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ABSTRACT
Although many updatable learned indexes have been proposed in
recent years, whether they can outperform traditional approaches on
disk remains unknown. In this study, we revisit and implement four
state-of-the-art updatable learned indexes on disk, and compare
them against the B+-tree under a wide range of settings. Through
our evaluation, we make some key observations: 1) Overall, the B+-
tree performs well across a range of workload types and datasets. 2)
A learned index could outperform B+-tree or other learned indexes
on disk for a specific workload. For example, PGM achieves the
best performance in write-only workloads while LIPP significantly
outperforms others in lookup-only workloads. We further conduct
a detailed performance analysis to reveal the strengths and weak-
nesses of these learned indexes on disk. Moreover, we summarize
the observed common shortcomings in five categories and propose
four design principles to guide future design of on-disk, updat-
able learned indexes: (1) reducing the index’s tree height, (2) better
data structures to lower operation overheads, (3) improving the
efficiency of scan operations, and (4) more efficient storage layout.
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1 INTRODUCTION
Driven by the promising in-memory performance profiles demon-
strated in a pioneer work on learned index [12], several in-memory,
updatable learned indexes [7, 9, 10, 30] have been proposed subse-
quently. Their in-memory superiority has also been verified in a
recent comprehensive evaluation [29].

Meanwhile, many widely used Database Management Systems
(DBMSs) still rely on disk-based operations for two main reasons:
(1) the size of main memory is limited and the total size of the
indexes can exceed the total RAM available on commodity hard-
ware [4]; (2) in a DBMS, main memory is also used to perform
expensive data processing operations, such as joins or sorting, or to
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perform data modeling and analysis. Thus, if all of the index data
structures are loaded into main memory as well, these operations
can perform poorly, or in the worst case, fail to run at all. Moreover,
the updatable, on-disk indexes are critical to support two common
workload types – online transaction processing (OLTP) workloads
and hybrid transaction/analytical processing (HTAP) workloads.

To this end, an important question still remains – Can updatable
learned indexes fully replace traditional on-disk indexes, such as the
B+-tree? However, there has not been any study trying to implement
those updatable learned indexes on disk, not to mention conducting
a comprehensive evaluation of their on-disk performance [13].

To answer this question, we for the first time study, extend,
implement, and evaluate updatable learned indexes using one-
dimensional data, on-disk, with two key goals: (1) To better under-
stand how in-memory learned indexes perform in an on-disk set-
ting; (2) To provide practitioners and researchers design decisions
we have discovered when adapting learned indexes to disk-resident
settings. In summary, this work makes the following contributions:
1○Wecompare and contrast four state-of-the-art, in-memory,
updatable learned indexes, FITing-tree [10], ALEX [7], PGM[9],
and LIPP [30]), and show how to extend and implement each
of them as on-disk indexes. Specifically, we first discuss how
each index supports in-memory operations in Section 2. Then, in
Section 3, we show how design decisions made in these indexes
affect different types of workloads, such as data partitioning or
searching in leaf nodes. Next, in Section 4, we show how to extend
and implement each of them on disk, and discuss the External Mem-
ory (EM) model performance bounds for each learned index. Some
of the learned indexes are difficult to re-implement as an on-disk
data structure, e.g., ALEX being the most difficult.
2○ We examine how on-disk operations affect learned in-
dexes and compare each of them to the B+-Tree – one of the
most efficient and commonly used on-disk data structures
in the database community.We perform a comprehensive eval-
uation in Sections 5-6, and test the indexes using eleven different
datasets and six workload types – lookups, scan, inserts, heavy
reads, heavy writes, and balanced reads and writes on two disk
types, an HDD disk and an SDD disk. Those datasets exhibit a vari-
ety of different properties in terms of difficulty of being modeled
with a linear function, which is the most common approach in
most learned indexing models. We also study the impact of caching
inner nodes of these indexes in main memory. Finally, we study
the storage usage of each index, the impact of block size, and the
robustness of each index by reporting the tail latencies. Based on
our evaluation results, we create a set of observations (O), and pro-
vide key take-aways, which can be summarized as follows (detailed
observations can be found in Section 6):
K1. Performance on Disk (O1-O13) : Each learned index has
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both strengths and weaknesses – yet none of them are competitive
with the B+-tree across all tested workloads, in an on-disk setting.
K2.MainMemory Impact (O14-O15):When caching inner nodes
in main memory, B+-tree can outperform learned indexes in all
tested workloads, on all datasets, since themain overhead of learned
indexes for search and insert is in “the last mile” – the leaf node
traversal, which is consistently larger than a B+-tree leaf node.
K3. Storage Usage (O16):When including the leaf node size in a
comparison, with the exception of PGM, existing learned indexes
require more space than an on-disk B+-tree, and can even be 20x
larger. The space used on disk cannot be reclaimed easily, and
learned indexes require significant modifications to the index struc-
ture which further increases the storage size.
K4. Impact of Block Size (O17) : A larger block size can help
reduce the total number of fetched blocks in the FITing-tree, ALEX,
and PGM, but LIPP does not show any benefits from such a change.
K5. Robustness (O18): The B+-tree has more stable and a much
smaller p99 latency in most evaluation settings, which translates to
far fewer tail queries that are significantly slower than the average.
3○We discuss important design decisions that must be con-
sidered when creating an on-disk, updatable learned index.
Based on our evaluation observations, we summarize the common
shortcomings of on-disk, updatable learned indexes in Section 7.1.
Finally, we propose four important design principles to guide the
future design of on-disk, updatable learned indexes in Section 7.2:

(1) reducing the index’s height from root node to leaf node;
(2) better data structures to lower operation overheads;
(3) improving the efficiency of scan operations;
(4) more efficient storage layout.

We believe these principles and our implementations [1] will help
both researchers and practitioners to develop new disk-resident
learned indexes which could be used in many practical applications.

2 UPDATABLE LEARNED INDEXES REVISITED
We now revisit four updatable learned indexes in detail and discuss
other indexes related to our work. We broadly classify the them
into two categories according to how they are constructed: bottom-
up, which includes FITing-tree and PGM; and top-down, which
includes ALEX and LIPP. Table 1 provides a taxonomy for them.
For each index, we describe the index structure, followed by how
lookup and insert operations are performed.

2.1 Learned Indexes Built Bottom-up
FITing-tree [10]. Figure 1(a) shows a FITing-tree’s layout. Given
an error bound, which indicates the maximum distance between
the predicted position of one key and its true position, a FITing-tree
first applies a greedy method to split the sorted array into segments,
where each segment containing a linear model (the first key of the
segment and the slope) to predict the position of a key. Then, a
B+-tree is built over the keys covered by each linear model.

To support lookup operations, a FITing-tree first traverses from
the root to a leaf node using a linear scan over inner nodes. After
locating the segment that contains the search key, the learned linear
model is used to predict the position pred_pos, and then a binary
search is applied to the range [pred_pos-error, pred_pos+error].

To support insert operations, a FITing-tree has two strategies,
an Inplace Insert Strategy and a Delta Insert Strategy. For the Inplace
Insert Strategy, there are 𝜀 empty slots added to the beginning and
end of each segment. The index has a predefined error bound equal
to 𝑒 + 𝜀, where 𝑒 is derived from the error from the linear model. If a
segment is full, a greedy method is called on the key-payload pairs
of the targeted segment to create a new segment using a resegment
operation. The Delta Insert Strategyadds a buffer to every segment.
New key-payload pairs are inserted into the buffer first. When the
buffer is full, a resegment operation is triggered.
PGM [9]. Given a predefined error bound, PGM uses a streaming
algorithm [23] rather than a greedy algorithm to create segments
and the associated linear models (start key, slope, and intercept).
Then, a streaming algorithm is applied recursively to construct the
parent nodes for the keys in the models.

To support lookup operations, PGM first uses the model to pre-
dict a position pos, and then a binary search is applied on the range
[pred_pos-error, pred_pos+error].

To support insert operations, a different insert mechanism is
proposed forAppend-only Insert andArbitrary Insert. For anAppend-
only Insert, PGM first tries to add the new key into an end segment
and checks if it is outside the targeted error bound. If not, the insert
is complete; otherwise, a new segment is created with the new
key and the parent nodes are updated accordingly. As shown in
Figure 1(b), for an Arbitrary Insert, PGMmaintains multiple indexes
of different sizes simultaneously and adopts ideas from the LSM-tree
to merge many small indexes into a larger one.

2.2 Learned Indexes Built Top-down
ALEX [7]. Figure 1(c) is an instance of an ALEX index as described
in the original paper [7]. Alex has two node types – inner nodes
and data nodes; both contain an array and a linear model to predict
the positions in the associated array. The array in the inner node
is a pointer array that stores the child pointers. The array in the
data node is a gapped array that stores key-payload pairs. Empty
slots and key-payload pairs are interleaved, which reduces insertion
cost overheads by requiring fewer shift operations to find the first
available slot. A bitmap is used to identify an empty slot more easily.

To support lookup operations, ALEX traverses from the root to
a data node using model-based search. When using model-based
insertions, the predicted position of the inner node does not require
any additional search process. When arriving at a leaf node, ALEX
first calls the model to predict the location and then performs an
exponential search to find the final position if needed.

To support insert operations, ALEX first uses a search process to
find the slot where the key would be located. If the slot is already
occupied, ALEX shifts items to obtain an empty slot for the new key.
An SMO (Structural Modification Operation), which determines
how to update the index structure, is triggered when a node is full.
ALEX uses four mechanisms for an SMO, and provides a cost model
for updating the tree structure.
LIPP [30]. LIPP has a single node type as shown in Figure 1(d).
Each node in LIPP has a data array, a bit array, and a linear model.
Each element in the data array can be one of the three types, DATA,
NULL, and NODE. The bit array identifies the element type. A linear
model predicts which slot to be accessed during a lookup. LIPP first
adopts the Fastest Minimum Conflict Degree (FMCD) algorithm to
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Table 1: A Taxonomy of Studied Indexes

Index Year Inner Node Leaf Node Insert2 Data Partition Node Size Structure Modification

Search Algo.1 Error Search Algo. Error Strategy Memory Reuse

B+-tree - B.S Tunable B.S Tunable Empty Slot Evenly Tunable Greedy ✓

FITing-tree [10] 2019 B.S Tunable Model + B.S Tunable Buffer Greedy Node-related Greedy ×
PGM [9] 2020 Model + B.S Tunable Model + B.S Tunable Append/Rebuild Streaming Algo. N.A. Greedy ×

ALEX [7] 2020 Model Exact Model + E.S Unfixed Gapped Array - Tunable Cost-based ×
LIPP [30] 2021 Model3 Exact Model Exact Gapped Array - Tunable4 Greedy ×

1 B.S, E.S, and Model denote binary search, exponential search, and predicting the position with a model, respectively.
2 Here, we refer to how these indexes store the new insertion key-value pairs.
3 LIPP does not distinguish the inner node and leaf node. We set the Inner Node and Leaf Node with same values.
4 Although the authors state that a maximum node size is set, they could create a larger node size than the parameter (line 2 in Algorithm 5 [30]).
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Figure 1: Structures of the Learned Indexes Studied in This Work.

obtain a linear model of a node with the smallest “conflict degree”
(the maximum number of keys being inserted into the same slot).
Then, LIPP inserts the key set using the resulting model in a single
node. If only one key is inserted into a slot, this slot is labeled as
DATA and stores a key-payload pair. If multiple keys are located
in one slot, the slot is marked as NODE which stores a pointer to a
child node. LIPP builds a new child node for any conflicting keys
using the same process.

To support lookup operations, LIPP uses a linear model in each
node to predict positions. If the slot is NODE, it accesses its children.
If the slot is DATA, it checks if the key in this slot is the same as the
lookup key – if true, it returns the payload; otherwise, it returns
null. If the slot is NULL, it returns null.

To support insert operations, LIPP first performs a search to find
which slot should hold the new key. If the slot is NULL, LIPP inserts
the new key into that slot. If the slot is DATA, LIPP will create a
new node for the inserted key and the key in that slot, mark the
slot as a NODE, and store a pointer of the new node.

2.3 Other Updatable Learned Indexes
Model B+-tree [17] and RUSLI [20] are two recently proposed up-
datable learned indexes. A Model B+-Tree builds a model for each
B+-tree node to predict which child node to access, and uses an
update process similar to a B+-tree. If the predicted leaf node is not
the target node based on a prediction error, a Model B+-tree will
fetch more nodes than a B+-tree to locate the target leaf node, and
which can be a significant overhead in certain cases. Therefore, we
omit this index from our study. RUSLI extends RadixSpline [11] to
support insertion by adding an overflow array. However, it has a
very restrictive assumption – insertion keys must be drawn from
a uniform distribution. Since such an assumption is rarely true in
practice, we have not included this approach in our study.

Studies [4, 6] combine learned indexes with a log-structured
merge (LSM) tree data structure [22]. A learnedmodel is constructed

for each SSTable (Sorted Strings Table), which is immutable after
being created. Modifications (insert, update, delete) are supported
in an LSM framework, and models are rebuilt during periodic com-
paction processes. Since they are implemented in a real production
system, there are optimizations that we cannot reliably reproduce.
PGM uses a similar idea to support insert (compaction), which we
can test extensively. Thus, we exclude them from our study.

XIndex [27] and FINEdex [15] add concurrency support to the
learned indexes. Wu et al. [31] propose a method based on the
idea of Normalizing Flows [25] to transform the data distribution
into an easier one to learn, and the proposed index structure is
an extension of LIPP. CARMI [33] is a cache-aware learned index
for main memory. Several recent studies have also adopted the
idea of learned indexing on string data, spatial data, and multiple
dimensional data [8, 16, 21, 24, 26, 28].

3 COMPARISON
As summarized in Table 1, different indexes introduce different
design ideas based on one or more of the following aspects:

• Searching an Inner Node. ALEX and LIPP only use a model to
predict the child and can be accessed in constant time. In con-
trast, B+-tree, PGM, and FITing-tree require a search of at least
𝑂 (log𝑚) time, where𝑚 refers to the number of items in the node
(B+-tree and FITing-tree) or an error bound (PGM).

• Search on Leaf Node. Except for LIPP, all of the indexing methods
presented in Table 1 require a search stage (binary or exponential
search) to find the exact position of a target key. The complexity
is 𝑂 (log𝑚), where𝑚 is the item count (in ALEX and B+-tree) or
the error bound (in PGM and FITing-tree). Therefore, LIPP has
the lowest cost to find a leaf node (𝑂 (1) vs. 𝑂 (log𝑚)).

• Data Partitioning. A data partitioning algorithm determines how
many items are indexed in the inner nodes of the indexes. A
smaller indexed item count produces lower tree heights and, in
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turn, faster search time. ALEX and LIPP partition the data into
nodes using a learned model, namely Model-based Insert, which
finds the exact position of a target key with no additional search.

• Insertion. (1) All indexes first use a search to find the position to
insert a new key. Thus, insertions benefit from efficient search.
(2) A FITing-tree (Delta-Insert Strategy) adds a “buffer” to hold
new keys. B+-tree, ALEX, and LIPP nodes include extra space
when creating nodes to store new items. In contrast, a B+-tree
is a dense array, while ALEX and LIPP use gapped arrays. (3) If
the target position of the new key is empty in a gapped array,
ALEX and LIPP insert the new key in that position and finish the
insertion process. However, a shift operation is always required
in a B+-tree. If the predicted position is occupied by another key,
ALEX shifts items to find an empty slot, and the gapped array can
reduce the number of required shift operations. In contrast, LIPP
creates a new node to hold the new key and any keys already
occupying the predicted position to reduce future conflicts.

• Structural Modification Operation (SMO).When a “buffer” or node
is full, all of the indexing methods must update the inner nodes
in the tree structure. When updating leaf nodes, ALEX, LIPP, and
a FITing-tree first fetch all the items and reinsert them into new
nodes. When the node size is larger than that of a B+-tree, SMO
can incur a much higher latency than a B+-tree.

4 LEARNED INDEXES ON DISK
We now show how to extend learned indexes to an on-disk scenario.
Specifically, we use ALEX as a concrete example presented, followed
by other indexes. We use ALEX as our example for the following
reasons: (1) ALEX is the most difficult index to implement when
all operations must be on-disk, due to the SMO requirement; (2)
ALEX is a representative example which can be used to demonstrate
common drawbacks in all existing updatable learned indexes when
being ported to support on-disk operations.
4.1 Extending ALEX On Disk
We now discuss major extensions needed to implement ALEX to
an on-disk configuration.
Layout on Disk. Figure 2 shows how to store the indexing data
structure on-disk. All of the nodes in ALEX are stored contigu-
ously. For each node, a model is stored, as well as utility structures
(bitmaps, etc). In the original paper [7], the pointer array of one
inner node stores the child pointers (each is an address to a memory
position). When on-disk, we still need eight bytes to store child
node addresses on-disk – 4 bytes for the block number and 4 bytes
for the offset in the block. Since node sizes are variable, a node in
ALEX may cross multiple blocks, especially data nodes (see N5).
Multiple nodes can also be stored in one block (see N6 and N3).

There are two different layout choices for ALEX: Layout#1 in Fig-
ure 2(a) stores inner nodes and data nodes in the same file; Layout#2
in Figure 2(b) creates one file for each type. Due to the small size
of inner nodes in ALEX, one block in an Inner Node File can hold
more than one node. Thus, we can traverse multiple levels using
one block. For example, if we need to access N5, we need to fetch
one block for each inner node (N1 and N3) in Layout#1, but we only
need to fetch one block in Layout#2. We implement both layouts
for ALEX and test them using a lookup-only workload in Section 5.
Layout#2 has a 0.5%-30% performance improvement compared to
Layout#1. Thus, we prefer Layout#2 in our implementation.

Inner Node

Data Node
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N5 N6

N4

N1

N3

Block 1 Block 2 Block 3 Block 4

Meta Block

Block 0

Layout#1

Data Node file

Inner Node file

Block 0 Block 1 Block 2 Block 3

N5’s Model Pred. Pos Empty Slot

Layout#2

Meta Block Block 0

Block 1

(b)

(c)

(a)

Figure 2: The On-Disk ALEX Layout

Since the root node in ALEX can be changed as a consequence
of an insert operation, the first block of the index is set as the meta
block, which records the address of the root node. Additionally, a
constraint is enforced such that the data in one node must be stored
in an adjacent space. Otherwise, we need a mechanism to record
the mapping between the blocks and nodes.
Query Processing on Disk. When handling a search or an insert
operation, first the block determined by the node model is fetched,
and then the position in a node array is computed. Next, the block
is accessed to obtain the on-disk child addresses. When the insert
operation requires an SMO, new space is allocated for the new node
and old nodes are marked as invalid.

When performing a scan operation (a range query), ALEX will
first locate the smallest key in the search range and then scan
forwards. A bitmap is used to skip empty slots. Since the size of
the data node can be as large as 16 MB, the bitmap for one data
node can cover at most 32 blocks if one block is 4 KB, and incurs
additional I/O costs. Instead of loading all blocks for a bitmap into
main memory, in our implementation, one block is loaded into main
memory and scanned first. If the end of the scan range is found, we
do not need to fetch any more blocks related to the bitmap.

ALEX also records several statistics, such as the number of shift
and lookup-only queries. Hence, a write cost is incurred even for
read-only queries. In our implementation, these records are not
maintained for read-only queries.

4.2 Extending Other Learned Indexes On Disk
For a FITing-tree, the Delta Insert Strategy is implemented and the
following optimizations are included:

• A greedy segmentation algorithm is replaced by a more efficient
streaming algorithm which was originally used in PGM [23].

• The original FITing-tree algorithm does not allow a key insertion
if the key is smaller than the current smallest key. An extra
buffer (one block) is introduced to hold keys such as this, and the
physical address is recorded in the meta node. When this extra
buffer is full, a segmentation algorithm is executed to partition
the data and insert the new segments generated into the index.

• To support scan operations, additional metadata is added to the
beginning of each segment to record the position of the left and
right siblings, as well as how many items each of them contains.
This is similar to the links between leaf nodes in a B+-tree.
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Table 2: I/O Costs Analysis of the Studied Indexes on Disk.

B+-Tree ALEX FITing-tree LIPP PGM

Lookup log𝐵 𝑁 log𝑁 + log(𝑀/𝐵) + 1 log𝐵 𝑃 + 2𝜖/𝐵 2 log𝑁 log𝐵 𝑁

Scan log𝐵 𝑁 + 𝑧/𝐵 log𝑁 + log(𝑀/𝐵) + 𝑧/𝐵 + 3 log𝐵 𝑃 + 2𝜖/𝐵 + 𝑧/𝐵 2 log𝑁 + 𝑧 log𝐵 𝑁 + 𝑧/𝐵
Insert 2 log𝐵 𝑁 (1 + 2𝑀/𝐵) log𝑁 + 1 + log(𝑀/𝐵) 2 log𝐵 𝑃 + 1 + 2𝑀/𝐵 (2 + 2𝑁 /𝐵) log𝑁 log𝐵 𝑁

1 𝑁 is the total item count, 𝐵 is the maximum item count in one block,𝑀 is the maximum item count in one data node (segment) of ALEX (FITing-tree), 𝑃
is the segment number in FITing-tree and PGM, 𝑧 is the item count in a scan (range query), 𝜖 is the predefined error bound in FITing-tree and PGM.

We have also implemented an updatable, on-disk version of PGM.
LIPP is similar to ALEX in that it is also an unbalanced tree structure
with variable node sizes, and the on-disk layout is the same as ALEX
– with the exception of the node bitmaps, which are replaced with a
slot flag to identify the type. This removes the overhead of fetching
the bitmap from the disk.

4.3 On-Disk I/O Cost Analysis
Table 2 shows the worst-case I/O cost of each index studied in an
on-disk configuration.

ALEX. The tree height of ALEX is log𝑁 – the maximum fetched
block count is log𝑁 when traversing to one data node. Because
of the larger node sizes, there is a chance that the model and the
slot required to access the node are not in the same block. So, there
is an extra block retrieval cost when a data node is searched. The
complexity of exponential search is log(𝑀/𝐵). Thus, the total cost
of lookup is log𝑁 + log(𝑀/𝐵) + 1. ALEX uses the same process
as a B+-tree to perform scan operations, but there are two extra
blocks which store the bitmap for the node in ALEX. Thus, the
complexity is log𝑁 + log(𝑀/𝐵) + 𝑧/𝐵 + 3. When performing an
insert operation, ALEX first does a lookup to find a slot to insert
a new key (log𝑁 + log(𝑀/𝐵) + 1). If the node is full, an SMO is
required. ALEX reads all items in a node and constructs new nodes,
which can propagate all the way to the root node ((2𝑀/𝐵) log𝑁 ).
Thus, the total cost is (1 + 2𝑀/𝐵) log𝑁 + 1 + log(𝑀/𝐵).

FITing-tree. A FITing-tree requires log𝐵 𝑃 fetches from the
root node to find the target segment, since the inner nodes of the
FITing-tree are the same as a B+-tree. A binary search is invoked
on the range of 2𝜖 items, which accesses 2𝜖/𝐵 blocks in the worst
case. The analysis of on-disk scans is the same as a B+-tree. To
perform insertions, the Delta Insert Strategy is implemented, which
introduces a sorted buffer to hold new keys. So, the cost is log𝐵 𝑃 +1.
If the buffer is full, the FITing-tree reads all items in the segment
and buffer, and resegments them with a cost of 2𝑀/𝐵. Once the
new segments are added, the B+-tree component is updated. In the
worst case, the cost is log𝐵 𝑃 as all levels in the B+-tree may need
to be updated.

LIPP. The height of a LIPP tree is log𝑁 . Similar to ALEX, the
larger node sizes of the upper nodes can result in a higher chance
that the model and the slot are stored in different blocks. Thus, the
lookup cost is 2 log𝑁 . There is only one node type in LIPP, but
different slot types. In the worst case, the item fetched is in multiple
nodes and blocks. Thus, the total scan cost is 2 log𝑁 +𝑧/2. Similar to
ALEX and FITing-tree, an insertion may lead to rebuilding a subtree
with at most a height of log𝑁 . At each level, at most 𝑁 items must
be read and written. Thus, the total cost is (2 + 2𝑁 /𝐵) log𝑁 .

PGM. The height of a PGM [9] tree is log𝐵 𝑁 and the error bound
in PGM can be smaller than half of the maximum item count in

a block. Thus, the complexity for search and scan is log𝐵 𝑁 and
log𝐵 𝑁 +𝑧/𝐵, respectively. For insert, we can only provide amortised
time. In the worst case, PGM would merge all existing indexes into
a new one as shown in Figure 1(b).

5 EXPERIMENTAL SETUP
5.1 Datasets & Profiling
Datasets.We use eleven datasets, which are widely used in existing
studies [7, 18, 29, 30]. The first ten have 200M keys and each key
is an uint_64 integer. We use the payload as the key plus 1. The
dataset size is 2.98 GB in each of the first ten datasets. The last one
has 800M keys with 11.92 GB size used for scalability experiments.
Profiling. As shown in Section 2, all learned indexes use a linear
function as the model. If a dataset is difficult to model with a linear
function, the performance of learned indexes can be degraded.
• For FITing-tree, PGM, and ALEX, we use the segmentation algo-
rithm from PGM and several error bound settings to show how
hard it can be to model certain datasets using a linear function.
A dataset with more segments is harder to model under the same
error bound. The results are shown in Table 3.

• The performance of LIPP is related to the conflict degree of a
dataset [30], which is shown in the last row of Table 3. A dataset
with a larger conflict degree lowers performance for LIPP.

We also report the leaf node number in a B+-tree when the block
size is 4 KB. For ALEX, PGM, and a Fitting-tree, we set the default
error bound to 64 – with the worst performing dataset being FB for
this error bound. Under this metric, OSM is the most difficult one.
While on both settings, YCSB is the easiest one.

Due to space limit, we report the performance using three repre-
sentative datasets – FB, YCSB, and OSM. For the remaining datasets,
readers can refer to a technical report [3].

5.2 Workloads
We test all the indexes on six different workload types: (1) Lookup-
Only workload, which performs lookups on the indexes built by
bulkloading all keys in each dataset. We randomly sample 200,000
lookup keys from the existing keys. (2) Scan-Onlyworkload, which
performs scan operations on the same indexes as the Lookup-Only
workload. A scan operation is implemented with a lookup operation
on the start key and a scan of the next 99 elements. The start keys
are generated in the same way as the Lookup-Only workload does.
(3) Write-Only workload, which inserts 10M key-payload pairs in
the indexes after bulkloading 10M random keys. (4) Read-Heavy
workload, performs 90% lookups and 10% inserts on indexes after
bulkloading 10M random keys, i.e., we perform 2 inserts and 18
lookups, then repeat the process. (5)Write-Heavyworkload, which
performs 90% inserts and 10% lookups on indexes after bulkloading
10M random keys. We perform 18 inserts and 2 lookups, then repeat
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Table 3: Dataset Profiling under Error Bound and Conflict Degree (block size = 4 KB)

Error YCSB [7] FB [18] OSM [18] Covid [29] History [29] Genome [29] Libio [29] Planet [29] Stack [29] Wise [29] OSM(800M) [18]
16 70,135 2,120,485 1,351,170 231,852 303,737 3,153,966 291,257 1,416,012 54,073 246,463 6,175,387
64 6,952 523,006 326,932 42,695 40,817 295,604 77,401 268,247 6,956 27,553 1,375,143
256 23 119,891 81,392 8,630 8,464 23,228 19,333 55,061 950 4,713 328,623
1024 1 18,495 20,925 1,890 2,029 4,975 3,616 12,001 196 1,184 81,577

B+-tree 980,393 980,393 980,393 980,393 980,393 980,393 980,393 980,393 980,393 980,393 3,921,569

Conflict Degree 4 114 4,106 27 9 585 2 22 1 10 10,107

the process. (6) Balanced workload, which performs 50% inserts
and 50% lookups on the indexes after bulkloading 10M random keys.
We perform 10 inserts and 10 lookups, then repeat the process.

In each of the Mixed workloads (Read-Heavy, Write-Heavy, Bal-
anced), the total number of operations is 10M and the search keys
for the lookup in the Mixed workloads are evenly distributed.

5.3 Other Implementation Details
Code & Environment. We implement all the indexes in C++ and
make them available at [1]. We conduct the experiments on a HDD
using Red Hat Enterprise Server 7.9 on an Intel Xeon CPU E5-2690
v3 @ 2.60GHz with 256 GB memory and a 1TB HDD, and the
experiments on SSD using Ubuntu 20.04 on AMD EPYC 7662 with
500 GB memory and four 8TB SSD.
Metrics. (1) The storage size of the whole index used on disk; (2)
average throughput for each workload type and tail latency for the
lookup-only workload and write-only workload; (3) average block
count per search query (lookup-only and scan-only workloads).
Parameters. For a FITing-tree, we set the buffer size of each seg-
ment to 256 and the error bound to 64 by default. Since the optimal
error bound setting for a FITing-tree can vary across datasets and
workloads, we test several different error bounds and find that the
FITing-tree achieves good performance in the majority of test cases
when the error bound is set to 64. PGM, ALEX and LIPP use the
default parameter settings from the original papers. In Section 6.4,
we perform an experiment that explores the impact of block size.
For other experiments, we fix this value to 4 KB.

6 EXPERIMENTAL EVALUATION
Our comprehensive evaluations in Section 6.1-6.6 aim to answer:
Q1: How good are learned indexes when compared to a B+-tree on
an HDD and an SSD, if the entire index structure is disk-resident?
Q2: Is there any benefit to storing inner nodes of the learned in-
dexes in main memory?
Q3: How much storage do learned indexes require?
Q4:What impact do different block sizes have on performance?
Q5:Do learned indexes have robust performancewhen disk-resident?
Q6:What impact does the buffer have?

6.1 Evaluation When the Entire Index is
Disk-Resident

Setting. In this set of experiments, we assume that the meta block,
which records the root node address and other utility information,
is stored in main memory when in use, while the remaining index
structure remains disk-resident, and stored within blocks of size
of 4 KB. There is no buffer management, i.e., for each request, we
must read/write the required blocks from disk.

6.1.1 Lookup-Only Workload. Figure 3(a) and Figure 3(b) present
the throughput of an HDD and an SSD, respectively. Figure 4(a)
reports the average number of fetched blocks per query. We first
present the observations (O) and then provide a detailed analysis.
O1:When the entire index is disk-resident, the throughput of
the Lookup-Only workload is determined by the number of
fetched blocks from disk. The increase in the number of fetched
blocks usually degrades performance, since fetching data from disk
tends to dominate the execution time. For example, the B+-tree and
FITing-tree show similar performance on the FB and OSM datasets
while the FITing-tree has a much higher throughput on YCSB (26.2%
improvement for an HDD).
O2: Most existing learned indexes are competitive or outper-
forming B+-tree on the Lookup-Only workload. LIPP outper-
forms all other indexes on our test datasets. When compared to the
alternatives, the node fanout of LIPP is much larger, which con-
tributes to its lower tree height and leads to fewer fetched blocks.
However, a large fanout leads to a larger index size, which implies
longer index construction time, as shown in Figure 7(a) and 7(b).
ALEX performs the worst on FB, which is attributed to the highest
number of fetched blocks.
O3: On the Lookup-Only workload, B+-tree exhibits stable
performance, while the performance of the learned indexes
fluctuates. This is because learned index throughput depends on
the difficulty of modeling the data distribution. For LIPP, OSM is
the most difficult dataset, while FB makes the most difficult dataset
for ALEX, FITing-tree, and PGM. Since the B+-Tree does not re-
quire any predictions from a linear model, its performance remains
consistent across all the datasets.
Analysis of Fetched Blocks for the Lookup-Only Workload.
We breakdown the fetched block counts for each index into two
components: (a) the inner nodes, and (b) the leaf nodes. The re-
sults are presented in Table 4. Since there is only one node type in
LIPP, we report the average total node count for LIPP. On the three
datasets tested, the B+-tree has 4 levels in all cases, with 3 inner
node blocks and 1 block for the leaf node.

Based on Table 4, we observe that: (1) For the FITing-tree, ac-
cessing one inner node will fetch one block; in contrast, in the
case of PGM and ALEX, more than one inner node can be stored
within a block due to the small node sizes at the upper tree levels
(hence inner block count is sometimes smaller than the node count
for those). (2) Compared to the B+-tree, the FITing-tree and PGM
have a smaller search range, 256 vs. 128. However, the average
fetched block counts in the FITing-tree and PGM are slightly larger
than the B+-tree (by 1 block). This is because the FITing-tree and
PGM cannot guarantee the entire search range to be stored in one
block. (3) Compared to the other indexes, ALEX accesses more leaf



Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices SIGMOD’23, June 18–23, 2023, Seattle, WA

Figure 3: Search Performance Comparison on HDD and SSD: the entire index is disk-resident using blocks of size 4KB.
Table 4: An Analysis of Fetched Block Counts for Lookup-Only and Scan-Only Workloads. For LIPP, its inner node count for
the Scan-Only workload is provided in the brackets.

FB OSM YCSB
FITing-tree PGM ALEX LIPP FITing-tree PGM ALEX LIPP FITing-tree PGM ALEX LIPP

Inner Node Count 3 5 6.7 1.8 (18.8) 3 5 2.7 2.3 (23.1) 2 3 3 1.3 (16.7)
Inner Block Count 3 3.9 6.5 - 3 3.7 2.6 - 2 2 2.2 -

Leaf Block Count (Lookup) 1.2 1.3 2.6 3.0 1.2 1.2 2.2 3.8 1.2 1.3 2 2.3
Leaf Block Count (Scan) 2 1.7 4.1 24.0 1.8 1.5 3.8 30.0 1.6 1.7 3.6 19.7

Figure 4: Average Fetched Block Count for Search on HDD.
node blocks. Due to the large node size of the leaf nodes, there
is a greater chance that the model stored in the node header re-
sides in a different block than the predicted target position. Thus,
ALEX reads at least 2 blocks. Moreover, on FB and OSM, the fetched
block count is larger than 2. Similar to the binary search in the
FITing-tree and PGM, exponential search in ALEX can occur across
multiple blocks. (4) Although LIPP accesses fewer nodes than the
other indexes, on average, it requires more than 1.65 fetched blocks
per level. The large node size in LIPP can cause the model and the
predicted position to reside in different blocks.

6.1.2 Scan-Only Workload. From Figure 3(c)-(d), we observe that:
O4: For the Scan-Only workload, regardless of the dataset
hardness, B+-tree outperforms others across all datasets. Just
as observed in O1, the throughput of the learned indexes is highly
dependent on the number of fetched blocks.
O5: ALEX and LIPP exhibit the worst performance in the
Scan-Only workload. This is attributed to the fact that ALEX and
LIPP fetch many more blocks compared to the others.
Analysis of Fetched Blocks for the Scan-Only Workload. To
support scan queries, all the indexes first locate the position of the
start key and then scan forward until they reach the final key. We
set the start keys for the Scan-Only workload with the keys from
the Lookup-Only workload. Thus, the inner node counts and inner
block counts are identical to the Lookup-Only workload for FITing
tree, PGM, and ALEX as presented in Table 4. In the last row, we
report the fetched block counts at the leaf node for scan queries.

Table 5: An Average Fetched Block Count for Search on HDD
under the Hybrid Design. The first (second) number is the
block count for the Lookup-Only (Scan-Only) workload.

FITing-Tree PGM ALEX LIPP B+-tree
FB 3.25/3.74 3.25/3.74 4.02/4.51 3.15/3.64 4.0/4.49
OSM 4.25/4.74 4.17/4.66 4.77/5.26 4.5/5.0 4.0/4.49
YCSB 3.25/3.74 3.25/3.74 4.0/4.49 3.01/3.5 4.0/4.49

For LIPP, we also report the total fetched node counts and block
counts as presented in the brackets.

From Table 4, we observe that: (1) LIPP fetches the highest num-
ber of nodes. The three entry types (i.e., NODE, DATA, NULL) are
interleaved in one LIPP node. If we locate a NODE entry, we must
fetch a new node from disk and scan it. If we visit all elements for a
node and its children, we traverse back to the parent node and con-
tinue the scan. There is a high chance that nodes are stored across
multiple blocks, which leads to the highest fetched block count.
Furthermore, the elements in a node can be stored across multiple
blocks, which also results in an increased fetched block count. (2) To
skip the empty slots in the data nodes, ALEX introduces a bit array
to indicate if a slot is empty. The bit array may require additional
blocks to be fetched. In contrast, B+-tree, PGM, and FITing-tree,
store the key-payload pairs contiguously, and the sibling segments
(leaf nodes) are linked. Therefore, there is negligible or no overhead
in fetching the utility data or traversing nodes.
How Good a Hybrid Index Structure Design Is. Storing key-payload
pairs continuously benefits scan in B+-tree, FITing-tree, and PGM.
Thus, an emerging idea is to maintain the leaf nodes in a continuous
manner as in a B+-tree, and adopt learned indexes as the inner part
to index the maximum keys in leaf nodes. Following this idea, we
present the average fetched block count for the Lookup-Only and
Scan-Only workloads in Table 5 and make several observations:
(1) On FB and YCSB, all hybrid designs achieve similar or better
performance than a B+-tree. When we only index the maximum
keys in the leaf nodes, OSM is a harder dataset than FB and YCSB.
The segment counts under an error bound of 64 are 107, 1, 1457
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Figure 5: Write Performance Comparison on HDD and SSD: the entire index is disk-resident using blocks of size 4KB.

in FB, YCSB, and OSM, respectively. (2) With a B+-tree-styled leaf
node, ALEX and LIPP perform better on scan compared to the orig-
inal design. (3) LIPP performs the best on YSCB and FB. However,
compared to the original LIPP (in Table 4), the fetched block count
in the Lookup-Only workload is a little larger. With the maximum
keys in each leaf node in the LIPP part. We have to scan forward to
find the next DATA slot if meeting a NULL slot.

6.1.3 Write-Only Workload. The results presented in Figure 5(a)
and Figure 5(e) lead to the following observations:
O6: For the Write-Only workload, the relative ranking of all
indexes is consistent across all datasets, with PGM signifi-
cantly outperforming other methods. PGM supports arbitrary
insertions using an LSM style tree, which uses a small sorted array
(of fixed size) to cache new insertion requests. When the sorted
array is full, PGM merges this data into the static PGM index (in-
creasing its size), as shown in Figure 1(b). Therefore, most insertion
requests need to read and write only a smaller number of blocks.
O7: Other than PGM, B+-tree significantly outperforms other
learned indexes on theWrite-Onlyworkload.All of the indexes
first find the slot to store a new key-payload pair. Although learned
indexes have shown similar or better performance than B+-tree on
the Lookup-Only workload, the overhead for insertion outweighs
the benefit acquired in the search process. The performance of ALEX
and LIPP is severely impacted in this case. In order to support SMO,
LIPP maintains statistics for each node. Thus, for each insert, LIPP
will update all of the nodes in the path to the inserted node. ALEX
needs to maintain such statistics for leaf nodes as well.
O8: B+-tree and PGM exhibit consistently good performance
across all tested datasets, while the performance of other
learned indexes fluctuates significantly. Overall, LIPP performs
the worst on the harder datasets. This is similar to ALEX that
exhibits lower throughput in harder datasets. Interestingly, FITing-
tree performs the worst in the easier datasets.
Performance Analysis for the Write-Only Workload.Webreak
the insert process into four steps: (a) initial search step, to find the
insert position, (b) insertion step, to do the insertion, (c) SMO step,

Figure 6: Write Performance Breakdown.

to do structural modification, and (d) maintenance step, to update
statistics related to the SMO. We report the average latency of each
step in Figure 6. Unlike other indexes, PGM initiates the search pro-
cess to find the location of a new key-payload pair in a sorted array
of size 585 (3 blocks). PGM only needs to fetch one or two blocks
to find the position. FITing-tree has similar search time to B+-tree,
but exhibits larger insertion time, since FITing-tree needs to write
an extra block to update the current item count for a segment.

ALEX has the highest latency for the insertion step due to several
reasons: (1) It reads from the extra blocks for the bitmap to check
if the predicted position is empty, and then updates the bitmap
after the new insertion; (2) If a predicted position is not empty,
a shift operation is triggered to create an empty slot for the key-
payload pair, which may move the items across blocks; (3) Although
the bitmap is used to determine if a slot is empty, ALEX will still
overwrite empty slots until reaching the previous element to avoid
accessing the bitmap during the lookup query. In (2) and (3), ALEX
also needs to read the bitmap to find any related empty slot(s).

The FITing-tree in YCSB has a larger SMO overhead compared
to FB and OSM. YCSB can be modeled using fewer models and has
more items in each segment. When triggering an SMO operation,
the FITing-tree will write more blocks for YCSB. ALEX and LIPP
have a moderate SMO overhead for FB andOSM. For ALEX, a harder
dataset induces more SMO operations. For example, ALEX requires
57, 330,236, and 212,917 SMO operations for YCSB, FB, and OSM,
respectively. LIPP has two types of SMO, creating a new node to
eliminate the conflict, and adjusting the tree structure. In our testing,
millions of SMOs are the second cases, i.e., an SMO for every three
insertions. Interestingly, LIPP has a larger SMO overhead on YCSB,
an easy dataset. This is because many keys are conflicted locally.
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Figure 7: Bulkload Performance on HDD.

LIPP also has a larger maintenance overhead compared to ALEX.
This is because LIPP will update all nodes in the access path, while
ALEX only needs to update one data node for the insertion.

6.1.4 Read-Write Workload. From Figure 5(b) - (d) and Figure 5(f) -
(h), we derive the following observations:
O9: Inmost cases (6 out of 9), the B+-tree outperforms learned
indexes. Since learned indexes incur a higher number of
block writes, when disk-resident, learned indexes have sub-
par performance compared to the B+-tree (which ranks first
or second in all the experiments with this workload). The
second case rarely happened in our testing while there are
4.28𝑀 , 3.36𝑀 , and 2.81 Excluding PGM, the benefit of the lookup
gained by the learned indexes is eclipsed by the overhead created
by the insertion operations. For example, LIPP outperforms others
in Lookup-Only workloads, yet it exhibits worse performance than
the B+-tree for FB and OSM, even in the Read-Heavy workloads.
O10: As the read ratio increases, the throughput of PGM
degrades severely, unlike the alternatives where it increases.
As discussed in O6, PGM performs well for insertion operations.
However, due to the LSM tree layout, PGM must maintain several
static PGM indexes (see Figure 1(b)). To support a read query, PGM
must access all static PGM indexes sequentially until finding the
search key, or determining that the key does not exist. Each static
index is stored as a separate file – leading to a higher I/O cost.

6.1.5 Bulkload. From Figure 7(a) and Figure 7(b), we observe that:
O11: Learned indexes usually require more storage space
than B+-tree, and all of them require more time to build an
index on disk. On all datasets, PGM has the smallest index size,
while LIPP has the largest index size. PGM supports insertions using
LSM. Each static PGM index does not need to allocate extra space to
hold the new insertions. On the contrary, the other learned indexes
need to allocate extra space before insertions occur. FITing-tree
allocates a fixed size buffer for each segment. ALEX and LIPP use a
gapped array. In LIPP, if the count of items (item_count) inserted
into a single node is in the range [100,000, 1,000,000), LIPP allocates
2∗item_count slots. If the count < 100,000, 5∗item_count slots are
allocated. LIPP has the largest empty slot ratio compared to others.
O12: The index sizes of FITing-tree and LIPP highly depend
on the distribution of the dataset indexed. For harder datasets,
more segments are generated by the FITing-tree, and more buffers
are preallocated. A potential way to optimize the storage size of
the FITing-tree is to allow lazy buffer allocation, where a buffer is
only allocated for a segment when a new key-payload pair must
be inserted into it. If more than one item is inserted into a slot in
LIPP, a new node is created. Harder datasets usually create more

nodes. A high empty slot ratio (as discussed in O11) in new nodes
increases the storage size.
6.2 Evaluation When the Inner Nodes are

Memory-Resident
Setting. In this section, we investigate the impact of indexes when
inner nodes are memory-resident. For the B+-tree and FITing-tree,
we use an STX B+-tree [2] for the inner nodes, which is also adopted
by ALEX and LIPP as their B+-tree baseline. For PGM and ALEX,
we use the original implementation for the inner nodes and store
the leaf nodes on disk. We exclude LIPP from this experiment for
two reasons: (1) There is only one node type in LIPP; and (2) The
largest node in LIPP is the root node. Even if only the root node is
stored in main memory, it requires more than 3 GB of space for the
FB dataset, while other indexes require no more than 40 MB space.
We refer to this setting as the hybrid case in the rest of the paper.
6.2.1 Lookup-Only Workload & Scan-Only Workload. When inner
nodes are memory-resident, the number of fetched blocks for each
index is the same, as shown in the last two rows in Table 4. Given
Figure 8 and Table 4, we observe that:
O13: FITing-tree and PGMare competitive with B+-tree. How-
ever, ALEX is not. Just as what we saw in the on-disk case, per-
formance is determined by the number of blocks fetched. Any per-
formance gains from faster lookups in main memory are eclipsed
by on-disk reads, which remains the key bottleneck.

6.2.2 WorkloadsWithWriteQueries. Forworkloads requiringwrite
operations presented in Figure 9, we observe that:
O14: Unlike the other indexes, utilizing main memory to
store inner nodes does not help PGM. Other indexes first search
for a slot to hold a new key-payload pair. Thus, the performance
gains of lookup-only queries in the hybrid case can improve write
performance. However, for PGM, the write process is the same as
that on disk, so only marginal performance gains can be observed.
One idea to alleviate the problem is to keep the sorted array of PGM
in main memory, as is done for the skip lists of LSM based systems.
O15: B+-tree outperforms the others across all workloads in
the Hybrid case. From Figure 6 we observe that the main overhead
for ALEX and LIPP when they are disk-resident is for insertions,
structural modifications, and statistic updates. Therefore, putting
the inner nodes in main memory does not help, since they still need
to pay this cost. B+-trees have smaller insertion cost than PGM.
After bringing inner nodes into main memory, B+-tree has better
performance in the initial search step, which helps it outperform
PGM. Similarly, the decrease of search overhead in the FITing-
tree means it has better performance than PGM for FB and OSM.
However, due to large SMO overheads for YCSB, the FITing-tree is
worse than PGM for YCSB.

6.3 Storage Size Study
Unlike the main memory setting, the memory allocated on disk
cannot be reclaimed directly and we do not consider how to reuse
the invalid space here1. The result is reported in Figure 10. Other
workload types show a similar pattern to the Write-Only workload.

1One way to alleviate the issue is to reuse the invalid space by bookkeeping the address
and size of invalid space. However, this process incurs extra overhead to maintain the
information for invalid space
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Figure 8: Search Performance Comparison on HDD and SSD: the inner nodes are memory-resident, leaves are on disk.

Figure 9: Write Performance Comparison on HDD and SSD: the inner nodes are memory-resident, leaves are on disk.

Figure 10: Storage Usage on Disk: the entire index is disk-
resident using blocks of size 4KB.

O16: Other than FITing-tree for YCSB, the storage size rank-
ing of the studied indexes is the same as presented in the
bulkload experiment. Although we use the same dataset sizes
for FB and YCSB, FITing-tree has a larger storage size for YCSB,
since YCSB can be modeled using fewer linear models. That is, each
segment covers more keys than in FB (more than 5,000 key-payload
pairs, or a total of 19 blocks). SMO operations allocate more blocks
in the FITing-tree than in any other index. Interestingly, the FITing-
tree has to write more blocks for YCSB, but still requires fewer than
ALEX, and is competitive with LIPP for YCSB (see Figure 5). Given
the performance breakdown shown in Figure 6, the overhead re-
quired to update statistics and do insertion eclipses the performance
gains achieved by fewer SMO operations.

PGM and B+-tree have much smaller storage sizes. When split-
ting a node of a B+-tree, a small part of the original node is retained,

Figure 11: Fetched Block Count under Different Block Sizes.

and the rest goes to a new node. In contrast, learned indexes use
learned models to predict positions, therefore we must store this
as part of a node contiguously on-disk. This makes it difficult to
reuse reclaimed space, and hence higher fragmentation can be ob-
served. For PGM, when a smaller sized index has been merged, the
corresponding index file can be deleted from disk.

6.4 Impact of Block Size
In Figure 11, we show the performance of the Lookup-Only work-
load when the block size is varied on a HDD. We observe that:

O17: The block size variation has different impacts on dif-
ferent indexes. The number of blocks fetched by LIPP does not
change when the block size is varied. The position prediction in
LIPP is accurate and requires no additional search operations. The
physical address of a target element can be derived from the start
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Figure 12: Tail Latency of the Lookup-Only Workload and
Write-Only Workload on HDD.

address in a node, and the relative position from the model pre-
diction. For the other indexes, larger block sizes usually lead to
fewer blocks fetched. When the block size is 16 KB, the height of
B+-tree decreases for a larger fanout. This is also why FITing-tree’s
performance changes on FB. For FITing-tree and PGM, the error
bound = 64, and the length of search range = 128. There is a higher
chance that elements in the search range will be in the same block
when the block size is large, which also reduces theblocks fetched
in leaf nodes for ALEX using an exponential search. In ALEX and
PGM, larger block sizes increase the storage available to nodes in
the upper levels, so we can traverse more nodes using one block.

6.5 Tail Latency
In Figure 12, the tail latency (99-th percentile latency and standard
deviation) for the Lookup-Only workload andWrite-Only workload
are reported. We make the following observation:
O18: Learned indexes usually have greater p99 latency than
the B+-tree for Lookup-Only andWrite-Only workloads, and
exhibit less stable performance. The 99-th latency performance
ranking is the same as observed in Figure 3(a) and Figure 5(a). In-
terestingly, for the Lookup-Only Workload, PGM and ALEX have a
larger standard deviation on FB and OSM. PGM uses a balanced tree
structure, so it should have a similar query latency. We record the
number of fetched blocks for each test query. Given the constraint
that a binary search is conducted only on one block at a time, in
the worst case, PGM may have to access two blocks alternately. As
discussed in Section 6, we do not include buffer management by
default; instead, we check whether the last block fetched can be
reused. ALEX is on the other hand an unbalanced tree structure.
Thus, different data regions may have different query latencies. If
the insertion requires an SMO, it will have a larger latency, leading
to a larger standard deviation. That is why ALEX exhibits a larger
standard deviation for OSM, and FITing-tree has a greater variance
for YCSB. LIPP frequently issues an SMO to create a new node (in
every three insertions), and shows a low variance for the writes.
6.6 Buffer Size Study
We vary the number of blocks that can be cached in the main
memory and test on the Lookup-Only workload. We adopt the LRU

Figure 13: An Average Fetched Block Count from Disk under
Different Buffer Sizes on the Lookup-Only Workload. Buffer
size indicates how many blocks can be cached.

Figure 14: Comparison of ALL Workloads on YCSB and FB.
The entire index is disk-resident and each index’s through-
put is normalized by the largest one in the corresponding
workload (the higher is the better).

strategy. From Figure 13, we make several observations: (1) With
zero or only a small buffer size, LIPP has the smallest fetched block
count due to its lowest average tree height. (2) With a larger buffer
size, the other indexes will fetch fewer blocks from the disk. When
the buffer size is larger than 8, LIPP is outperformed by the other
indexes. One reason is that LIPP has a larger node size in the upper
level, leading to a high probability of fetching blocks that are not
in the buffer. (3) PGM achieves the best performance with a large
buffer size due to its small non-leaf nodes’ size.
7 INSIGHTS AND DESIGN CHOICES ON DISK
7.1 Shortcomings of Learned Indexes on Disk
Figure 14 presents the overall performance of all the studied indexes
on YCSB and FB. Except for Lookup-Only Workloads, the B+-tree is
either competitive or outperforms learned indexes on disk.We now
summarize commonly observed shortcomings (S1 - S5).
S1 – Model-Slot Overhead. Before accessing a slot in a node,
ALEX and LIPP need to fetch the learned model in a node. The
model is stored in the node header. The model and the searched
slot may be located in different blocks. Although learned indexes
can have lower tree heights, the extra blocks needed to fetch the
model can lead to more blocks being accessed overall compared to
the B+-tree. This problem does not exist neither in the FITing-tree
nor PGM, since they store the model in the parent node.
S2 – Search Overhead. Even for very small search ranges where
FITing-tree, PGM and ALEX routinely outperform B+-tree in main
memory, it is not the same case on disk, because no learning ap-
proach can guarantee that (even very few) searched items will be
stored in the same block. Without judicious buffer management
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developed for learned indexes, this problem may be severe in ex-
treme cases. Moreover, PGM supports arbitrary insertions but the
LSM structure must maintain multiple files. When handling a query
in mixed workloads, PGM may access multiple files, and hence
exhibits much worse performance than others. LIPP does not have
this problem since it tends to have accurate predictions in each step.
However, since LIPP does not distinguish between the data and
inner nodes, traversal of additional nodes may still be required.
S3 – Utility Structure Overhead. This overhead comes from two
parts. (1) For searches – when performing a scan operation (a range
query), ALEX will first locate the smallest key of the search range
and then scan forwards. The bitmap used by ALEX can skip empty
slots. However, due to the size of the data nodes (up to 16MB), the
bitmap for one data node can cover at most 32 blocks, and incur
additional I/O costs. (2) For writes – both ALEX and LIPP maintain
statistics based on historical workloads which are leveraged in SMO
operations. These statistics are stored in the node header. Thus,
ALEX and LIPP must update the header of the node after each
insertion. From Figure 6, we can see that the overhead for this
operation is far from negligible when the index is disk-resident.
S4 – SMO Overhead. As shown in Figure 6, ALEX, LIPP, and
FITing-tree have large SMO overheads in certain cases. The SMO
operation is required in order to boost performance of the later
queries. For example, this operation reduces the tree height in LIPP.
On the other hand, this maintenance overhead can hurt the overall
performance, especially for on-disk operations (see Figure 5 and
Figure 9). The B+-tree thus outperforms all of them on nearly every
workload involving a write operation.
S5 – Other Index-Specific Overheads. (1) Although the gapped
array in ALEX helps reduce shift operations, supporting lookup
queries without accessing a bitmap forces ALEX to overwrite the
preceding empty slots until it reaches the previous element. With a
large leaf node size, ALEXmay have to update more blocks than the
B+-tree. (2) If the predicted slot is occupied by another key-payload
pair, ALEX will shift items to obtain an empty slot. This may move
items across blocks, leading to extra block writes.

7.2 Design Choices
Based on the above observations, we propose the following best
practices when designing disk-resident learned indexes:
P1 – Reduce the tree height. The tree height directly influences
the number of fetched blocks. Designing smaller-sized nodesmay be
an alternative choice. This implies that multiple nodes can be stored
in the same block. The latter will benefit search-only workloads.
However, after updating the nodes, some of them may need to be
moved to another block. LIPP and the interpolation search tree [5,
19] can reduce the tree height while they only benefit lookup-only
queries and can increase the storage cost. Moreover, as shown in
Section 6.6, LIPP cannot utilize the buffer well due to its large node
size at upper level. A potential solution worth investigating is to
combine it with another index structure.
P2 – Use a light-weight structural modification operation
(SMO). Although existing learned indexes have the advantage of
faster search, higher overheads stemming from SMO operations
reduce the performance for the Write-Only and Mixed workloads.

There are three aspects we should consider: (1) reducing the fre-
quency of index tree modifications; (2) reducing the size of the
partial trees that must be updated during each structure modifica-
tion operation; (3) reducing the reliance on historical statistics in
the SMO process or storing this information so that the process
requires far fewer block fetches or updates.
P3 – Lower overhead when fetching the next item. Although
the design of gapped array boosts the performance of ALEX and
LIPP for insert, it has an additional overhead–more blocks are
fetched when skipping empty slots on disk. Without the ability
to differentiate between data nodes and inner nodes, LIPP cannot
quickly locate the next item needed, and traverses additional nodes.
When using learned indexes on disk, key-payload pairs should
be stored contiguously, or alternatively, the nodes that store the
key-payload pairs should have higher densities. As shown in Sec-
tion 6.1.2, using a B+-tree styled leaf node may mitigate this issue.
P4 – Storage layout design. Larger node sizes in learned indexes
reduce the height of the tree structure in the main memory configu-
ration. However, when we store the larger nodes on disk, there is a
much greater chance that two blocks must be fetched to locate the
searched slot – one for fetching the model and one for fetching the
address of the child node (or the data). If we cannot reduce the tree
height by 2 levels for each large node that crosses multiple blocks,
the learned indexing on-disk becomes less attractive. A possible
optimization is to store the model in the parent node (similar to the
idea adopted by PGM and FITing-tree), which will result in fetching
at most one block for each level traversed.
P5 –Co-design learned indexwhenusing buffer.Co-optimizing
the size of the in-memory structure (inner nodes) combined with an
additional search cost over on-disk leaf nodes is a plausible strategy.
A B+-tree styled leaf node may be used, which usually results in
fewer fetched blocks compared to the original learned index, and
is also efficient for scan-based queries, as shown in Section 6.1.1.
When designing a learned index on disk in this manner, the perfor-
mance difference depends on which learned index is used in main
memory. Based on a recent study [29], ALEX, LIPP, and ART [14]
would be suitable choices. Another plausible strategy is to cache
frequently accessed blocks. As shown in Figure 13, indexes with
a smaller size at the upper level, e.g., PGM, ALEX, B+-tree, and
FITing-tree, are more suitable for larger buffer sizes.
8 CONCLUSIONS
We raise a simple but important question: Can we build an updatable
learned index to fully replace the traditional disk-resident B+-tree? To
answer that, we explore state-of-the-art updatable learned indexes
(expanding their in-memory implementations), and provide a com-
prehensive experimental evaluation and analysis. While each of
them has their own strengths, we find none of them are competitive
with the disk-resident B+-tree. Upon our evaluation, we present
four crucial design choices. We believe our implementation and
proposed design choices will be useful to researchers and practi-
tioners in designing new and efficient disk-resident learned indexes.
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Figure 15: Bulkload Time (s) and Index Size (GB).

A EXPERIMENTS ON OTHER DATASETS
A.1 Performance Comparison on Other Seven

Datasets with 200M Keys
A.1.1 Bulkload Time and Index Size. We report the bulkload time
and index sizes in Figure 15 and Figure 16. In most datasets (6
out of 7), LIPP and ALEX take more storage space and have a
larger bulkload time. Interestingly, LIPP on STACK achieves a small
storage cost and bulkload time than LIPP on other datasets.With the
conflict degree equal to 1, there is only one node in LIPP. Moreover,
when the number of items is larger than 1000,000, the allocated
space size is equal to 2x of the item count in LIPP. Thus, the data are
stored in a nearly packed manner. In turn, LIPP has a significantly
smaller storage cost than LIPP on other datasets. From Figure 16, we
observe that FITing-tree cannot achieves a acceptable storage cost
on neither an easy dataset or a hard dataset. For an easy dataset,
FITing-tree rewrites more blocks due to a large number of items in
one segment while for a hard dataset, FITing-tree generates more
segments and more buffers will be allocated. With many new nodes
created to eliminate the conflicts during the insertions, LIPP has a
large storage overhead.

A.1.2 Query Performance. We report the studied indexes on the
other seven datasets with 200M keys from Figure 17 to Figure 20.

When either storing the whole index on disk (an HDD or an
SSD) or in a hybrid mode, we have the same observations presented
in Section 6. When the indexes are disk-resident, we still observe:
(1) LIPP outperforms others in the Lookup-Only workloads and
the Read-Heavy workloads in the most datasets; (2) PGM has a
better performance in a workload with more writes; (3) the B+-tree
has the best or the second best performance in the most settings.

When we pin the inner nodes into main memory, B+-tree beats
these learned indexes in almost all cases.

Interestingly, LIPP outperforms other indexes for the Scan-Only
workload on STACK in Figure 17(b) and Figure 18(b). With the
conflict degree equal to 1 on STACK, LIPP stores all items in the
first level in a nearly packed manner. Thus, LIPP only needs to scan
forward after locating at the first item. Due to the lower tree height
and the packed array layout, LIPP achieves the best performance
for the Scan-Only workload on STACK.

A.2 Performance Comparison on OSM800
Due to the large scale and high conflict degree in OSM800, LIPP
cannot complete the bulkload process even if it has already taken
80 GB on disk. With a lower throughput, ALEX cannot finish most
workloads within half an hour. Thus, we exclude them in the follow-
ing study. We also study other indexes on disk with six workload
types in Section 5. Differently, for the workloads with the writes, we
build an initial index with 200M keys, and then issue 20M queries
in total. We report the results in Table 6.

B OTHER DISCUSSIONS
ConcurrencyControl. In this work, we focus on the single-threaded
case. There are several concurrent learned indexes [15, 27, 29] pro-
posed in the main memory setting, all of which use optimistic
locking, and associate a versioning lock to each node. The node
size in these proposed learned indexes can be different from the
page size. When extending learned indexes to an on-disk setting,
page locks need to be considered as well, which will require a much
more complex locking mechanism. One recent work, TreeLine [32],
which introduces the page-level lock and segment-level lock, is a
good start to solving this problem.
Model-Based Insertion. The idea of model-based insertion has
been used in ALEX, LIPP, and TreeLine. ALEX deposits the new
key-payload pair at the predicted position. At a leaf node, if the
predicted position is an empty slot, ALEX just does insertion; oth-
erwise, ALEX shifts the elements by one position in the direction
of the closest empty slot. Without a guarantee on the search range,
ALEX adopts the exponential search. On disk, more accessed blocks
can be introduced due to the unbounded search range. Different
from ALEX, all predictions in LIPP are accurate. If the predicted po-
sition is occupied with another key, LIPP will allocate a new NODE
to resolve it. This idea will not incur extra blocks to be fetched
when searching on disk. TreeLine adopts PGM’s optimal regression
algorithm. With the empty space for at least the predefined error
records at the front and back of each page, binary search will never
cross page boundaries. When a new key-payload pair is inserted
after building the index, however, it will be inserted into the over-
flow page. Thus, when we look up the item in the overflow page, it
may incur an extra fetched block.
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Figure 16: Storage Comparison on HDD only.

Figure 17: Performance Comparison on HDD only.
Table 6: Performance on OSM(800M).

HDD-Only HDD-Hybrid
FITing-tree PGM B+-tree FITing-tree PGM B+tree

Lookup-Only 90,928.7 76,275.2 88,576.1 206,169 198,928 209,056
Scan-Only 65,112.8 33,131.4 81,281.3 162,598 71,625.6 189,548
Write-Only 52,198.7 84,786.9 65,434 105,207 80,818.5 133,456
Write-Heavy 53,870 55,844.7 64,863.8 112,981 61,744.2 141,228
Balanced 65,991.5 25,006.2 74,964.9 149,289 31,178.8 173,400

Read-Heavy 87,658.7 17,952.7 95,734.7 222,873 22,533.4 238,755
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Figure 18: Performance Comparison on SSD only.

Figure 19: Performance Comparison on HDD in a Hybrid Setting.
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Figure 20: Performance Comparison on SSD in a Hybrid Setting.


	Abstract
	1 Introduction
	2 Updatable Learned Indexes Revisited
	2.1 Learned Indexes Built Bottom-up
	2.2 Learned Indexes Built Top-down
	2.3 Other Updatable Learned Indexes

	3 Comparison
	4 Learned Indexes on Disk
	4.1 Extending ALEX On Disk
	4.2 Extending Other Learned Indexes On Disk
	4.3 On-Disk I/O Cost Analysis

	5 Experimental Setup
	5.1 Datasets & Profiling
	5.2 Workloads
	5.3 Other Implementation Details

	6 Experimental Evaluation
	6.1 Evaluation When the Entire Index is Disk-Resident
	6.2 Evaluation When the Inner Nodes are Memory-Resident
	6.3 Storage Size Study
	6.4 Impact of Block Size
	6.5 Tail Latency
	6.6 Buffer Size Study

	7 Insights and Design Choices On Disk
	7.1 Shortcomings of Learned Indexes on Disk
	7.2 Design Choices

	8 Conclusions
	Acknowledgments
	References
	A Experiments on Other Datasets
	A.1 Performance Comparison on Other Seven Datasets with 200M Keys
	A.2 Performance Comparison on OSM800

	B Other Discussions

