying Function 5 to EnumSel, this modified EnumSel returns (1 − 1/e )-
approximation for TIP.

Proof. Suppose S∗ is the optimal solution of TIP. According to Definition 6.1, we have
max[I ( fb )] = OPT and H (b) > (1 − 1/e )OPT , for ∀b ∈ S∗. Intuitively, Function 5 can eliminate
any b ∈ S∗ from U only if the current solution is more influential than H (b). At this case, the
algorithm returns a (1 − 1/e )-approximation no doubt.

The rest case is that there has no b ∈ S∗ can be pruned. We denote the eliminated set as U ′.
Clearly, S∗ is the optimal solution for the instance ofU −U ′, which implies OPT ′ = OPT . On this
new instance, the modified algorithm is degenerated to EnumSel since no billboard inU −U ′ can
be skipped. Therefore, the algorithm obtains a solution with influence greater than (1 − 1/e )OPT ′

and thus it is a (1 − 1/e )-approximation for TIP. �

Moreover, by making use of the submodularity property, we can use the Cost-Effective Lazy
Forward strategy [14] to reduce the number of Δ(b |S ) computations. In particular, the main idea
behind is that the marginal influence of a candidate in the current iteration should not be more than
that in previous iterations, and thus the Δ(b |S ) computations can be greatly pruned. For example,

FUNCTION 6: FastEnum(U , L, b)

6.1 Input: A billboard set U , a budget L and a billboard b

6.2 Output: Enumeration result H2

6.3 H2 ← ϕ

6.4 for all b ∈ U , such that w (b) ≤ L do

6.5 H (b) ← EstimateBound (U ,L, b)

6.6 for all b ∈ U , such that w (b) ≤ L do

6.7 if I (H2) ≥ H (b) then

6.8 U ← U − b

6.9 Continue

6.10 Compute the influence of all the size-3 sets with b

6.11 Update H2 if we find that a set is better than current optimal solution

6.12 return H2;
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Fig. 6. An example of Hash-based aggregation. Suppose X = 2 and Y = 2.

I (b ′) is an upper-bound of Δ(b ′|S ). If Δ(b |S ) is larger than I (b ′), we can prune b ′ safely because
even its upper bound is not desired.

6.2 Aggregated Trajectory Index

The most expensive part of all the proposed algorithms above is to compute Δ(b |S ) (see line 1.4 of
Algorithm 1), which in turn transforms to the computation of pr (S, t ) and pr (S ∪ {b}, t ) for each
trajectory t in T . However, we observe that many trajectories in real world are very similar. It
enables us to reduce the size of T by aggregating these “repetitive” trajectories that pass the same
billboards. Therefore, in this section, we first show how to aggregate trajectories, and then propose
an effective mapping index based on the aggregation result to accelerate our algorithms.

Hash-based aggregation. Intuitively, the trajectory aggregation by brute-force should be very
costly as it needs to compare the billboard sets of each pair of trajectories in T . To overcome this
issue, we introduce a hash-based aggregation which only takes a linear time to generate the result.

The core idea is to encode each trajectory according to its passed billboards’ id , and group the
trajectories with the same code by a hash aggregation. Without loss of generality, we suppose
that any trajectory only can pass X billboards at most, and the maximum id of billboards can be
represented by a Y -digit number. Given a billboard set {b1, . . . ,bi } (ordered by id ASC) of t , t is
encoded by a X · Y length code as follows. (1) We encode each billboard in U as a Y -digit code
according to its id . As shown in the left of Figure 6, b1 is encoded by “01” and b14 is encoded by
“14.” (2) Based on U ’s codebook, we join the ids of billboards passed by t as the code of t , i.e., t2
is encoded by “13 14,” since t passes b13 and b14. Note that, if the number of the passed billboards
of t is less than X , we complement the rest of digits by “0,” i.e., t1 is encoded by “01 00.” In this
manner, the “repetitive” trajectories are encoded by the same code. To efficiently aggregate them
together, a HashMap is used to distribute trajectories across an array of buckets, which is shown
as the middle of Figure 6. In this figure, each bucket represents a cluster of trajectories that pass
the same billboards, in which we use a pair of variables <count ,pr (S, t )> to record the number of
trajectories and the influence on any trajectory in the bucket.

Intuitively, given a billboard set S , we can deal with the individuals in a bucket as a whole, and
compute the influence of S to them by utilizing the values of <count ,pr (S, t )>. Taking Figure 6
as an example, the influence of S to the bucket “13 14” can be computed by count × pr (S, t ) =
2 × 0.58. Followed by this idea, we propose an aggregated index based on HashMap to boost the
computation of Δ(b |S ).

Aggregated index. The index is shown in Figure 6. In this figure, we link a billboard to a bucket by
a pointer, if the billboard can influence the trajectories in the bucket. Given a set S and a candidate
b, we can obtain the influenced trajectories by scanning the buckets which are linked to S ∪ {b},
and compute Δ(b |S ) by summing up the marginal influence on each influenced buckets. Here, the
marginal influence on a bucket equals count × [pr (S ∪ {b}, t ) − pr (S, t )]. As pr (S, t ) is obtained,
the key is how to compute the influence on t when b is added into S , w.r.t. pr (S ∪ {b}, t ). Recall
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Table 3. Statistics of Datasets

|T | |U | AvgDistance AvgTravelTime AvgPoint#
NYC 4 m 1,500 2.9 km 569 s 159
LA 200 k 2,500 2.7 km 511 s 138

Equation (1), this computation needs to union the trajectories influenced by each billboard S ∪
{b} and thus takes O ( |S |) time. However, the following equation shows that pr (S ∪ {b}, t ) can be
obtained by simple a union of pr (S, t ) and pr (b, t ) directly.

pr (S ∪ {b}, t ) = 1 − (1 − pr (S, t )) (1 − pr (b, t )) (8)

Note that, the computation of Equation (8) only takes O (1) time and will be much more efficient
than that of Equation (1) when |S | is large.

7 EXPERIMENTS

In this section, we evaluate our proposed optimization techniques with extensive experiments
on real-world datasets. We conduct experimental evaluation on the effectiveness, efficiency, and
scalability of our solutions. We first introduce the experimental setup, and then report our
findings.

7.1 Experimental Setup

Datasets. We collect billboards and trajectories data for the two largest cities in US, i.e., NYC and
LA.

Billboard data is crawled from LAMAR,1 one of the largest outdoor advertising companies
worldwide.

Trajectory data is obtained from two types of real datasets: the TLC trip record dataset2 for
NYC and the Foursquare check-in dataset3 for LA. For NYC, we collect TLC trip record containing
green taxi trips from Jan 2013 to Sep 2016. Each individual trip record includes the pick-up and
drop-off locations, time, and trip distances. We use Google Maps API4 to generate the trajectories,
and if the distance of the recommended route by Google is close to the trip distance and travel
time in the original record (within 5% error rate), we use this route as an approximation of this
trip’s real trajectory. As a result, we obtain 4 million trajectories for trip records as our trajectory
database. For LA, as there is no public taxi record, we collect the Foursquare check-in data in
LA, and generate the trajectories using Google Maps API by randomly selecting the pick-up and
drop-out locations from the check-ins.

The statistics of those datasets are shown in Table 3, the distribution of trajectories’ distance is
shown in Figure 7(a), and a snapshot of the billboards’ locations in NYC is shown in Figure 7(b).
We can find that over 80% trips finish in 5 kilometers.

Algorithms. As mentioned in Sections 1 and 2.2, this is the first work that studies the TIP problem,
there exists no previous work for direct comparison. In particular, we compare five methods: Traf-
ficVol which picks billboards by a descending order of the volume of trajectories meeting those
billboards within the budget L; a basic greedy GreedySel (Algorithm 1); a greedy enumeration
method EnumSel (Algorithm 2); our partition based method PartSel (Algorithm 3); and our lazy

1http://www.lamar.com/InventoryBrowser.
2http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
3https://sites.google.com/site/yangdingqi/home.
4https://developers.google.com/maps/.
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Fig. 7. Distribution of datasets in NYC.

Table 4. Parameter Setting

Parameter Values

L 100k, 150k, ... 300k
|T | (NYC) 40k, ...,120k..., 4m
|T | (LA) 40k, 80k,120k, 160k, 200k
|U | (NYC) 0.5k, 1k, 1.46k, (2k...10k by replication)
|U | (LA) 1k, 2k, 3k, (4k... 10k by replication)

θ 0, 0.1, 0.2, 0.3, 0.4
λ 25m, 50m, 75m, 100m

pr (b, t ) 0.8

probe method LazyProbe (Algorithm 4). Moreover, to illustrate the improvement of the optimiza-
tions proposed in Section 6, we also implement the proposed optimizations (i.e., Function 6) into
EnumSel, PartSel, and LazyProbe, and denote the optimized versions as Enum*, Part*, and Lazy*,
respectively. Note that EnumSel is too slow to converge in 150 minutes even for a small dataset
(because the complexity of EnumSel is proportional to |U |5). Thus in our default setting, we do not
include EnumSel. Instead we add one experiment on a smaller dataset of NYC to evaluate it and
its optimized version in Section 7.3.

Performance measurement. We evaluate the performance of all methods by the runtime and the
influence value of the selected billboards. Each experiment is repeated 10 times, and the average
performance is reported.

Billboard costs. Unfortunately, all advertising companies do not provide the exact leasing cost;
instead, they provide a range of costs for a suburb. For example, the costs of billboards in New
Jersey-Long Island by LAMAR range from 2,500 to 14,000 for 4 weeks [3]. So we generate the cost
of a billboard b by designing a function proportional to the number of trajectories influenced by
b: w (b) = �β · I (b)/100� × 1000, where β is a factor chosen from 0.8 to 1.2 randomly to simulate
various cost/benefit ratios. Here we compute the cost w.r.t. |T | = 200k trajectories.

Parameters. Table 4 shows the settings of all parameters, such as the distance threshold λ to deter-
mine the influence relationship between a trajectory and a billboard, the threshold for θ -partition,
the budget L and the number of trajectories |T |. The default one is highlighted in bold; we vary
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Fig. 8. Effect of varying θ on NYC.

one parameter while the rest parameters are kept default in all experiments unless specified oth-
erwise. Since the total number of real-world billboards in LAMAR is limited (see Table 3), the |U |
larger than the limit are replicated by random selecting locations in the two cities. To avoid the
replicated billboards without influencing any trajectories, we discard the billboards that have zero
influence during the generation process.

Setup. All codes are implemented in Java, and experiments are conducted on a personal com-
puter with 1.8 GHz Intel CORE 8 Core CPU and 8 GB memory running windows/10 OS. In our
experiment, the x-axis of efficiency tests are plotted in logarithm scale.

7.2 Experiments

7.2.1 Choice of θ -partition. Since θ -partition is an input of PartSel method and θ indicates the
degree of overlap among clusters generated in the partition phase of PartSel (and LazyProbe), we
would like to find a generally good choice of θ that strikes a balance between the efficiency and
effectiveness of PartSel and LazyProbe. Note that, this study selects their optimized versions, Part*
and Lazy*, to evaluate the impact of θ .

We vary θ from 0 to 0.4, and record the number of clusters as input of Part* and Lazy* methods,
the percentage of the largest cluster size over U (i.e., |Cm |

|U | ), the runtime, and the influence value
of Part* and Lazy*. The results on both datasets are shown in Figures 8–10 and Table 5. By linking
those results, we have four main observations. (1) With the increase of θ , the influence quality
decreases and the efficiency is improved, because for a larger θ , the tolerated influence overlap
is larger and there are many more clusters with larger overlaps. (2) When θ is 0.1 and 0.2, Part*
and Lazy* achieve the best influence (Figures 8(a) and 9(a)), while the efficiency of 0.2 is not much
worse than that of θ = 0.3 (Figures 8(b) and 9(b)). The reason is that, it results in an appropriate
number of clusters (e.g., 23 clusters for NYC dataset at θ = 0.2 in Figure 10), and the largest cluster
covers 7.1% of all billboards, as evidenced by the value of |Cm |

|U | in Table 5. (3) In one extreme case
that θ = 0.4, although the generated clusters are dispersed and small, it results in high overlaps
among clusters, so the influence value drops and becomes worse than GreedySel, and meanwhile
the efficiency of Part* (Lazy*) only improves by around 12 (6) times as compared to that of θ =
0.2 on the NYC (LA) dataset. The reason is that Part* and Lazy* find influential billboards within
a cluster and do not consider the influence overlap to billboards in other cluster; thus when θ is
large, high overlaps between the clusters lead to a low precision of Part* and Lazy*. (4) All other
methods beat the TrafficVol baseline by 45% in term of the influence value of selected billboards.
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Fig. 9. Effect of varying θ on LA.

Fig. 10. θ vs Number of clusters.

Table 5. |Cm |/|U |, w.r.t. Varying θ

0.1 0.2 0.3 0.4
NYC 12.6% 7.1% 6.4% 5.8%
LA 13.5% 7.8% 5.9% 5.1%

The result on LA is very similar to that of NYC, so we omit the description here. Therefore, we
choose 0.2 as the default value of θ in the rest of the experiments.

7.2.2 Choice of Influence Metric. Recall Section 2.1 that the influence of a billboardbi to a trajec-
tory tj , pr (bi , tj ), is defined. Here we conduct more experiments to test the impact of an alternative
choice for the influence probability measurement as described in Section 7. The alternative choice
is: pr (bi , tj ) = bi .panelsize/(2 ∗maxPanelSize ) wheremaxPanelSize is the size of the largest bill-
board in U , and we further normalize by 2 to avoid a too large probability, say 1.

The influence result of all algorithms on the NYC dataset is shown in Figure 11. Recall our
corresponding experiment of adopting choice 1 in Figures 14(a) and 16(a), we have the same ob-
servations: PartSel and LazyProbe outperform all the rest algorithms in influence. To summarize,
our solutions are orthogonal to the choice of these metrics.

7.3 Evaluation Against EnumSel on Small Datasets

As reported in Section 7.1, EnumSel could not terminate in a reasonable time for most experiments’
default settings due to its dramatically high computation costO ( |T | · |U |5). Therefore, we generate
a small subset of the NYC dataset to ensure that it can complete in reasonable time, and compare
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Fig. 11. Test on other choice of influence probability.

Fig. 12. Testing EnumSel on a small NYC dataset (|U | = 1,000, |T | = 120k).

its performance with other approaches proposed in this article. In particular, we have the default
setting of |U | = 1,000 and |T | = 120k.

Figures 12(a) and 13(a) show the effectiveness of all algorithms when varying the budget and the
number of trajectories respectively. From Figure 12(a) we make three observations: (1) When L is
small, the influence of Enum* (EnumSel) is better than that of Part* and Lazy*. It is because when
only a small number of billboards can be afforded, the enumerations can easily find the optimal set
since the possible world of feasible sets is small, whereas Part* and Lazy* are mainly obstructed
by reduplicating the influence overlaps between clusters. (2) With the growth of L, the advantage
of Enum* gradually drops, while Part* and Lazy* achieve better influence; and when the budget
reaches 200k, they have almost the same influence as Enum*.

The efficiency results are presented in Figures 12(b) and 13(b), w.r.t. a varying budget and tra-
jectory number. We find: (1) Part* and Lazy* consistently beat Enum* by almost two and one order
of magnitude, respectively. (2) EnumSel has the worst performance among all algorithms and is
slower than Enum* more than one order of magnitude. This is because that Enum* can prune a
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Fig. 13. Testing EnumSel on a small NYC dataset (|U | = 1,000, L= 150k).

Fig. 14. Effect of varying budget L on NYC.

large number of enumerations via eliminating insignificant candidates from U , while avoiding to
compute the marginal gain on each single trajectory in T .

7.4 Effectiveness Study

We study how the influence is affected by varying the budget L, the trajectory number |T |, the
distance threshold λ, and the overlap ratio, respectively. Lastly, we study the approximation ratio
of all algorithms.

7.4.1 Varying the Budget L. The influence of all algorithms on NYC and LA by varying the L is
shown in Figures 14 and 15, and we have the following observations on both datasets. (1) TrafficVol
has the worst performance. PartSel (Part*) and LazyProbe (Lazy*) achieve the same influence and
their improvement over TrafficVol exceeds 99%. (2) With the growth of L, the advantage of PartSel
and LazyProbe over GreedySel is increasing, from 1.8% to 6.5% when L varies from 100k to 300k
on LA dataset. This is because when the influence overlaps between clusters, it cannot be avoided,
then how to maximize the benefit/cost ratio in clusters is critical to enhance the performance,
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Fig. 15. Effect of varying budget L on LA.

Fig. 16. Effect of varying trajectory number |T | on NYC.

which is exactly achieved by PartSel and LazyProbe, since they exploit the locality feature within
clusters.

7.4.2 Varying the Trajectory Number |T |. Figures 16 and 17 show the result by varying |T |. We
find: (1) the influence of all methods increases because more trajectories can be influenced; and
(2) the influence by PartSel and LazyProbe is consistently better than that of GreedySel and Traf-
ficVol, because the trajectory locality is an important factor that should be considered to increase
the influence.

7.4.3 Varying λ. Figure 18 shows the influence result by varying the threshold λ, which de-
termines the influence relationship between billboards and trajectories (in Definition 2.1). We
make two observations. (1) With the increase of λ, the performance of all algorithms becomes
better, because a single billboard can influence more trajectories. (2) PartSel and LazyProbe
have the best performance and outperform the GreedySel baseline by at least 8%. This is be-
cause the enumerations can easily find influential billboards when the influence overlap becomes
larger.
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Fig. 17. Effect of varying trajectory number |T | on LA.

Fig. 18. Effect of varying λ.

7.4.4 Additional Discussion. We also compared our solution with a meta heuristic algorithm,
Simulated Annealing (Annealing), to verify the practical effectiveness. Although Annealing is
costly and provides no theoretical bound for our problem, it has been proved to be a very pow-
erful way for most optimization problems and always can find a near optimal solution [22]. Since
Annealing is a random search algorithm and its performance is not stable, we run it 50 times for
each instance and select the best solution as our baseline. Table 6 reports both the influence value
and its relative improvement percentage w.r.t. Annealing for three different choices of budget L.
We observe: (1) PartSel and LazyProbe have a very close performance to EnumSel in average. This
is because when the overlap between clusters is small, each billboard selected by of PartSel and
LazyProbe is less likely to overlap with the billboards in other clusters, and thus the performance
of PartSel and LazyProbe would not lose a large accuracy. As discussed later in Section 7.5, Enum-
Sel is very slow to work in practice. (2) PartSel and LazyProbe improve the influence by 6.6% in
average as compared to Annealing. (3) TrafficVol which simply uses the traffic volume to select
billboards has the worst approximation.
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Table 6. Additional Test on NYC

L=100k L=200k L=300k
Annealing 6,805 0.00% 11,777 0.00% 15,773 0.00%
TrafficVol 5,111 −24.89% 8,520 −27.66% 9,400 −40.40%
GreedySel 6,890 1.25% 12,267 5.56% 16,108 2.12%
EnumSel 7,080 4.04% 13,161 11.75% 16,570 5.05%
PartSel 7,013 3.06% 13,215 12.21% 16,512 4.69%

LazyProbe 7,013 3.06% 13,215 12.21% 16,512 4.69%

7.5 Efficiency Study

7.5.1 Varying the Budget L. Figures 14(b) and 15(b) present the efficiency result when budget
L varies from 100k to 300k on NYC and LA. As EnumSel is too slow to converge in 104 seconds
(because the complexity of EnumSel is proportional to |U |5), we omit it in the figures. We have
three main observations. (1) Lazy* consistently beats Part* by 4–8 times. (2) The gap between
Part* and Lazy* is reduced w.r.t. the increase of L. It is because when the more billboards can
be afforded, the more local solutions need to be checked as their cost performance is very close.
Therefore, the runtime of LazyProbe grows faster than PartSel with L being increased. (3) PartSel
and LazyProbe are slower than Lazy* and Part* by nearly one order of magnitude, which indi-
cates that our optimizations works well and would greatly reduce the runtime. (4) TrafficVol is the
fastest one with no surprise, because there is no computation involved about the marginal gain
evaluations.

7.5.2 Varying the Trajectory Number T . Figures 16(b) and 17(b) show the runtime of all algo-
rithms on NYC and LA datasets. We observe that Part* and Lazy* scale linearly w.r.t. T which is
consistent with our time complexity analysis; moreover, the growth of Part* is faster than Lazy*,
e.g., when |T | varies from 40k to 200k , Lazy* beats Part* 4 and 6.5 times, respectively. Similar to
the result in Figures 14(b) and 15(b), PartSel and LazyProbe are much worse than Part* and Lazy*
in efficiency.

7.6 Scalability Study

In this experiment, we evaluate the scalability of our methods, Enum*, Part*, and Lazy*, by varying
|T | (from 400k to 4m) and |U | (from 1k to 10k). Since the effectiveness of GreedySel is not satisfy-
ing (as evidenced in our effectiveness study), we do not compare the efficiency of GreedySel. The
results are shown in Figures 19(a) and 19(b). We can see that Lazy* scales very well and outper-
forms Part* by 4–8 times. This is because even if the number of billboards is large, Lazy* does not
need to compute all local solutions for each cluster with different budgets, while it still can prune
a large number of insignificant computations. Since Enum* takes more than 7,200 seconds when
the billboard number |U | is larger than 2k, its result is omitted in the Figure for readability rea-
son. It also shows that Enum* has serious issues in efficiency making it impractical in real-world
scenarios, while Part* and Lazy* scale well and can meet the efficiency requirement.

Summary. (1) Our methods EnumSel, PartSel, and LazyProbe achieve much higher influence value
than existing techniques (GreedySel, TrafficVol, and Annealing). (2) PartSel and LazyProbe achieve
similar influence with EnumSel, but EnumSel is too slow and not acceptable in practice while
LazyProbe and PartSel are much faster than EnumSel. (3) Compared with the methods without
the optimizations proposed in Section 6, Enum*, Part*, and Lazy* are much more efficient, and
Lazy* can meet the efficiency requirement on large datasets.
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Fig. 19. Scalability test of our methods on NYC dataset.

8 CONCLUSION

We studied the problem of trajectory-driven influential billboard placement: given a set of bill-
boardsU , a database of trajectories T , and a budget L, the goal is to find a set of billboards within L
so that the placed ads can influence the largest number of trajectories. We showed that the problem
is NP-hard, and first proposed a greedy method with enumeration technique. Then we exploited
the locality property of the billboard influence and proposed a partition-based framework PartSel
to reduce the computation cost. Moreover, we proposed a lazy probe method LazyProbe to prune
billboards with low benefit/cost ratio, which significantly reduces the practical cost of PartSel while
achieving the same approximation ratio as PartSel. To further accelerate all the above proposed
methods, we introduce an EnumSel early termination and an aggregation index structure to speed
up the enumeration and the marginal influence computation. Last we conducted experiments on
real datasets to verify the efficiency, effectiveness, and scalability of our methods.
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