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Due to various reasons such as noisy measurement and privacy preservation, a network/graph is often
uncertain such that each edge in the network has a probability of existence. In this paper, we study finding the
most probable shortest path which has the highest probability of being the shortest path between a given pair
of nodes in an uncertain network. Despite significant progress being made, this problem still suffers from the
efficiency and scalability issue. To solve this problem, the state-of-the-art adopts a two-phase approach where
Phase 1 generates some candidate paths and Phase 2 estimates their probabilities of being the shortest path
and returns the one with the highest probability as the solution. Notably, Phase 2 requires a large number of
simulations over all edges in the network and can easily dominate the cost of the whole process. In this paper,
we aim to resolve the efficiency and scalability issue by optimizing Phase 2. Specifically, we first propose a
non-learning based fast approximation technique which significantly reduces the number of samples for the
probability estimation in each simulation. Afterwards, we further propose a learning-based method which can
directly estimate the probability of each candidate path without costly simulations. Extensive experiments
show that (1) compared to the state-of-the-art, our fast approximation technique and learning-based method
can achieve up to 5x and 210x speedups in Phase 2 respectively while maintaining highly competitive or
even equivalent results, (2) the training process is highly scalable and (3) the prediction function can work
effectively under the problem settings different from the one it was trained.
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1 INTRODUCTION

Graphs are often found in important and emerging domains, including traffic networks, biological
networks, and sensor networks. These graphs are inherently uncertain in many cases due to various
reasons including but not limited to noisy measurements [2], hardware limitation [3], inference
models [23], and privacy-preserving perturbation [6]. To model the uncertainty, uncertain graphs,
where each edge is associated with a probability of existence, have been studied extensively
in many problems such as motif discovery [44], k-nearest neighbor queries [43], reachability
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Fig. 1. A simple uncertain graph

queries [40], clustering [29], sampling [49], network design [39], influence maximization [34] and
embedding [30].

In this paper, we study the problem of finding the Most Probable Shortest Path in uncertain
networks (MPSP). Unlike in deterministic networks where the path length is the only factor to
consider, we should consider both the length and the existence probability of paths for discovering
the shortest paths. Specifically, given an uncertain network G, a source node s and a destination
node t, we aim to find the most probable path MPSP(s, ¢) which has the highest probability of being
the shortest path from s to t, i.e., the probability that MPSP(s, t) exists and no path shorter than
MPSP(s, t) exists in the uncertain network.

ExaMPLE 1. Figure 1 shows a simple uncertain network where the first and second numbers associated
with each edge denote the edge length and existence probability respectively. We have two paths from s
to t, namely path P; via node a and path P, via nodes b and c. Even though Py has a smaller length
than P,, Py is not the MPSP in this uncertain network. Specifically, the existence probability of P;
is 107* whereas the probability that P, exists but P; does not exist (i.e., Py is the shortest path) is
0.9% x (1 —107%) = 0.73. Therefore, P, is the MPSP in this uncertain network.

Shortest-path queries [7, 22, 37] are one of the most important graph primitives [53] and finding
the MPSPs can be very useful in many applications. In road networks which can be modeled as
uncertain graphs due to unexpected traffic jams or blockage, drivers may need to find the MPSPs to
reach the destinations with the smallest amount of time [10, 11, 31, 58]. In sensor networks where
links between sensor nodes have failure probabilities, finding the MPSPs can be helpful in routing
between sensors [27]. In brain networks where nodes refer to the brain regions of interest (ROI),
edges refer to potential co-activation between ROIs, and edge probability indicates the strength of
the co-activation signal [13], finding the MPSPs can be useful in distinguishing between healthy
and unhealthy brains with diseases such as autism [19, 26].

Finding the MPSP is very challenging since computing the probability of a path being the shortest
path is #P-hard [53] and we need to find the path with the highest probability from considerable
paths between s and t. Despite significant efforts being made [53, 61], the efficiency issue is still
the bottleneck of this problem. The state-of-the-art [53] adopts a two-phase approach. In Phase 1,
candidate paths are generated by combining the Dijkstra algorithm with Monte Carlo simulations.
In Phase 2, the probability of each candidate path being the shortest path is computed and the one
with the highest probability is returned as the solution. Specifically, to compute the probability
of each candidate P, a number of simulations are required. In each simulation, every edge in the
graph will be sampled to check if there exists a candidate path shorter than P.

In this paper, we focus on optimizing Phase 2 which accounts for a notable portion of the total
running time and can easily dominate the total cost. We make two observations and correspondingly
propose two approaches to boost the efficiency.

Observation 1: No need to perform sampling for all edges and evaluate the condition only
after the sampling process. Instead, we only need to sample edges in candidate paths and this
process can be terminated early if we conduct the sampling process and condition evaluation
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simultaneously. Thus, we propose a fast probability approximation approach which replaces the
original Phase 2 and achieves notable empirical speedups.

Observation 2: The number of simulations cannot be ignored and the time cost of each
simulation can still be very high in the worst case. Thus, we propose a learning-based method
which predicts the expected value (i.e., the number of times the condition is satisfied) of the
aforementioned condition without costly simulations. We find that directly training a prediction
function specific to our problem is not feasible since our prediction problem is a very special case
of a general prediction problem and generating training data for this specific problem is very costly.
To alleviate the efficiency issue and better generalize the predictive power, we resort to train a
prediction function on a general problem where the training data is much easier to generate, and
then transfer the trained prediction function to solve our prediction problem.

Our contributions are summarized as below.

e We propose a novel fast probability approximation technique which efficiently estimates the
probability of each candidate path being the shortest path by performing the sampling process
and the condition evaluation simultaneously, which notably reduces the sampling size and boosts
the estimation process. (Section 3)

o We formulate the MPSP as a prediction problem, train a simple yet effective prediction function on
a more general prediction problem beneficial to fast training data generation and generalization
of the prediction function, and then transfer the trained function to solve our own prediction
problem. (Section 4)

e Our extensive experiments on large-scale real-world datasets demonstrate that (i) compared to
the state-of-the-art [53], our fast probability approximation method and learning-based method
achieve up to 5x and 210x speedups in Phase 2 respectively while maintaining highly competitive
results, (ii) the training process is highly scalable and the training cost is very small such that it
can be ignored when compared with the total cost of answering all potential queries, and (iii) our
trained prediction function is highly general and robust such that it can produce highly effective
results under settings different from the one where it was trained. (Section 5)

2 PROBLEM FORMULATION AND BACKGROUND ON STATE-OF-THE-ART

We denote an uncertain graph/network as G = (V, E, [, p) where V and E refer to the set of nodes
and edges respectively, [ : e € E — Ry defines the length of each edge and p : e € E —
(0, 1] assigns an existence probability to each edge. Following existing literature on uncertain
graphs [5, 32, 36, 50, 55, 58, 61], we interpret an uncertain graph G as a probability distribution over
the 2/F! possible worlds. Each possible world is a deterministic graph G = (V,Eg,1) C G and it is
obtained by sampling each edge e € E independently at random with probability p(e). Specifically,
a possible world G can be constructed by removing each edge e with probability 1 — p(e). Thus, the
probability of observing the possible world G = (V, Eg, ) is:

PrG)=[]pe) [] a-ple).
ecEg e€E\Eg
For a pair of distinct nodes s and t in V, we define a simple path P from s to t as an ordered
sequence/set of edges, i.e., P = {ey, €3, ..., e;p|} Where (i) Ve; = (u;,v;) and e;41 = (Ui41,vi1) (1 <
i < |P|),v;i = w41, (ii) wp = sand vjp) = t and (iii) Vi,j (1 < i # j < |P]), u; # u;. The length
I(P) of path P is defined as the sum of lengths of each edge in P, i.e., [(P) = 2!"! I(e;). We denote
SP(G,s,t) as the set of all shortest paths from s to ¢ in the possible world G.

We denote the event that a path P exists in G by X(P) and Pr(X(P)) = Hli‘l p(e;). Correspond-

ingly, we use X (P) to denote the event that a path P does not exist in G and Pr(X(P)) = 1-Pr(X(P)).
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We use SP!(P) to denote the event that P happens to be the shortest path from s to ¢ in G. Specifically,
its probability is computed as below:

Pr(SP(P)) = Z Pr(G) x L[P € SP(G,s,1)]
GCEG
where 1[-] is an indicator function.

DEFINITION 1 (MOST PROBABLE SHORTEST PATH (MPSP)). Given an uncertain graph G = (V,E, 1, p)
and two nodes s,t € V, we aim to find the MPSP(s, t) which is the shortest path from s tot in G with
the highest probability, i.e.,

MPSP(s,t) = argmax Pr(SP.(P)) (1)
PeP(G.s,t)
where P(G, s, t) denotes the set of all paths froms tot in G.

Solution Framework and Our Focus. Saha et al. [53] propose the state-of-the-art two-phase
framework via a combination of existing techniques to solve this problem. Specifically, they adopt
the Dijkstra+Monte Carlo simulations (Dijkstra+MC) [10] to generate some candidate paths in
Phase 1, and then adopt the Luby-Karp algorithm [38] to approximate Pr(SP.(-)) of each candidate
path and return the path with the highest probability as the result. They also show that this
framework can provide good theoretical guarantees that the MPSP can be returned with a high
probability [53].

In this paper, we focus on optimizing the efficiency of Phase 2 since it accounts for a large portion
of the total cost, and it can easily dominate the whole cost as illustrated in the introduction and
indicated in later time complexity analysis and experiments. Therefore, we will introduce these
two phases separately and focus on introducing the framework and Phase 1 in this section.

Algorithm 1: Approximate MPSP(s, t) Discovery [53]
Input :An uncertain graph G = (V, E, [, p), a source node s, a target node t, positive integers m and N.
Output: An approximate MPSP(s, t).
1 CP « 0;
// Phase 1: Lines 2 to 4;
2 for iter =1tom do
3 P «— CPG(G,s,t);
4 if |[P| > 0 then CP « CP U {P};
// Phase 2: Lines 5 to 8;
5 Order all paths in CP in increasing order of length;
¢ forj=11to|CP|do
7| Pr(SPL(CP[j])) « PA(G.s.t,CP[j]. {CP[1],...,CP[j - 1]},N);
8 return argmaxp.cp E(SPSt (P));

Algorithm 1 describes the two-phase framework. In Phase 1, the Candidate Path Generation
(CPG) (Algorithm 2) is executed m rounds and in each round CPG tries to generate a candidate path.
In Phase 2, the approximate probability Pr(SP!(P)) of each candidate path P being the shortest
path is computed and the path with the highest probability is returned. Below is Phase 1 detail.

Given the source and target pair s-t, to sample a candidate path, the most straightfoward approach
is to sample a possible world first and then call the Dijkstra algorithm to return the shortest path
between s and ¢ in this possible world as the result. However, this approach will inevitably incur a
significant number of unnecessary samplings since many sampled edges are not relevant to the
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Algorithm 2: Candidate Path Generation (CPG) [53]
Input :An uncertain graph G = (V, E, [, p), a source node s and a target node t.
Output: A candidate path to be MPSP(s, t).

1 u < 5,CK « {s}, Dis(s, s) < 0,Dis(s,v) < oo Vv € V' \ {s},Seq(s,v) < OVv e V;

2 repeat

3 foreach e = (u,v) € E wherev ¢ CK do

4 if Dis(s,v) > Dis(s,u) + l(e) then

5 ‘ With probability p(e), Seq(s,v) « Seq(s,u) U {e};
6 u « argmin, ¢y cg Dis(s, v);

7 CK « CK U {u};

8 until u =t or Seq(s,u) = 0;

9 return Seq(s, t)

Algorithm 3: Probability Approximation (PA) [53]
Input :An uncertain graph G = (V, E, I, p), candidate paths from s to ¢: P and {Py, . .., P, } shorter than
P, and an integer N.
Output: Approximation of Pr(SP!(P)).
1 Cnt < 0,Z « 37 Pr(X(P; \ P));
2 for iter = 1to N do
3 Sample i € {1, 2, .., n} with probability
4 Sample a possbile world G = (V, Eg,[) € G such that (P; \ P) UP = (P; UP) C Eg;
5 if V1 <j<i,(Pj\P) ¢ Eg then
6 | Cnt e« Cnt+1;
7D~ 7
s return (1 -p) - Pr(X(P))

Pr(X(Pi\P))
V4 El

candidate path. To mitigate this issue, in Phase 1, Saha et al. [53] perform the Dijkstra algorithm
and edge sampling simultaneously, and terminates the sampling process once the candidate path
is found. Thus, this strategy is also called Dijkstra+Monte Carlo simulations (Dijkstra+MC). The
rationale of Dijkstra+MC is similar to the traditional Dijkstra algorithm in deterministic graphs.
The only notable difference is that when a node is reached in an uncertain graph, outgoing edges
need to be sampled based on their probabilities. Algorithm 2 describes this process where CK is
used to record nodes to which the shortest paths have been found, Dis(s, v) is used to store the
distance between s and v, and Seq(s, v) is used to store a path (i.e., an ordered sequence of edges)
from s to v.

3 NON-LEARNING BASED OPTIMIZATION

In this section, we will introduce the original Phase 2 (proposed in [53]) followed by our non-
learning based optimization.

Original Phase 2: Probability Approximation (PA). In this phase, the probability of each path
being the shortest path in the original uncertain graph is approximated by the Luby-Karp algo-
rithm [38]. The intuition of this algorithm is that: given a path P, a set of candidate paths {Py, . .., P,}
shorter than P and a positive integer N, it first approximates the probability p of candidate paths
shorter than P appearing in the input uncertain graph based on N possible worlds. Specifically,
in each possible world, an integer i (1 < i < n) is sampled to make sure that edges in P; U P exist
in this world, the existence of all other edges is decided based on the sampling, and we need to
check whether there exist candidate paths shorter than P; in this world. The goal of sampling
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Algorithm 4: Fast Probability Approximation (FPA)
Input :An uncertain graph G = (V, E, [, p), candidate paths from s to ¢: P and {P1, ..., Py} shorter than
P, and an integer N.
Output:Estimation of Pr(SP!(P)).
1 Cnt < 0,Z « 3% Pr(X(Pi \ P));
2 for iter =1 to N do

3 Sample i € [1, n] with probability w;

4 Cnt « Cnt+ SET(P,{Py, ..., P;i});
P Fe Stz
¢ return (1 —p) - Pr(X(P));

Algorithm 5: Sampling with Early Termination (SET)

Input :Path P, and paths {Py, ..., P;} shorter than P.
Output:1 or 0.

1 G—PiUP,CK « P;UP;

2 forj=0toi—1do

3 Terminate < True;

4 foreach e in P;\P do

5 if e ¢ CK then

6 Add e into CK;

7 Add e into G with the probability of p(e);
8 if e ¢ G then

9 ‘ Terminate < False; Break;

10 if Terminate == True then

11 ‘ return 0

12 return 1

possible worlds is to estimate the probability of each P; being the shortest path and subsequently
compute p. Afterwards, the value of (1-p)-Pr(X(P)) is returned as an approximation of Pr(SP:(P)).
Algorithm 3 describes the overall process. Ideally, to approximate Pr(SP.(P)), all paths shorter
than P should be considered in this algorithm. However, this idea is infeasible and not scalable in
practice. It is shown that using the generated candidate paths only can provide good theoretical
guarantees that the MPSP can be returned with a high probability [53].

Time Complexity Analysis. In Phase 1, the Dijkstra algorithm is executed for m rounds, which
incurs O(m(|E| + |V|log|V])) time. In Phase 2, candidate paths need to be sorted first, which
requires O(mlog m) time. Algorithm 3 will be executed m times and each run will cost O(N|E|)
time. Therefore, the total time complexity of Algorithm 1is O(m(N|E| + |V|log V| + log m)).

The Efficiency Issue. The probability approximation (i.e., Algorithm 3) suffers from a serious
scalability issue since it incurs O(N|E|) time and N is usually not small (e.g., 1000 in the experiments
of [53]). Notably, this phase can easily dominate the whole cost for solving multiple queries, sharing
the same source or destination nodes, at the same time. Specifically, for such queries, we can run
Dijkstra+MC to generate candidates for different query pairs at the same time, whereas Phase 2
needs to run separately for each query. We find that there are some optimization techniques to
improve the efficiency (e.g., 5x speedups in our experiments) by answering the follow two questions.

Q1: Do we need to sample the whole possible world? The answer is no. The reason is that not
all edges in G are relevant to the condition in Line 5 which checks whether there exists a path P;
shorter than P; in this possible world. Instead, we only need to sample the partial possible world
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which only consists of edges in candidate paths shorter than P. This strategy is quite effective since
the size (bounded by m) of candidate paths is small in practice.

Q2: Do we need to perform sampling and condition check separately? The answer is no.
We observe that this condition will fail once there exists a P; such that (P; \ P) C Eg. Thus, if we
perform sampling for edges in (P; \ P) first, we can quickly know that (P; \ P) C E and thus do
not increment Cnt without sampling edges in other candidate paths.

Optimized Phase 2: Fast Probability Approximation (FPA). Even though we do not know
which P; will fail to meet this condition, this observation inspires us to (1) treat each candidate
path as a group and perform sampling for edges in groups, instead of randomly deciding the order
of edges for sampling, and (2) conduct the condition check simultaneously. Algorithm 4 describes
this idea which combines the possible world sampling and condition checking in Algorithm 5. In
Algorithm 5, each loop j corresponds to sampling edges in a candidate path P;, G is used to store
edges in the possible world and CK is used to record edges already sampled to avoid repetitive
sampling for the same edge. If there exists a P; such that all edges in (P; \ P) appear in G, the
variable Termination will be set as True and 0 will returned. Otherwise, 1 will be returned.

Time Complexity Analysis. The time complexity of Algorithm 4 is O(N - Y, pccp |P|) which is
notably smaller than the time complexity O(N|E|) of Algorithm 3 in practice. Moreover, the early
termination technique in Algorithm 5 further boosts Algorithm 4.

4 LEARNING BASED OPTIMIZATION

Despite that we have introduced novel non-learning based optimization techniques to improve
the efficiency of Phase 2, the efficiency is still limited by the large number N of simulations for
probability estimation. In this section, we aim to propose a learning-based solution to compute the
probability of each candidate path being the shortest path without running costly simulations. In
what follows, we will introduce a conceptual training sketch (Section 4.1) which is infeasible in
practice and lacks of generality but motivates us to design a practical training process. Then, in
Section 4.2, we will show that our prediction problem can be formulated as the Candidate-path-
based Problem which aims to predict candidate path existence probability. However, directly
solving this prediction problem is infeasible since generating training data is very costly. Thus,
we resort to solve a more general prediction problem called the Random-walk-based Problem,
which aims to predict random-walk path existence probability such that the data generation process
is much more efficient and generalization power can be greatly improved. Then, the practical
learning process for the Random-walk-based Problem is proposed (Section 4.3) and the trained
prediction function is transferred to solve the Candidate-path-based Problem (Section 4.4).

4.1 Conceptual Training Sketch

Figure 2 shows the straightforward training procedure to train a prediction function to replace
the non-learning based methods for candidate paths’ probability estimation. First, candidate paths
are generated based on the s-t pair. Next, the prediction function takes the candidate paths as the
input to predict the probability of each path. Last, it aims to minimize the difference between the
ground-truth probability and the predicted one.
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Algorithm 6: Learning-based Solution Sketch
Input :An uncertain graph G = (V, E, [, p) and candidate paths from s to ¢: P and {Py, ..., P, } shorter
than P.
Output:Estimation of Pr(SPI(P)).
1 17 «— 0;

2 fori=1tondo

3 ﬁ(E i) < EventProbabilityPrediction({Py, ..., P;});
1+ | pep+Pr(X(Pi\P))-Pr(Ep);

5 return (1 —p) - Pr(X(P));

However, this training procedure is impractical since the number of training pairs might be
large and we need to execute Dijkstra+MC for m rounds to generate candidate paths for every
single training s-t pair. Worse still, the low-level design of this procedure and parameter tuning
may require multiple runs of the whole process. Pre-storing all training pairs together with their
candidate paths is not an effective remedy since such a strategy will incur significant storage
usage. In the worst case, candidate paths of one training pair may cover all edges in the original
graph. Furthermore, the training input (i.e., an s-t pair) is too specific such that there is a lack of an
intuitive way to decide which pairs to train such that the prediction function can give accurate
probability estimation for candidates paths of unseen test pairs.

Therefore, to improve the learning efficiency and robustness of the prediction function, an
advanced training procedure design is required to mitigate: the efficiency issue brought by
candidate paths generation and the generality issue brought by the over-specific training input
and prediction.

4.2 The Two Problems and the Workflow

In this section, we will introduce the Candidate-path-based Problem and how it can help solve
the MPSP problem. Then, we will introduce the more general Random-walk-based Problem and
discuss how solving it helps alleviate the aforementioned issues without costly executions of the
Dijkstra+MC algorithm.

4.2.1 The Candidate-path-based Problem. To facilitate the description, we need to simplify the
rationale of the Luby-Karp idea as in Algorithm 3. In expectation, the index i will be sampled
N - w times. When index i is sampled, edges in (P; \ P) U P = P; U P are assumed to exist
and other edges in the uncertain graph will be sampled to form a possible world. In the possible
world, we check whether there exists any path shorter than P;. If the answer is ‘no’, we add Cnt by
1. Thus, the contribution from P; to Cnt is the number of times we have a ‘no’ answer when the
index i is sampled (i.e., edges in P; U P are assumed to exist).

Let E; denote the event that, given P; exists, no candidate paths shorter than P; exist in the
uncertain graph. In expectation, where index i is sampled, the contribution from P; to Cnt is equal
to the probability Pr(E;) of E;. It can be expressed as:

i-1
Pr(E;) = Pr([ ) X(P; \ P) | X(Pi \ P)). (2)

Jj=1
Given the final Cnt = 31, NWPNE,-), p can be calculated as:

i=

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 141. Publication date: June 2023.



Shortest Paths Discovery in Uncertain Networks via Transfer Learning 141:9

2 2 )
j@%» S Ut 0)
1
® 5O

Fig. 3. A simple graph with some paths in different colors

The training procedure (Alg. 7) The testing procedure (Alg. 8)
Starting Random- Candidate ol
( node § ) '( walk Paths ( ZE ) ZE )' ( Paths )' ( 51 paur)
T'he Random-walk-based Problem The Candidate-path-based Problem
7 Transfer
(prE) 2 (Pr(e) )—( f ----------- o( f —(Pr(B) y—(Qupsp(s. 1)

Fig. 4. The whole workflow of our learning-based solution

§=Cnt/N-Z=<ZN X(P\ ))P(Ei))/N'Z

= ZPr(X(P,» \ P)) - Pr(E;).
i=1

What to predict. Since Pr(X(P; \ P)) can be easily computed, we aim to predict a value Pr(E;)
to approximate Pr(E;) such that p and the subsequent Pr(SP.(P)) = (1 — p) - Pr(X(P)) can be
computed. Algorithm 6 describes the sketch of this process.

4.2.2 The Random-walk-based Problem. To avoid generating candidate paths via Dijkstra+MC,
we study a more general prediction problem (Problem B). In this problem, we are given a set S
of random-walk paths Ry, R, ..., R|s| generated by independent random walks which start from
the same node, and a target random-walk path R; (1 < i < |S|) from S. The objective is to predict
the probability Pr(E;) of the event E] that, given R; exists, other paths in S do not exist in this
uncertain graph. Formally, it can be expressed as below:

PrE) =Pr( (] X(®)IX(R:)). (3)
R;eSAj#i
To facilitate the presentation, we call the right-side part of ‘|’ as the condition and the left-side
part as the outcome.

4.2.3 Connection between the Two Problems. Both problems aim to predict the probability of an
event where, given a path P exists, some other paths do not exist in the uncertain graph. The
difference lies in how paths are generated and the reference of ‘other paths’. In terms of the path
generation, the Candidate-path-based Problem generates paths from s to ¢ via Dijkstra+MC whereas
the Random-walk-based Problem generates paths via random walks starting from s. In terms of the
reference, ‘other paths’ in the Candidate-path-based Problem refer to the paths shorter than P in
the candidate set CP whereas in the Random-walk-based Problem they refer to all paths in S \ {P}.

The Candidate-path-based Problem is a special case of the Random-walk-based Problem since
any instance (i.e., an event E;) in the Candidate-path-based Problem can be mapped to an instance
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(i.e., an event E;) in the Random-walk-based Problem. Specifically, given a candidate set CP =
{P1,...,Pcp|}, and a path P € CP the index of which is j (1 < j < |CP|), an event E; (1 < i < j)
can be mapped to an event E; where S = {Ry = Py \ P,...,R; = P; \ P}.

ExAMPLE 2. Figure 3 shows a graph where the number assigned to each edge refers to the length
and we do not show the edge probability for simplicity. Given the s-t pair, three candidate paths P,
P, =R, U{(f,t)} and P, = Ry U {(e, f), (f,t)}, we have Pr(Ez) = Pr(X (P, \ P)|X(P2\ P)). Suppose
Ry and R, are generated by random walks, then we have S = {Ry, Ry} and Pr(E;) = Pr(X(R;)|X(Ry)).
Since X(P1 \ P) = X(Ry) and X(P, \ P) = Ry, we have E, = E;,.

Note that we only care about the existence probability of each path and how the path is generated
will not impact the existence probability. Thus, the probability of having a random walk is irrelevant
to the existence probability of the corresponding path generated by this walk. Furthermore, when
generating a random walk, each out-going neighbor of the current node in the walk is treated
equally regardless of the edge probability, which helps increase the diversity of S, and the generality
of the learning function.

The Learning Workflow. Figure 4 shows a high-level workflow of our learning process, and the
mapping between each element in the Candidate-path-based Problem and the Random-walk-based
Problem. Specifically, we first train a prediction function f by solving the Random-walk-based
Problem and then transfer the trained function f to solve the Candidate-path-based Problem.

Transfer learning has been an important methodology to solve a learning problem where it is
expensive or time-consuming to collect sufficient training data. Specifically, given a learning task
in a source domain, transfer learning aims to improve the performance of the predictive function
in the target domain by utilizing the knowledge in the source domain [60]. Our transfer learning
strategy can be categorized into different classes based on different perspectives. In terms of the
problem setting, it is inductive transfer learning [52] where we have the same source and target
domains and different but related source and target tasks, since the Candidate-path-based Problem
is a special case of the Random-walk-based Problem and both of them are defined in the same
graph. In terms of the solution, it is parameter-based transfer learning [8, 41] where parameters or
priors shared between the source and target domains are discovered, since we focus on transferring
the learning function f.

In Section 4.3 and 4.4, we will introduce the training and testing procedure in detail respectively.

4.2.4 Benefits of studying the general problem. There are two major benefits of studying the
Random-walk-based Problem instead of the Candidate-path-based Problem:

o Alleviation of the efficiency issue. The cost of generating a random-walk path in the Random-walk-
based Problem can be much more controllable and smaller than that of generating a candidate
path in the Candidate-path-based Problem. Given the predefined walk step ws and the average
degree d in the uncertain graph, it only takes O(ws - d) to generate a random-walk path in the
Random-walk-based Problem and the time complexity can be controlled by ws. On the other hand,
generating a candidate path in the Candidate-path-based Problem incurs O(|E| + |V|log |V|) time
which cannot be adjusted by hyperparameters.

o Alleviation of the generality issue. The Candidate-path-based Problem is a special case of the
Random-walk-based Problem, which means that a prediction function to solve the Random-
walk-based Problem can be directly transferred to solve the Candidate-path-based Problem.
Furthermore, the prediction function trained in the Random-walk-based Problem should have
more generalization power than the one trained in the Candidate-path-based Problem. Specifically,
given an s-t pair in the Candidate-path-based Problem, candidate paths must be the paths between
s and t; also, the training procedure may be too specific such that accurately solving the MPSP
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Fig. 5. Comparison among different choices of OP;.

problem for this s-t pair may not help solve this problem for a different query pair. In contrast, in
the Random-walk-based Problem, a path is a random walk and can end at any possible node in
the graph. Random-walk paths starting from the same node s create more diversity and flexibility
than candidate paths between the same s-t pair, which can help obtain a more powerful and
general prediction function.

4.3 Solving the Random-walk-based Problem

In this section, we will introduce our learning function f for predicting a value F;(E {) to approximate
Pr(E}) in Equation 3. Specifically, we will first introduce how to represent edge and path embedding
which are used to generate the embedding for the event E; with abstract element-wise embedding
aggregators. Then we will discuss how to design these aggregators. Afterwards, we will introduce
how the function f leverages the event embedding to predict ﬁ;(E: )

Edge embedding. Given the embedding Z,, of size R*P for each node v, we first generate the
embedding Z,, . for each edge (u, v) based on the embeddings of u and v, i.e.,

Z(”,v) = OPEdge(Zu, Zv),

where OP,45¢ : 2 X R™*P — R™P refers to an embedding aggregator. Note that we assume that
node embedding is provided in advance and will not be updated during training.

Path embedding. Given a random-walk path R = {ej, e;, . . ., e|r|}, the embedding Zp of the path
R is generated based on the embeddings of all edges in this path, i.e.,

ZR = OPpath(Zel’ cee »Z€|R|)a

where OPpgp : IRl x RP*P — R™P refers to an aggregator.

Event embedding. Given an event E; with the corresponding set S of random-walk paths
Ri,Ry,...,Rs|, the embedding of E: is generated based on the embeddings of all paths in S,
ie.,

Zg; = [OPot(ZRys - - s ZRy s ZRiyys - - - ZRi)IZR; ]

where OP,; : (|S|—1) xR™P — R™*D is an aggregator, [-||-] refers to the embedding concatenation
operator, Zg, at the right side of [||-] refers to the embedding of the condition, and the left-side
part refers to the embedding for the outcome in Equation 3.

Choice of OP,q4¢, OPpar, and OP,;. For OP,q4¢, we have tried multiple popular aggregators (e.g,
Mean, Hadamard, Weighted L1 and Weighted L2) used in existing literature [9, 20, 28, 33, 51].
We find that the choice barely impacts the prediction accuracy. Thus, we randomly choose the
Weighted L1 aggregator (i.e., |Z, — Zy|). For OPy4;p, we consider commonly used aggregators for
subgraph embedding since a path can be treated as a subgraph. Such aggregators include Sum,
Mean and Max-pooling [4, 14, 21, 57]. We adopt the Sum aggregator since it has better expressive
power to make the aggregation results, which may consist of similar features, distinguishable [57].
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For OP,;, we adopt the Mean aggregator since it has more expressive power than the Max-pooling
aggregator and is more capable of reducing the impact brought by similar or repeatitive events
than the Sum aggregator, as shown below.

ExAMPLE 3. Figure 5 compares different choices of OP,; in two cases (a) and (b) where the similarity
of Ry andR; is reflected by their colors. In case (a), we are interested in computingPr(m, X (R2)|X(Ry))
conditioned on some R,. Since Ry and R, are quite similar, we have Pr(X(R;),X(R2)|X(Ry)) =
Pr(X(Ry)|X (Ry)). Thus, OP,;(Zg,, Zg,) is expected to be similar to Zg, or Zg,, which may not be
achieved by the Sum aggregator. In case (b), Ry and R, are very different. Thus, OP,;(Zg,, Zg,) should
combine features/information in both Zg, and Zg, and is expected to be different from Zg, and Zg,,
which may not be achieved by the Max-pooling aggregator.

Learning function f. We adopt a simple Multi-Layer Perceptron (MLP) Neural Network as the
learning function f which only consists of three layers (i.e., the input layer, one hidden layer and
the output layer) and is shown to be highly efficient and effective in our experiments. Specifically,
given the event embedding Z/, f is defined as below:

f(Zg)) = ReLU (BN(Zg, x W1)) x W = Pr(E])
where ReLU stands for the Rectified Linear Unit activation function [24, 25], BN stands for the

batch normalization technique [35] used in mini-batch stochastic gradient descent, W; € R(@xD)xD
and W, € RP*! refer to trainable parameters.

Loss function L. Suppose we have a set O of training pairs and each training pair (F;(E’), Pr(E"))
consists of the predicted probability and the ground-truth probability of an event E’. We aim to
minimize the mean absolute error over all training pairs, i.e.,

_ Z(}”‘r(E’),Pr(E’))eO |Pr(E") — Pr(E")]|
10| '

Note that since the exact Pr(E’) is hard to obtain, we use a number (i.e., 100) of Monte-Carlo
simulations to compute an approximate value as the ground-truth, which ensures the efficiency of
training pairs generation and is sufficient for the learning-based method to produce high-quality
results for the MPSP problem.

The training process. Algorithm 7 describes the training process. Given a sampling ratio sr, we
first sample sr - [V| starting nodes. For each starting node, we generate a set S of rw random-walk
paths with steps ws. Then, we use path embedding to prepare each training pair (Pr(E;), Zg,).

L

Afterwards, we use each training pair to predict F;(El’ ) and minimize the loss function.

4.4 Transfer Learning to Solve the Candidate-path-based Problem

We directly transfer the trained prediction function f to solve the MPSP problem, as shown in
Figure 4. Algorithm 8 shows the testing procedure which uses the learning function f trained in
Algorithm 7 for the Learning-based Probability Approximation (LPA) in Phase 2. In each round
(i.e., Line 3), we compute the probability of each path in CP being the shortest path based on
the predicted p. There are at most O(m) inner loops to update and compute p (Lines 6 to 15).
Lines 9 to 11 take O(|CP[-1]| - D) time where |CP[—1]| refers to the length of the longest/last
path in CP. Line 13 dominates the cost from Lines 12 to 15 and it takes O(D?) time. Thus, each
round takes O(m - D - (|CP[-1]| + D)), and the total time complexity is O(m? - D - (|CP[-1]| + D)).
Compared to the non-learning based optimization of Phase 2 (i.e., Algorithm 4) for each round (i.e.,
O(m- D - (|CP[-1]| + D)) vs. O(N - Y pecp |P]) ), the learning-based method incurs notably lower
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Algorithm 7: The practical training procedure

Input :An uncertain graph G = (V, E, [, p), the sampling ratio sr, the number rw of random walks, the
random walk step ws, the batch size b and training parameters Wj and Wa.
1 Pairs « 0;
2 for iter = 1tosr-|V|do

3 Sample a starting node s;
4 S « a set of random-walk paths Ry, Ry, . .., Rpyw, each has ws edges and starts from s;
5 Zan < XM Zr;
6 fori=1torwdo
7 Compute Pr(E});
Zani—Zg
s Zp — (St tl1ZR,);
9 Add the pair (Pr(E;), Zg/) into Pairs;

10 while not converged do
11 Shuffle Pairs;

12 foreach batch of size b in Pairs do

13 loss « 0;

14 foreach (Pr(Ej), ZE;_) in the batch do

15 Pr(E)) « f(Zg;) = Relu (BN(ZE; X Wi)) X Wa3
16 loss « loss + |Pr(E}) — Pr(E});

17 Minimize loss/b;

Algorithm 8: Phase 1 + Learning-based Probability Approximation (LPA)

Input :An uncertain graph G = (V, E, [, p), an integer m, the source and target nodes s and ¢, the
embedding size D, and trained parameters W; and W5.
Output: An approximate MPSP(s, t).
1 Get the candidate set CP from Phase 1 in Algorithm 1;
2 Order all paths in CP in increasing order of length;
3 forj =1 to|CP| do

4 Zot < avector of D Os;

5 P« CP[jl,p « O;

6 fori=1toj—1do

7 Pr(X(P; \ P)) « 1;

8 Zp,\p < avector of D 0s;

9 foreach edge (u,v) € P; \ P do

10 Pr(X(P; \ P)) « Pr(X(P; \ P)) X p((u,v));
1 Zp\p < Zp\P * Z(u,v);

12 Zg; < [Zot/(i = DIIZp,\p];

13 Pr(E;) « f(Zg,) = Relu (BN(Zg, X W1)) x Wa;
14 Zot < Zot + Zp,\p;

15 P —p+Pr(X(P;i \ P)) - Pr(Ey);

16 | Pr(SPL(P)) « (1-p) x Pr(X(P));

17 return arg maxp.cp Pr(SPL(P))

time complexity since m - D is quite comparable to N (e.g., m = 20, D = 128 and N = 1000) but
> pecp |P| can be notably larger than (|CP[-1]| + D) in practice.
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Table 1. Statistics of datasets

Dataset V] |E|
Beijing (BJ) 75,958 109,741
New York (NY) 264,346 365,050
Chengdu (CD) 631,213 1,077,967
Northeast (NE) 1,524,453 3,868,020
California (CA) 1,965,206 2,766,607

5 EXPERIMENT

Experiment Purposes. In this section, we will conduct extensive experiments to demonstrate the
efficiency and effectiveness of our proposed methods. We aim to show that (1) our learning-based
method LPA is very effective and competitive with our non-learning based method FPA under
different evaluation metrics (Exp 1 and Exp 2), (2) optimizing the efficiency of Phase 2 is very
important in boosting the whole workflow (Exp 3), (3) FPA and LPA are very efficient and notably
outperform PA (Exp 4), (4) the training process of LPA is highly scalable (Exp 5), (5) hyperparameters
have impact on the performance of LPA (Exp 6), and (6) LPA has strong generalization power such
that it can work effectively in different problem settings from the one it was trained (Exp 7).

5.1 Experimental Setup

Datasets. To tackle the hard instances of this problem and thus better compare methods’ perfor-
mance, we focus on experiments on road networks which have significantly larger graph sizes than
networks of other types in discovered applied domains (e.g., sensor networks and brain networks).
Such experiments are also very useful in reality since the studied problem MPSP has strong applica-
tions in recommendation of the shortest routes in road networks where edges are uncertain due to
unexpected traffic jams or blockage [10, 11, 31, 58]. The five real-world road networks we use are
shown in Table 1. Beijing (BJ), Chengdu (CD) and New York (NY) are from [48], and Northeast (NE)
and California (CA) are available at [12]. For experiments on other domains, please refer to Exp 8.

Top-k MPSPs. We follow [53] to compare the returned top-k paths with the highest probabilities
by varying k € {1, 5,10} with 1 as the default value. If the number of candidate paths is smaller
than or equal to k, all candidate paths will be returned.

Methods for Comparison. We compare our proposed learning-based method LPA (Algorithm 8)
against the following baselines. Since all methods share the same Phase 1 (i.e., Lines 2 to 4 in
Algorithm 1) and only differ in the strategy for choosing candidate paths in Phase 2, for simplicity,
we only use their strategy name in Phase 2 to represent the whole process including Phase 1.

o PA (Algorithm 3) [53]: the original implementation of the Luby-Karp Algorithm [38] which
computes the probability of each candidate path being the shortest path. We optimize this
method by only sampling edges from candidate paths in Phase 2.

o FPA (Algorithm 4): our proposed method with a fast probability estimation technique in Phase 2.
Since PA and FPA produce equivalent results, the performance of PA will only be reported in the
efficiency comparison.

e Random: a method which chooses k paths uniformly at random from candidate paths found in
Phase 1 as the result. We report its average performance over five independent runs.

e Reverse Ranking (RR): a method which returns the top-k paths with the lowest probabilities
computed by FPA. This method produces the worst possible solution based on the candidate paths
generated in Phase 1. The performance gap between RR and the best method FPA can be used
to help judge a method’s performance. Specifically, suppose we have a method which produces

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 141. Publication date: June 2023.



Shortest Paths Discovery in Uncertain Networks via Transfer Learning 141:15

similar results as FPA. If RR and FPA also produce similar results, we cannot really tell whether
this method is effective, since any method (i.e., Random and LPA) can easily produce competitive
results with FPA. On the other hand, if the performance gap between RR and FPA is large, it is
more obvious to tell that this method is more effective than in the previous case.

Parameter Setting. Following [53], we set m = 20 in Phase 1 and the number of simulations
N = 1000 in Phase 2 for both PA and FPA. For our learning-based method LPA, we use Node2Vec [28]
with default settings where the embedding size D = 128 to train the node embedding in advance;
the node embedding will not be updated during the training process. To generate the training data
for the Random-walk-based Problem, we randomly select a number (i.e., sr X |V|) of nodes and, for
each of these nodes as a starting node, we generate a set of rw random walks with the walk step
ws. To show the robustness and effectiveness of our method, we do not perform the costly grid
search over all parameters’ choices to find the best combination. Instead, we only perform a grid
search over the sampling ratio sr while setting the other parameters as default values. Specifically,
the number rw of random walks per starting node is set to 20 and the walk step ws is set to 30 by
default. These default values are neither too small nor too large such that we can produce good
results without overfitting. We perform a grid search over sr € {0.0005,0.001,0.01,0.1,0.2} with
a validation set of 100 randomly sampled s-¢ pairs. We choose the ratio, which leads to the best
prediction performance or is the smallest one with the converged performance, as the default value.
The default sr is set as 0.1, 0.2, 0.001, 0.1, 0.1 in BJ, NY, CD, NE and CA respectively.

Test Cases. For each dataset, we randomly sample 500 s — ¢ pairs as the test cases for the Candidate-
path-based Problem. Notably, this test size is five times larger than the one in PA [53] and can
better reflect all methods’ performance.

Edge Probability Setting. To consider hard instances of this problem, candidate paths for each
s-t pair should be sufficient and diverse. Thus, we need to assign each edge with a high probability
value to avoid probability diminishing for discovering candidate paths for each s-t pair where s can
be many hops away from t. By default, we randomly assign a probability to each edge from the
continuous range [0.90, 1). In later generalization test (Exp 7), we will conduct experiments with
more ranges.

Evaluation Metrics. To evaluate the effectiveness, we adopt two evaluation metrics. The first
one is the Average of the Average Probability (AAP). It refers to the average of the average
probability of returned top-k paths for every test s-t pair. However, we think that this metric cannot
well reflect a method’s performance when the distribution of the average probability of returned
top-k paths is skewed. For example, suppose we have ten s-t pairs, the best average probabilities
for nine of these ten s-t pairs and the remaining pair are 10~° and 1 respectively, and the worst
possible average probability for the nine and the remaining pair is infinitely small (say 0). The AAP
of a method, which finds the optimal solution for the remaining pair but finds the worst solution
for the other nine pairs, will be 0.1. This AAP is greater than 9 x 10~® achieved by a method which
finds the best solution for the nine pairs but finds the worst solution for the remaining pair. If all
test pairs are equally important, which is the case in this work and [53], the latter method with a
smaller AAP is actually a better one because it produces the best solution for most test pairs.

To alleviate the above issue of the AAP metric, we propose another evaluation metric called
Aggregated Rank (AR). Given the top-k paths returned by a method for a test pair, the AR of these
paths is the sum of their ranks based on their probabilities computed by FPA in decreasing order.
For example, the path whose probability computed by FPA is the highest will have rank 1. Thus, if
the AR achieved by a method is smaller, the performance is better and closer to FPA’s performance.
This metric focuses on the quality of path ranking instead of the actual probability values, and thus
is more robust to the skewed distribution of the average probability of the returned top-k paths.
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Table 2. Comparisons of the AARs achieved at different percentiles. When k = 1,5 and 10, the AARs achieved
by FPA are 1, 15 and 55 and the AARs achieved by RR are 20, 90 and 155 respectively. Note that the AARs
achieved by FPA and RR are consistent across datasets and thus not reported in the table below for simplicity.

Dataset k Method Oth 25th 50th 75th 80th 90th 95th 100th Mean
1 Random 14 8.6 10.4 124 12.8 14 14.8 17.8 10.36
LPA 1 1 1 1 1 2 2 14 1.26
BJ 5 Random 22.8 49 52.1 55.75 56.8 59 61.11 69 52.25
LPA 15 15 15 17.75 18 21 27 43 17.12
10 Random 55 99.8 104 108.8 110.08 112.8 114.24 123 103.99
LPA 55 55 55 59 61.4 68.2 75 101 58.77
1 Random 3 8.6 10.4 12.2 12.6 13.8 14.71 17 10.44
LPA 1 1 1 1 1 1 1 6 1.02
NY 5 Random 18 48.6 52.8 56.4 57.44 59.4 61 68.6 52.63
LPA 15 15 15 15 15 15 16 41 15.34
10 Random 76.8 100.6 104.6 108.6 109.2 111.2 113 117.8 104.19
LPA 55 55 55 55 55 55 56 88 55.47
1 Random 3.8 9 10.6 124 13 13.8 14.51 17.8 10.59
LPA 1 1 1 1 1 1 1 9 1.05
cD 5 Random 30.6 48.8 52.2 55.6 56.6 58.62 60.31 70.6 52.16
LPA 15 15 15 15 15 16 18 49 15.68
10 Random 67.2 101.25 105.2 109 110 114 115.8 120.8 105.26
LPA 55 55 55 55 55 56 60.55 108 56.19
1 Random 34 8.6 10.6 12.2 12.6 14 14.6 17.6 10.37
LPA 1 1 1 1 1 1 1 6 1.05
NE 5 Random 22 48.2 52 55.8 56.4 59.2 61.02 68.4 51.60
LPA 15 15 15 15 15 15 18 49 15.52
10 Random 58.4 99.6 104.2 108.2 108.8 111.8 114.2 119.6 102.81
LPA 55 55 55 55 55 56 62.65 121 56.14
1 Random 3.2 8.6 10.3  12.35 12.8 13.8 14.71 18.2 10.34
LPA 1 1 1 1 1 1 2 8 1.12
CA 5 Random 27.8 49 52.6 56.4 57.4 59.4 61.4 67.2 52.60
LPA 15 15 15 17 19 24 29 53 17.53
10 Random 55 100.4 104.7 108.6 1094 111.8 113.51 119 104.23
LPA 55 55 55 62 69 82 90.55 123 61.63

Since there are more than one test s-t pair, we report Average Aggregated Rank (AAR) which
denotes the average of AR of returned top-k paths for every test pair.

Environments. We conduct all experiments on a Linux server with Intel Xeon E5 (2.60 GHz) CPUs
and 512 GB RAM. The implementation can be found in [1].

5.2 Experimental Results

Exp 1- AAR Comparison. Table 2 shows the AARs achieved by all methods at different percentiles
where the performance of FPA and RR is reported in the caption. Our proposed learning-based
method LPA produces very competitive results (i.e., exactly the same result in most cases) with
FPA, and significantly outperforms other methods. Specifically, we have two key observations: (i)
When k = 1, the 80th percentile is 1 and the 95th percentile is at most 2 across all datasets, which
indicates that LPA produces the same and nearly the same result as FPA in 80% and 95% of test
cases respectively; (i) When k = 5 and k = 10, the 50th percentile is 1 across all datasets, and, more

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 141. Publication date: June 2023.



Shortest Paths Discovery in Uncertain Networks via Transfer Learning 141:17

wwy FPA T¥wr |PA =W Random  mmms RR

(b) NY (c)CD (d) NE (e) CA
Fig. 6. Comparison of AAP achieved by different methods

Top1

Table 3. Running time (s) cost decomposition of PA Table 4. The average number of edges in candi-

BJ] NY CD NE CA date paths

Phase1 7.4 226 683 118.6 186.2 B] NY CD NE CA

Phase2 7.9 321 183 557 16.6 Length 137 460 375 942 370

vawa PA W) FPA T©rrr |PA  mewwA Random — mmms RR Total Preparation Validation ~ mwmN Update

1

—_ z q

j:’ 1o ’ H i ’ i 104

£ Riginip| =

+ 10—1 | N s itz Q -

SHUUH ISR !

E |'E=-I‘ gas i g = y H H \

x 10 oS & i ’ g1 g8 102 \ H H N =N
240 b & = .. il .. q ..1 ° ! ‘ . . L
BJ NY CD NE CA BJ NY CD NE CA

Fig. 7. Average time cost in Phase 2 Fig. 8. Training time decomposition of LPA

notably, LPA produces the same and nearly the same result as FPA in 80% and 90% of test cases
respectively in NY, CD and NE. These observations indicate the high effectiveness of our method.

Exp 2 - AAP Comparison. Figure 6 shows the AAP achieved by all methods across datasets. Again,
our proposed learning-based method LPA is very competitive with FPA and notably outperforms
the other methods. We have the following key observations: (i) For LPA, in the worst case where
k = 5in CD, its AAP is 85.5% of FPA’s AAP. In the best case where k = 1 in CA, its AAP is 99.6% of
FPA’s AAP; (ii) For Random, in the worst case where k = 1 in CA and CD, its AAP is only around
18% of LPA’s AAP. In the best case where k = 10 in CA, its AAP is only around 76% of LPA’s AAP;
(iii) For RR, in the worst case where k = 11in CD and NY, its AAP is only around 3% of LPA’s AAP. In
the best case where k = 10 in CA, its AAP is only 48% of LPA’s AAP; (iv) The AAP achieved by RR
increases as k increases, since it returns k paths with the lowest probabilities; (v) The performance
gap between Random and FPA becomes smaller as k increases since the probability of a path being
chosen by both Random and FPA increases as k. Since m = 20, the probability that the Random
method chooses correct paths can be very high especially when k = 10 = 1/2m. Imagine when k
is equal to the number of candidate paths, the results produced by Random and FPA will be the
same; (vi) When k = 1, the performance gap w.r.t. AAP between FPA and LPA is more notable in
NE than that in CA but the performance of LPA w.r.t. AAR is better in NE as shown in Table 2,
which indicates that we should not solely rely on AAP.
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Table 5. LPA’s training time compared with PA’s average Phase 2 cost for test queries and the total Phase 2
cost for all possible queries

BJ NY CD NE CA

Training time/
Avg. Phase 2 cost
Training time/
Total Phase 2 cost

548 312 372 575 1963

1.9E-7 89E-9 19E-9 4.9E-10 1.0E-9

Table 6. Impact of the number m of iterations in Phase 1

Data k=1 k=5 k=10
-set m=20 m=30 m=20 m=30 m=20 m=30
BJ 241E-2 2.41E-2 1.20E-2 1.21E-2 8.17E-3 8.34E-3
NY 1.50E-3 1.50E-3 8.48E-4 8.48E-4 5.89E-4 5.97E-4
CD 2.44E-3 244E-3 1.33E-3 1.33E-3 9.52E-4 9.64E-4
NE 1.62E-4 1.62E-4 1.21E-4 1.21E-4 9.63E-5 9.76E-5
CA 3.63E-3 3.63E-3 1.55E-3 1.55E-3 9.76E-4 9.91E-4

Exp 3 - Running Time Decomposition of PA. Table 3 shows the decomposition of the average
running time of PA over all test pairs. The Phase 2 accounts for a notable portion of the total
running time and it can easily dominate the total cost. That is because Phase 1 can be trivially
extended to handle the case for multiple queries with the same source node but different target
nodes. Specifically, we can make the procedure of Dijkstra+MC continue until all edges are sampled
or no new nodes can be reached, and execute Phase 2 separately for each individual query. Similarly,
we can also handle the case for queries with the same target node but different source nodes by
conducting the aforementioned procedure on the graph where all edge directions are reversed.
These two cases are very useful for answering multiple queries and in these two cases the cost
of Phase 2 can account for a significant portion of the total cost and the Phase 1 cost can be very
similar to the counterpart in a single query pair. We also find that the graph size which directly
impacts Phase 1 cost does not necessarily have a notable impact on Phase 2 cost, and we think that,
as shown in Table 4, Phase 2 cost has positive correlations with the average number of edges in
candidate paths generated in test cases.

Exp 4 - Time Cost Comparison of Phase 2. Since all methods share the same process in Phase 1,
we focus on comparing the running time of their Phase 2 whose cost can easily dominate the whole
process as illustrated in Exp 3. Figure 7 shows the average Phase 2 cost over all test cases and we
can see that FPA is 3x - 5x faster than PA, which demonstrates the efficiency of our fast sampling
estimation technique. Moreover, our learning method LPA can achieve 92x - 210x speedups over PA,
which is a significant improvement and demonstrates the superiority of our light-weight learning
algorithm. Even though Random is very fast, it is not comparable to others since its effectiveness is
quite limited.

Exp 5 - Training Time Decomposition. Figure 8 shows the training time decomposition of LPA
on different datasets where ‘Preparation’ refers to the process of random walk generation and the
ground-truth probability computation, ‘Validation’ refers to validating the model performance with
the aforementioned 100 validation s-t pairs and ‘Update’ refers to the back propagation process
where model trainable parameters are updated. The ‘Preparation’ and ‘Validation’ procedures
together dominate the total cost whereas the ‘Update’ cost only accounts for 3%-20% of the total
cost. The ‘Preparation’ cost heavily depends on the default sampling ratio sr which is set as 0.1, 0.2,
0.001, 0.1, 0.1 in BJ, NY, CD, NE and CA respectively. To have a better understanding about the
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Fig. 12. Generalization Tests of LPA trained in the same dataset with the distribution D4 but deployed in
other distributions

training efficiency, we compare the training process with Phase 2 of PA, as shown in Table 5. In the
worst case, the ratio of the training time against the average Phase 2 cost of PA over all test cases
is only 1963. It means that, in the worst case, the training time is equal to the total cost of Phase 2
for 1963 s-t pairs, which is pretty small compared to the number of all possible testing s-t pairs. To
see this, in Table 5, we also show the ratio of the training time against the total Phase 2 cost of all
possible pairs (approximated by the average Phase 2 cost of PA over all test cases times the number
of possible pairs in the graph). The ratio is at most 1.9E-7, which indicates that the training process
is highly efficient and deployable in practice.

Exp 6 - Parameter Study. Table 6 shows the impact of m on the performance of FPA. For paths
returned by m = 20 and m = 30, they are identical for k = 1 and k = 5, and very similar for
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Fig. 13. Generalization Tests of LPA trained in BJ with the distribution D4 but deployed in different datasets

k = 10. We also conduct experiments for larger m which is not included in the paper since m = 20
is the convergence point. Figure 9, Figure 10 and Figure 11 show the impact of three parameters,
namely the sampling ratio, the number of random walk per starting node and the random walk
step, on the AAR and Probability Ratio (i.e., the ratio of the probability of the top-1 path returned
by LPA over the one of the top-1 path returned by FPA) respectively when k = 1. We have two key
observations: (i) When the value of any one parameter increases before reaching the convergence
point, the performance (in terms of both AAR and Probability Ratio) increases and may degrade
after the convergence point probably because of the overfitting issue; (ii) LPA can achieve small
AARs even with small parameter values (i.e., coarse-grained information), which indicates the high
effectiveness of LPA; (iii) When LPA achieves a relatively low AAR with small parameter values,
there is still considerable improvement space for the Probability Ratio. This observation may be
caused by the reason that the candidate paths with very similar ranks may have notably different
probabilities such that the Probability Ratio can be quite low even with a small AAR. Thus, LPA
needs more information with larger parameter values to give a more precise path ranking.

Exp 7 - Generalization Test. To test the generalization and robustness of LPA, we report the
performance of LPA in different problem settings from the setting it was trained. To construct
different settings, we use four independent distributions D;, D5, D3 and D, by uniformly sampling
a probability for each edge from the ranges [0.6,1), [0.7, 1), [0.8, 1) and [0.9, 1) respectively, where
D, is the default distribution used in previous experiments.

Figure 12 shows the Total AAR (i.e., the sum of the AARs of the top-1, top-5 and top-10 paths
returned) of LPA which is trained in the same dataset with distribution D, but deployed in different
distributions. The generalization performance is very promising since LPA can achieve nearly
identical Total AAR to the one (i.e., 71) achieved by FPA in most cases. One possible reason is that
instances tend to be harder under 9, than the ones under other distributions since candidates
paths under D, can be more diverse, and thus LPA trained under D, can effectively solve instances
under other distributions. It is worth noting that the performance of Random and RR improves
as the sampling range increases. The reason is that, with a larger sampling range, the number of
generated candidate paths tends to be smaller such that the total AAR of Random and RR will
correspondingly become smaller.

Figure 13 shows the performance of LPA trained in B with D, but deployed in the other datasets
with different distributions. LPA under this setting can produce very competitive results with FPA
and LPA under the previous setting (i.e., trained and deployed in the same dataset) by comparing
with Figure 12. There are two possible reasons. First, our prediction target is the path existence
probability which treats each path as a set of edges and does not need to know the topological
information (e.g., how edges are connected) which is already contained in the pre-trained node
embedding. Such design greatly improves the generalization power of LPA. Second, test cases tend
to be harder and information tends to be richer in BJ than the ones in other datasets, since LPA
needs larger parameters in BJ to converge (as shown in Figures 9 - 11).
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Table 7. Comparisons of achieved AARs at different percentiles when k = 1 in Brain and Intel.
Dataset Method oOth 25th 50th 75th 80th 90th 95th 100th Mean

RR 1 1 2 2 2 3 3 4 1.87
Brain Random 1 1 1.4 1.6 1.8 2.0 2.2 3.2 1.45
LPA 1 1 1 1 1 1 1 1 1
FPA 1 1 1 1 1 1 1 1
RR 1 2 2 2 2 3 3 3 1.93
Random 1 1.2 1.4 1.6 1.8 2.0 2.2 2.8 1.46
Intel
LPA 1 1 1 1 1 1 1 1 1
FPA 1 1 1 1 1 1 1 1 1
Table 8. Comparisons of AAP in Brain and Intel. Table 9. Running time comparison in Brain and Intel.
Dataset FPA LPA Random RR Dataset PA FPA LPA Random RR
Brain 0.942 0.942 0.593 0.309 Brain 3.2E-3 3.1E-3 8.2E-5 3.1E-5 3.1E-3
Intel 0.936 0.936 0.573 0.259 Intel 3.5E-3 3.4E-3 8.5E-5 3.1E-5 3.4E-3

Exp 8 - Experiments on Other Domains. To make the experiment more complete, we conduct
experiments on networks from other domains. These networks inherently have notably smaller
sizes than road networks, and were also used by the state-of-the-art [53]. Specifically, we consider
two networks, one sensor network (Intel) [45] with 54 nodes and 1289 edges and one brain network
(Brain) [13] with 116 nodes and 6670 edges. All experiments are conducted with aforementioned
default parameter settings. Due to the simple topology and small-scale graph size, the generated
candidate paths are quite limited. Thus, we only conduct experiments with k = 1. Table 7 and
Table 8 compare the performance of different methods in terms of AARs and AAP respectively.
Our learning-based method LPA achieves exactly the same performance as the gold standard FPA
and notably outperforms other methods. Table 9 compares the running time. Since the average
lengths of candidate paths are pretty small in these two datasets, the superiority of FPA over PA is
not obvious. However, LPA can still notably outperform PA and FPA since it does not involve costly
simulations for probability approximation.

6 RELATED WORK

Shortest-paths-related problems. There have been some shortest-paths-related problems in
uncertain graphs studied in the literature. The problem of finding threshold-based shortest-path
queries in uncertain graphs is investigated in [10, 11, 58] where [10, 11] consider the appearance of
an edge to be dependent on other edges. The work [61] solves the MPSP problem via a filtering-
and-verification framework which enumerates a number of candidate paths between the source
and destination nodes in increasing order of length. Afterwards, a sampling approach (i.e., the
Luby-Karp algorithm [38]) is used to approximate the probability of each candidate path being the
shortest path. This strategy [61] suffers from the scalability issue and may have limited effectiveness
since a large number of paths will be enumerated solely based on length without considering edges’
probabilities such that the correct path may not be enumerated. To alleviate these issues, Monte
Carlo simulations with Dijkstra’s algorithm (Dijkstra+MC) are combined in [53] to efficiently
generate candidate paths. In Dijkstra+MC, the outgoing edges of the node, currently visited by
the Dijkstra algorithm, will be sampled based on their probabilities and the decision upon the
next move is only based on sampled edges. It has been proven that, with a high probability, the
correct path will be returned as the solution from the candidate path set with a small number of
Dijkstra+MC runs. Despite the significant progress being made, there is still considerable space for
efficiency improvement for this problem. Specifically, given the generated candidate paths, a large
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number of simulations is required by the Luby-Karp algorithm to approximate the probability of
each candidate path being the shortest path, which can easily dominate the total time cost. In this
paper, we propose a machine-learning method to compute probabilities without costly simulations.
Transfer learning. In terms of the problem setting, transfer learning can be categorized into three
classes. The first one is transductive transfer learning [17, 54, 59] where we have the same source
and target tasks but different source and target domains. The second one is unsupervised transfer
learning [16, 56] where the source and target domains, and the source and target unsupervised tasks
are different but related. Our method falls into the third class, namely inductive transfer learning [52].
In terms of the solution, transfer learning can be categorized into four classes. The first one is
instance-based transfer learning [15, 59] which re-weights some labeled data in the source domain
for utilization in the target domain. The second one is feature-based transfer learning [42, 52].
It aims to find good feature representations to reduce difference between the source and target
domains. The third one is relational-knowledge-based transfer learning [18, 46, 47] which aims to
build mapping of knowledge between the relational source and target domains. Our method falls
into the fourth class, namely parameter-based transfer learning [8, 41].

7 CONCLUSION

In this paper, we study the problem of finding the most probable shortest paths in uncertain
networks. The state-of-the-art adopts a two-phase approach where Phase 1 generates candidate
paths and Phase 2 estimates the probabilities of each candidate path and return the one with the
highest probability. The original Phase 2 requires a large number of costly simulations and can
easily dominate the total time cost. In this paper, we focus on optimizing Phase 2 by proposing a non-
learning based and a learning-based approach. The non-learning based method significantly reduces
the sample size in each simulation and the learning-based method with transfer learning directly
computes the probability of each candidate path without calling costly simulations. Extensive
experiments demonstrate the efficiency and effectiveness of our methods.
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