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A successful campaign should be able to attract investment from the brand, and meanwhile manage the

conflicting interests in the campaign cost between the brand and the influencers. As such, the agency between

these two stakeholders plays a vital role. Motivated by the above, we stand in the agency’s shoes to formulate

an interesting yet practical problem, namely Profit Divergence Minimization in Investment-Persuasive Influencer
Marketing Campaign (PDMIC). This problem aims to (i) minimize the divergence of the actual hiring prices
from the asking prices of the influencers and meanwhile (ii) maintain the attractiveness of the pricing scheme

for the influencers to the brand. We show that the PDMIC problem is NP-hard. To mitigate the challenge of

the extremely large searching space of the hiring prices of the influencers, we solve this problem by firstly

considering a restrictive searching sub-space and then gradually expanding the searching sub-space to the

whole space in the end (specifically, from binary price choices to a set of integer prices and then to any price in

the feasible price range). We propose effective yet efficient (approximate) algorithms for solving the problem

in each of these settings. Extensive experiments demonstrate the superiority of our methods.
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1 INTRODUCTION
Influencer marketing, which involves collaborations among the brand, the agency and online

influencers to market products, has now become a mainstream form of online marketing and is

forecast to notch $15 billion by the end of 2022 [12]. Figure 1 depicts a general workflow of initiating

a marketing campaign in influencer marketing platforms such as SocialPubli [7] and Fourth Floor

Creative [19]. Given a budget offered by the brand (in Step 1 of Figure 1), the agency first finds

candidate influencers and collects the asking prices (in Step 2). Then in Step 3, the agency makes

appropriate prices for hiring (some of) these influencers, returns the individual hiring price to
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Fig. 1. The business model of influencer marketing

each influencer, and returns the whole pricing scheme to the brand. Finally, the two stakeholders

respond to the plan (in Step 4).

Due to its importance and great usefulness, influencer marketing has received considerable

attention in the field with different focus [30, 32, 53, 55, 57, 60]. While significant efforts have been

paid to help the agency find suitable influencers for the brand (in Step 2) based on influencers’

asking prices, existing studies on influencer selection barely consider whether the asking prices

of the returned influencers as the final hiring prices are acceptable to the brand. To see this, let

us take the Influence Maximization (IM) problem as an example. In the IM problem, the goal is to

hire a seed set of candidate influencers within the given budget from the brand to maximize the

overall influence. In this setting, the seed set is found based on influencers’ asking prices which are

assumed to be the final hiring prices and unconditionally accepted by the brand.

Unfortunately, we argue that such an assumption is barely true in real-world influencer marketing

campaigns; instead, as we will elaborate next, in actual campaigns, there inevitably are conflicting

interests – the brand wants a high return of investment whereas the influencers have high asking

prices (i.e., expect high profits). That explains the nature of Step 3 in reconciling such conflicts,

where the agency tries to rationalize the asking prices and reach an agreement that hopefully

benefits all parties [5].

The Brand’s Point of View. Instead of the abstract notion of influence, what the brand truly cares

about is the Return of Investment (ROI), i.e., what the brandwould get in return from their investment.

As a result, in addition to the influence, the engagement rate of an influencer matters. Here, the

engagement rate is the percentage of the influence (e.g., the number of followers) of an influencer

that are actually effective (e.g., how many followers are engaged by the influencer) in a campaign.

Therefore, the engagement rate reflects the actual return to the brand. Interestingly, according

to recent studies [4, 8, 13, 14], influencers with a relatively small influence often have higher

engagement rates than those with high influence. Taking Twitter as an example, the engagement

rate of influencers with about 10,000 followers is generally 83% higher than that of the influencers

with 100,000+ followers [8]. Therefore, from the brand’s point of view, hiring 10 influencers each

with 10,000 followers should be a better deal than spending the same cost on hiring just one

influencer with 100,000 followers, simply because the former deal brings higher engagement rates

of those influencers. In other words, a “big” influencer with great influence would not be competitive

in the market if s/he has a price rate (i.e., price per unit of influence) more expensive than those

“small” influencers with higher engagement rates [3, 5, 20]. For example, some UK brands were

willing to pay for those influencers with no more than 10, 000 followers at two times larger price

rates than paying celebrities with ≥ 1M followers [3]. Therefore, for the brand, a campaign plan is

investment-persuasive only if big influencers have no more expensive price rates than small ones.

The Influencers’ Point of View. For the influencers, high profits are certainly the most important

expectation. Therefore, their asking price rates tend to be close to the high end of their corresponding

market price range. As such, the asking prices (which are visible to the agency only) are generally
not investment-persuasive to the brand when used as the final hiring prices.
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Table 1. Three campaign plans. Meaning of the acronyms: C. for Candidates, Inf. for Influence, Ask. for
Asking price ($), P. for Hiring Price ($), R. for Hiring Price Rate, Dif. for Absolute Difference (i.e., |Ask.–P.|),
and Camp. for Campaign.

C. Inf. Ask. Camp. 1 Camp. 2 Camp. 3
P. R. Dif. P. R. Dif. P. R.

v1 200 200 200 1 0 200 1 0 200 1

v2 100 130 100 1 30 130 1.3 0 130 1.3

v3 100 100 100 1 0 130 1.3 30 100 1

v4 100 100 100 1 0 130 1.3 30 100 1

v5 100 70 100 1 30 0 0 70 70 0.7

The Agency’s Point of View. There is a clear conflict of interests between the brand and the

influencers in the campaign cost. Here, the agency’s job is to reconcile such a conflict to make the

campaign a deal – the agency needs to decide appropriate hiring prices for the influencers such
that the resulted campaign plan is investment-persuasive to the brand, and meanwhile satisfies the

influencers’ expectations with the best effort.

The Problem to be Solved. Motivated by the above, we play the role of the agency in campaigns

and hope to reconcile the above conflict by rationalizing prices in Step 3 of Figure 1. Specifically, we

formulate the agency’s job as the problem of Profit Divergence Minimization in Investment-Persuasive
Campaign (PDMIC). Given a brand’s budget and a set of influencers’ asking prices and influences,

the goal of the PDMIC problem is to make an investment-persuasive campaign (i.e., a pricing

scheme for the influencers) that can minimize the profit divergence of the influencers. Here, the
profit divergence is defined as the sum of the absolute difference between the actual hiring price and
the asking price of each influencer.

Example 1. In Table 1, the left part lists five candidates, their influences and asking prices (visible to
the agency only), and three campaigns. Given a total budget of $600, we aim to compute an investment-

persuasive campaign. That is, influencers with the same influence charge the same price rate (i.e.,
price per unit of influence), and the price rate of an influencer with greater influence cannot be larger
than that of an influencer with less influence. Here, both Campaign 1 and Campaign 2 are investment-
persuasive. In Campaign 2, v5 is not hired due to insufficient remaining budget. Campaign 1 achieves
a much smaller total profit divergence (i.e., 60 vs. 130) and is obviously better because it makes the best
use of the budget, helps achieve larger advertisement exposure for the brand and meanwhile satisfies
the profit needs of more influencers with the best effort. On the other hand, Campaign 3 is not qualified
since it is not investment-persuasive: the influencers v2 to v5 with the same influence are hired with
different price rates. Apparently, Campaign 3 will not be accepted by the brand that emphasizes return
on investment. In this case, the brand will expect their prices to be $70, which is the lowest hiring price
among them but way below the asking prices of v2, v3 and v4.

Benefits of investment-persuasive campaigns. Aiming at investment-persuasive campaigns has a

number of benefits. First, the investment-persuasive constraint makes a campaign “value for money”

and hence benefits the brand, who cares about ROI rather than abstract notion of influence without

considering realistic factors (e.g., engagement rate). Second, the objective tries to minimize the

deviation of the actual hiring prices from the influencers’ asking prices, which maintains a good

balance between the interests of the brand and influencers in the hiring costs. Last but not least, it

helps maintain an environment of fair competition in the market. Specifically, the aim of achieving

investment-persuasive campaigns allows us to detect “speculators” who have much lower asking

price rate than competitors, so as to avoid engrossing the market. Furthermore, this aim also
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prevents influencers, who have much higher asking price rates than competitors, from harming

the benefit of the brand. For instance, in Table 1, the asking price rates (i.e., 1.3 and 0.7) of v2 and

v5 may be unreasonable as they are notably different from that (i.e., 1) of the majority of their

competitors v1, v3 and v4. Thus, a good investment-persuasive campaign (e.g., Campaign 1) is able

to adjust their actual price rates based on the overall market.

The role of the PDMIC problem. We assume that the candidate influencers have been recommended

already in the Step 2 of Figure 1 based on different possible goals (e.g., influence maximization [60] or

regret minimization [30]), and the PDMIC problem focuses on rationalizing the prices of candidates

in the Step 3. Thus, our problem serves a totally different role from existing candidate selection

problems in the business model.

To summarize, we make the following contributions:

• To our best knowledge, we are the first to comprehensively study the vital role of the agency

that has been oversimplified or overlooked in previous work. Specifically, we formulate the job

of the agency as the problem of the Profit Divergence Minimization in Investment-Persuasive

Campaigns (PDMIC), which aims to attract investments while protecting stakeholders’ benefits

and helping maintain an environment of fair competition. (Section 3)

• We prove the NP-hardness of the PDMIC problem. (Section 4)

• As to be discussed in subsequent sections, the challenge of the problem mainly lies in the

extremely large searching space of the hiring prices for the influencers. As such, we address

the problem by considering a small searching sub-space at first, and then gradually expanding

the searching sub-space to the whole space in the end. In other words, we consider gradually

relaxing the restriction on the price choices from strict ones to none (i.e., no restriction in the

end). For solving the problem under these different settings, we propose effective and efficient

algorithms:

– As a first step, we consider the binary-choice restriction, where each influencer is required to

be either hired with a specified price or unhired with no cost. Under such a restriction, we first

propose an exact dynamic-programming based algorithm. And then, we show a 2-approximate

algorithm which often produces high-quality solutions (i.e., with low profit divergence) in our

experiments. (Section 5)

– We propose an exact algorithm under a more relaxed restriction that the hiring price of each

influencer could be chosen from a specified set of integer prices. (Section 6)

– When no restriction is imposed, that is, we can select any price, two fast yet effective heuristic

algorithms are carefully designed. (Section 7)

• We propose three interesting metrics for effectiveness evaluation, which might be useful to

future efforts on this topic. Our extensive experiments on real-world datasets show that our

ultimate approximate methods (with no restriction): (i) notably outperform the binary-choice

based methods in terms of result quality, and (ii) can even achieve results with better quality

than our exact integer-price-choices algorithm with a sufficiently large number of integer price

choices, and meanwhile achieve up to eight-orders-of-magnitude speedup. (Section 8)

2 RELATEDWORK
In this section, we give a literature review on influencer marketing and resource allocation. The

literature on influencer marketing can be divided into two classes: (i) influencer selection opti-

mization and (ii) pricing scheme optimization. Studies of the first class only focus on Step 2 in

Figure 1, that is selecting influencers based on their asking prices for specific objectives (e.g.,

influence maximization). Moreover, they never consider whether the asking prices of selected

influencers are acceptable or reasonable to the brand. In constrast, we focus on Step 3 in Figure 1
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and study rationalizing the prices of the selected influencers. Studies of the second class are also

drastically different from our study, as they either have different pricing focus (e.g., products) or
do not consider the conflicts of stakeholders’ interest. Our PDMIC problem is essentially a useful

downstream application of the popular influencer selection optimization problem and the pricing

scheme optimisation problem in the field. PDMIC is orthogonal to those problems studied in this

line of research, yet the input of PDMIC can be assumed to be a certain output from influencer

selection algorithms as a pre-processing.

Influencer Selection Optimization. Influence maximization aims to select a limited number of

influencers with the greatest influence spread. There are considerable studies with the goal of

improving the efficiency of influence estimation under different stochastic diffusion models and

improving the influencer selection [27, 31, 33, 35, 38–40, 42, 43, 47, 47, 49, 50, 52, 56, 58–60, 63–

66, 71, 73, 74, 79, 80, 82, 84–86]. It provides deep insights on collective behavior of users in online

social network and is of great importance in understanding influence cascades in viral marketing.

This inspires many subsequent works on different variations. Budgeted influence maximization [32,

54, 64, 72, 75] considers different prices for hiring influencers and aims to select a set of influencers

with the greatest influence under limited budgets. Profit maximization [55, 83] aims to choose a

set of influencers who are able to bring the maximum profit which is calculated by influencers’

influence spread minus the costs of hiring them. Revenue maximization [29, 53] extends budgeted

influence maximization by maximizing revenue proportional to influence and considering finding

different disjoint seed sets for different advertisements. Regret minimization [30, 93] aims to select a

set of influencers to minimize difference between the revenue proportional to the influence brought

by the selected influencers and the budget of the brand.

Pricing Scheme Optimization. Zhu et al. [94] study the problem of pricing influencers with a

totally different objective which aims to make their prices effectively reflect their unique contribu-

tions to the influence of different seed sets. Therefore, the computed campaign is not investment-

persuasive. In particular, influencers with the same influence can be assigned with very different

hiring prices and influencers with the greater influence can charge much higher price rates. Arthur

et al. [28] aim to decide the least discounts of a product to encourage consumption and expect the

buyer to further propagate the product information to other online users. Chen et al. [41] study

how changes of the network structure affect the discriminatory pricing strategies where companies

sell products with discounts to users with large centrality or influence. Outside the domain of

influencer marketing, there are also many studies on pricing strategies but with different contexts

and targets (e.g., query [45, 62], data [36, 68], solutions [37] and crowdsourcing [87]).

Resource Allocation Optimization. It is a very broad line of research which aims to compute

the optimal distributions of resources among competing alternatives in order to maximize the

objective score [21], where the definitions of resources and alternatives depend on specific problem

contexts. For instance, they refer to the knapsack space and items, the budget and influencers, and

the budget and locations for deploying facilities in variants of the knapsack problem [34, 61, 69, 76,

77, 81], the influence maximization problem [29, 30, 32, 53, 54, 60, 64, 93] and the location selection

problem [67, 70, 78, 88, 89, 91, 92], respectively. With different contexts, constraints, and objectives,

existing studies on these problems face different challenges and effective solutions require problem-

specific designs. Thus, it is unrealistic to have a single general and simple algorithm which fits

all problems above. Let us take the greedy strategy, which iteratively selects an alternative with

the greatest marginal gain to the objective per unit of consumed resources, for an example. This

strategy produces approximate solutions for the classical influence maximization problem [60] but

does not have any theoretical guarantee for the budgeted influence maximization or the classical

knapsack problem. In the latter two problems, extensions of this greedy strategy are required to
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Table 2. Frequently used notations

Notation Description

B The campaign budget.

δ (v ) The influence of influencer v .
pvask The asking price of v .

pvask/δ (v ) The asking price rate of v .
τ (v ) The acceptable hiring price threshold of v .

[τ (v ),B] The acceptable hiring price range of v .
P (v ) The hiring price of v in a campaign P.

pv A candidate price for hiring v .

have approximation ratios [1, 32]. However, extensions may not always be an effective remedy

especially in problems with more problem-specific objectives and constraints. For instance, in

the billboard placement problem [92] where the objective is not submodular, a specific branch-

and-bound method was proposed to solve the problem exactly since the greedy strategy with any

possible extension will not produce high-quality solutions theoretically.

Therefore, a simple yet general resource allocation strategy with possible extensions is unlikely

to be highly effective in our problem which has a unique investment-persuasive constraint. To our

best knowledge, there is no resource allocation study that considers such a constraint. However,

for a better connection to existing work in this field, we propose two greedy based solutions

with different selection criteria in Section 5.2 and Section 7.1 respectively. Despite that these two

extensions achieve promising results in some cases, they are still notably outperformed by our

advanced method with more problem-specific design (Section 7.2).

3 PROBLEM FORMULATION
In this paper, we focus on the job of the agency in Step 3 of Figure 1, that is, the step to design a

plan specifying which influencers to be hired at what costs with respect to the given budget B. Next,
we formulate this problem and frequent notations are in Table 2.

Budget. A budget, denoted by B, is the overall available cost for hiring influencers in the campaign.

Influencer. An influencer v is a candidate to be hired in the campaign, who is associated with the

following three attributes.

Influence. Each influencer v is associated with a positive real number representing her influence,
denoted by δ (v ), which is measured under certain influence measurement. However, the choice
of the influence measurement is irrelevant to our problem formulation and the computation of

δ (v ) is orthogonal to our problem. And the choice of the influence measurement is often up to the

context of application scenarios. For example, δ (v ) can be as simple as the number of followers of v
or can be the popular influence notions in the context of Influence Maximization defined under the

independent cascade model [48] and the linear threshold model [51].

Asking Price. Each influencer v specifies an asking price pvask visible to the agency only. The asking

price of v is often represented by a percentage of the budget known to the agency only, e.g., 5%

of B. As a result, for the ease of discussion, we simply consider pvask as the normalized price with
respect to the budget B that v wants to be hired with. In other words, the sum of the asking prices

over all the influencers is exactly equal to B.

Acceptable Hiring Price Threshold. In addition to the asking price, each influencer v also specifies

a non-negative acceptable hiring price threshold, denoted by τ (v ) ≥ 0, which is the hiring price

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 80. Publication date: May 2023.



Managing Conflicting Interests of Stakeholders in Influencer Marketing 80:7

threshold that would be acceptable tov . That means, influencerv will not take the job if the offered

price is smaller than τ (v ). In particular, τ (v ) = 0 indicates influencer v does not care about the

hiring price as long as it is positive (i.e., > 0). However, v will never take the job if the offered

hiring price is 0: an influencer will never work for free. Therefore, being offered a 0 hiring price is

equivalent to the case that the corresponding influencer is not hired.

Campaign. Given a budget B and a set F of influencers, i.e., F = {v1,v2, . . . ,v |F | }, a campaign is a

pricing scheme, denoted by P = [P (v1),P (v2), , . . . ,P (v |F | )], which assigns a hiring price P (v ), to
each influencer v ∈ F such that: (i) P (v ) ≥ τ (v ) if v is hired to endorse the campaign, or P (v ) = 0

if v is not hired, and (ii)

∑
v ∈F P (v ) ≤ B. For the ease of presentation, we directly use h as vh to

refer to the hth influencer in F .

Definition 1 (Profit Divergence of a Campaign). Consider a campaign P with respect to
budget B and influencer set F ; the profit divergence ofP, denoted byDP , is the total absolute difference
between the hiring price and the asking price of each candidate, that is, DP =

∑
v ∈F |P (v ) − p

v
ask |.

Definition 2 (Investment-Persuasive Campaign). A campaign P is investment-persuasive if
the hired influencers with higher influence have lower hiring price rates, i.e., the hiring price per unit
of influence. Formally, ∀u,v ∈ F , if both u and v are hired, i.e., P (v ) , 0 and P (u) , 0, and u has no
greater influence than v does, i.e., δ (u) ≤ δ (v ), then P (v )δ (v ) ≤

P (u )
δ (u ) holds.

To adjust the persuasiveness level of the campaign, we can also control the scale of difference

among the hiring price rates of influencers with different influences. For example, in the definition

above, we can specify that the hiring price rate of v must be at least twice smaller than that of u.
Here, we allow the existence of the equal condition for the ease of presentation, since our theoretical

analysis and methods are orthogonal to the scale of difference.

Definition 3 (Profit Divergence Minimization in Investment-persuasive Campaigns

(PDMIC)). Given a budget B and a set F of influencers, the goal of PDMIC is to return an investment-
persuasive campaign P∗ with the minimum profit divergence. Mathematically, PDMIC can be formu-
lated as the following the problem:

P∗ = arg min

P

DP

subject to:
• (i) normalized asking prices:

∑
v ∈F p

v
ask = B,

• (ii) non-negative hiring prices: P (v ) ≥ 0,∀v ∈ F ,
• (iii) acceptable hiring price thresholds: P (v ) ≥ τ (v ),∀P (v ) > 0,
• (iv) within the budget:

∑
v ∈F P (v ) ≤ B, and

• (v) being investment-persuasive:
P (v )
δ (v ) ≤

P (u )
δ (u ) , for all P (v ) · P (u) > 0 ∧ δ (u) ≤ δ (v ).

Application Scenarios beyond Influencer Marketing. In fact, our investment-persuasive con-

straint is an implementation of the tiered pricing model, where prices are offered with different

levels of service or quality [15]. In the tiered pricing model, a higher-tiered service charges more

yet its price rate (i.e., price per value) needs to be at least as good as a lower-tiered service [22]. Our

investment-persuasive constraint nicely captures this property. As a result, our PDMIC problem

can be directly applied to various pricing scenarios where the tiered pricing model is considered.

Below, we just name two application scenarios.

Scenario 1: Cloud Service. For instance, when a company wants to adopt cloud services (e.g., multi-

cloud or hybrid cloud services [9, 23] sourced from different vendors) in the cloud computing
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business, an SaaS broker is usually involved as a middle man between the company and a set F
of service providers to negotiate a Service Level Agreement (SLA) [46, 90]. In this case, we can

consider that the buyer has a budget B and each service provider v ∈ F has an asking price pvask ,
an acceptable hiring threshold τ (v ) and a value δ (v ) (e.g., storage space and processing speed).

To protect the benefits of the buyer and providers while attracting investments from the buyer,

the broker may want to compute the investment-persuasive campaign with the minimum profit

divergence.

Scenario 2: Material Supply. Similarly, when a company seeks for certain materials (e.g., carbon

fiber, plastic and residue waste), a material brokerage company [2, 10] often plays an important role

to achieve a win-win solution (i.e., an investment-persuasive campaign) between the buyer and the

sellers. In general, one single seller may not be able to satisfy the need of the buyer company. As a

result, such a solution often contains multiple sellers which have limited supply of the material

with different qualities δ (·).

4 HARDNESS AND SOLUTION OVERVIEW
In this section, we first show the NP-hardness of our PDMIC (Definition 3) and then give an overview

of our solutions. More specifically, our NP-hardness proof is a reduction from the Knapsack

Problem [69] to a special input instance of our PDMIC, where for each influencer v , we have

δ (v ) = τ (v ) and pvask ≤ δ (v ).

Lemma 1. For the input instance satisfying: for each influencer v , δ (v ) = τ (v ) and pvask ≤ δ (v ),
the optimal solution P∗ to PDMIC satisfies: P∗ (v ) = δ (v ) if v is hired, and P∗ (v ) = 0 otherwise.

Proof. Let F ∗ to be set of influencers that are hired by the optimal solution P∗ to this special

input instance.

First, according to Constraint (iii) in Definition 3, we know that P∗ (v ) ≥ τ (v ) for all v ∈ F ∗.
Since δ (v ) = τ (v ) and pvask ≤ δ (v ), we have P∗ (v ) ≥ τ (v ) = δ (v ) ≥ pvask for all v ∈ F ∗.

Second, observe that any pricing scheme P with P (v ) = δ (v ) for all hired influencers v satisfies

the investment-persuasive constraint (i.e., Constraint (v) in Definition 3); this is because in this

case, every hired influencer has price rate of 1. Moreover, by the definition of profit divergence

(Definition 1) and since P∗ (v ) ≥ δ (v ) ≥ pvask for all v ∈ F ∗, decreasing the hiring price P∗ (v )
for each v ∈ F ∗ (subject to Constraint (v)) can decrease the profit divergence DP∗ . Therefore,

P∗ (v ) = δ (v ) must hold for each v ∈ F ∗. □

According to Lemma 1, the optimal PDMIC solution to the aforementioned special input instances

satisfying P∗ (v ) = δ (v ) if and only if v is hired. For ease of reference, we formulate a special case

of PDMIC as below and refer it as Binary PDMIC. Note that the Binary PDMIC is slightly more

general than the special input instance described in Lemma 1. Specifically, we allow δ (v ) ≥ τ (v )
and the constraint pvask ≤ δ (v ) does not necessarily exist.

Definition 4 (Binary PDMIC). Given a budget B, a candidate set F , the goal is to hire influencers
from F under budget B with minimum divergence score:

minimize

|F |∑
h=1

|xh · ph − p
h
ask | , (1)

subject to: (i)
∑
h∈F p

h
ask = B, (ii) xh ∈ {0, 1}, (iii) ph = δ (h) ≥ τ (v ), and (iv)

∑ |F |
h=1

xh · ph ≤ B.

Define function f (h,ph ) = ph if phask > ph , and f (h,ph ) = 2phask − ph otherwise. Taking off

the absolute operations, Objective (1) is equivalent to minimize B −
∑ |F |
h=1

xh · f (h,ph ), and hence,

further equivalent to:
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maximize

|F |∑
h=1

xh · f (h,ph ) . (2)

Next, we show that Binary PDMIC is NP-hard by a reduction from the Knapsack Problem [69].

Specially, we will first prove the NP-hardness of a variation of the Knapsack Problem, called

Knapsack Problems with Value and Capacity Constraints (KPVC) (i.e., Definition 6 as below). Then

we perform a reduction from KPVC to the Binary PDMIC.

Definition 5 (Knapsack problem (KP) [69]). Given a set of i items, each of which has a non-
negative weight wh and a value zh (1 ≤ h ≤ i ), and a bag with capacity B̄, the knapsack problem
aims to choose a subset of items into the bag without exceeding capacity B̄ while maximizing the total
value, i.e. maximize

∑i
h=1

xh · zh , subject to (i) xh = 1 or 0 and (ii)
∑i
h=1

xh ·wh ≤ B̄.

Definition 6 (Knapsack problem with value and capacity constraint (KPVC)). The KPVC
problem is a special variant of the KP problem with two extra constraints on the input: (i) Value
Constraint: for each item h (1 ≤ h ≤ i), its value is at most its weight, i.e., z ′h ≤ w ′h , and (ii) Capacity
Constraint: the capacity of the bag satisfies B̄′ = (

∑i
h=1

w ′h + z
′
h )/2.

Lemma 2. The KPVC problem is NP-hard.

Proof. We prove the NP-hardness via reduction from the input instance for the KP problem to

a valid input for the KPVC problem.

Meeting the Value Constraint. Our first step is to modify the above KP input instance to satisfy the

Value Constraint. The crucial idea is that the KP optimization does not change, when both the item

weights and the bag capacity are scaled by a same positive factor. Hence, let t = max
i
h=1

zh/wh > 0.

We scale the item weights wh to w ′h = wh · t for 1 ≤ h ≤ i , and the bag capacity B̄ to B̄′ = B̄ · t .

It can be verified that

∑
h wh ≤ B̄ ⇔

∑
h w

′
h ≤ B̄′. Furthermore, by setting z ′h = zh , we have

z ′h = wh ·
zh
wh
≤ wh · t ≤ w ′h for all h’s.

Meeting the Capacity Constraint. Based on the scaled input instance above, we further strengthen

it to meet the Capacity Constraint (B̄′ = (
∑
h=1

w ′h + z
′
h )/2). There are two possible cases.

Case 1: B̄′ > (
∑
h=1

w ′h + z
′
h )/2. We introduce a “dummy” item (i + 1) with weight and values as

w ′i+1
= 2B̄′ − (

∑i
h=1

w ′h + z
′
h ) and z

′
i+1
= 0 respectively. This “dummy” item will never be chosen

since its value is 0. As all other items and the capacity remains the same, an optimal solution to the

this KPVC instance is also an optimal solution to the original KP instance.

Case 2: B̄′ < (
∑
h=1

w ′h + z
′
h )/2. We introduce a “powerful” item (i + 1) with value and weight as

z ′i+1
= 1 +

∑i
h=1

z ′h and w ′i+1
= z ′i+1

+
∑i
h=1

(w ′h + z
′
h ) − 2B̄′ > z ′i+1

respectively. Moreover, we set

the capacity B̄∗ = B̄′ +w ′i+1
. It can be verified that this super useful item must be in the optimal

solution for the KPVC input instance under B̄∗. This is because the value of the super useful item is

greater than the value sum of all other items. Excluding this “powerful” item in the optimal solution

of the KPVC input instance also gives an optimal solution to the original KP input.

Clearly, the above reduction can be perform in polynomial time. The KPVC problem is thus

NP-hard. □

Theorem 1. The Binary PDMIC (Definition 4) problem is NP-hard.

Proof. We reduce KPVC to the Binary PDMIC, by mapping |F | = i , phask = (w ′h + z ′h )/2,

B = B̄′, and δ (h) = τ (h) = ph = w ′h . By the Value and Capacity constraint in KPVC, we have

phask ≤ ph = δ (h) and
∑ |F |
h=1

phask = B. Based on Expressions (1) and (2), the objective becomes:

maximize

∑ |F |
h=1

xh (2p
h
ask − ph ) =

∑i
h=1

xh · z
′
h , which is equivalent to the objective of KPVC. The
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Table 3. Overview of our proposed solutions

Hiring
Price Choices Method Solution Time

Complexity
BC-Exact Exact O ( |F | · B)Binary prices

(Sec 5) BC-MG Approx. O ( |F | log |F |)

A set of integer

prices (Sec 6)

IC-Exact Exact O ( |F |2 |Rmax |
2B)

CR-Inf O ( |F | log |F |)Any price above the

price threshold (Sec 7) CR-MWS

Heuristic

O ( |F |2)

optimal solution of this instance of Binary PDMIC implies an optimal solution to the KPVC input

instance. Since the above reduction can be performed in polynomial time, the Binary PDMIC

problem is NP-hard. □

By Lemma 1 and Definition 4, we know that Binary PDMIC is a special case of PDMIC. Therefore,

the corollary below follows immediately from Theorem 1.

Corollary 2. The PDMIC problem (Definition 3) is NP-hard.

Solution overview. Considering the potentially extreme large search space of the continuous

acceptable price range [τ (·),B], we tackle the PDMIC problem by incrementally relaxing the

restrictions on price choices (i.e., from the smallest sub-space to a larger sub-space and then

to the whole space in the end). Specifically, we start from the binary-price-choices restriction

where each influencer can only hired with a fixed price or not hired with zero cost, and develop

the Binary-Choice based Exact method (BC-Exact) and Binary-Choice and Minimum Gain based
method (BC-MG). Then, we make further relaxation by allowing the price to be selected from

a set of integer choices, and propose the Integer-Choice based Exact Method (IC-Exact). Finally,

we allow the price to be selected in the continuous acceptable price range (i.e., the whole space),

and propose Continuous-Range and Influence based Method (CR-Inf) and Continuous-Range and
Maximum-Weighted-Subsequence based Method (CR-MWS). Table 3 summarizes our methods. Note

that all the theoretical claims on any solution’s effectiveness in this paper are based on the price
choices built from the price range [τ (·),B].

5 PDMICWITH BINARY PRICE CHOICES
In this section, we focus on solving the Binary PDMIC problem (defined in Definition 4). By

Theorem 1, we know that this problem is NP-hard. Moreover, the proof of Theorem 1 indeed shows a

subtle connection between the Binary PDMIC problem and the Knapsack problem.Motivated by this,

we first adopt the dynamic programming algorithm for the latter problem to find optimal solutions

for the Binary PDMIC. To improve the efficiency, we propose a greedy method that produces

competitive solutions with a 2-approximate guarantee while achieving significant speedups.

5.1 An Exact Method
In this subsection, we present a Binary-Choice based Exact method called BC-Exact. The basic idea

of BC-Exact is to perform dynamic programming to maintain a matrixM of size ( |F | + 1) × (B + 1),
where each entryM[h][b] (for 1 ≤ h ≤ |F |, 0 ≤ b ≤ B) stores the optimal value of Objective (2) with

respect to a budgetb and considering the firsth influencers only.With the budget limitb, the optimal

selections among the first h influencers can only result from two possibilities depending on whether

influencer h is hired or not. Specifically, if influencer h is not hired, then M[h][b] = M[h − 1][b].

Otherwise, ifh is hired,M[h][b] is equal to f (h,ph ) plus themaximum value obtained by considering
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Algorithm 1: BC-MG

Input :A set F where each candidate v has an asking price pvask and can only be hired with pv = δ (v ), and
B =
∑
v∈F pvask .

Output :Divergence score.
1 Sc = ∅, Bc =

∑
v∈F pv − B , fmin = B;

2 Sort v ∈ F based on f (v, pv )/pv in non-decreasing order.;

3 foreach v ∈ F do
4 if pv > Bc then
5 if f (v, pv ) < fmin then vmin = v ; fmin = f (v, pv ) ;
6 else
7 if f (v, pv )/pv ≤ fmin/Bc then
8 Sc = Sc ∪ {v }; Bc = Bc − pv ;
9 if Bc = 0 then Break;

10 else Sc = Sc ∪ {vmin }; Bc = 0; Break ;

11 if Bc > 0 then Sc = Sc ∪ {vmin } ;

12 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

13 foreach v ∈ F \ Sc do P (v ) = pv ;

14 γ = B −
∑
v∈F f (v, pv );

15 return γ +
∑
v∈Sc f (v, pv ) ;

the first h − 1 influencers with budget limit b − ph , i.e., M[h][b] = f (h,ph ) + M[h − 1][b − ph].

Therefore,M[h][b] can be expressed as the greater objective value between these two cases, namely,

M[h][b] = max{M[h − 1][b],M[h − 1][b − ph] + f (h,ph )}.

Each entryM[h][b] can be computed by a simple recursion. OnceM[|F |][B] is computed, BC-Exact

returns B −M[|F |][B] as the minimum divergence. The pseudo code is straightforward and can be

found in our technical report [24].

Note that, if we set the price equal to the influence, the influence must be an integer to make

this approach feasible because the computation of the index of the second dimension ofM is based

on prices. If we use other influence measurements (e.g., influence spread under the independent

cascade model [48]), we can ignore the fractional part because it is significantly smaller than the

integer part especially for influencers.

Running Time Analysis. While the idea of this dynamic programming approach is simple, it

requires a pseudo-polynomial time complexity O ( |F | · B) to compute M , which is indeed not

polynomial in the problem input size and hence not scalable to large budgets.

5.2 A Minimum Gain based Method
To achieve higher scalability, we propose a Binary-Choice and Minimum Gain based method (called
BC-MG) which can produce 2-approximate solutions in only O ( |F | log |F |) time.

Before describing the algorithm, we first rewrite Objective (1). Let γ = B−
∑ |F |
h=1

f (h,ph ) and X =∑ |F |
h=1

f (h,ph ) −
∑ |F |
h=1

xh · f (h,ph ). Then Objective (1) can be rewritten as:

minimize γ + X (3)

The basic idea of BC-MG is to approximate the optimal value of γ +X , denoted asOPTγ+X , with
an approximation of the optimal value OPTX of X . Observe that minimizing X is equivalent to

finding a subset S∗ ⊆ F , whose accumulated f () score (i.e., the second term in the expression of

X ) is maximized under budget B. Moreover, it can be verified that the value of X is essentially

the accumulated f () score of the influencers in the complement set S∗c = F \ S∗ of S∗. As a result,
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minimizingX is equivalent tominSc ⊆F
∑
v ∈Sc f (v,pv ), subject to

∑
v ∈S∗ pv =

∑
v ∈F pv−

∑
v ∈Sc pv ≤

B, and hence, equivalently,

∑
v ∈Sc pv ≥

∑
v ∈F pv − B.

Let Bc be the current available budget; initially, Bc =
∑
v ∈F pv − B. The basic idea of BC-MG is

to iteratively add an influencer u with the minimum gain per unit price (i.e., f (u,pu )/min{Bc ,pu })
into Sc until the current budget Bc is exhausted (i.e., Bc ≤ 0). A straightforward approach is to, in

each iteration, scan the current set of remaining influencers, i.e., F \ Sc , and select the influencer

u with smallest f (u,pu )/min{Bc ,pu } into Sc . However, this naive approach incurs O ( |F |2) time

complexity.

Here, we propose a more efficient approach, BC-MG (the pseudo code is shown in Algorithm 1),

which runs in O ( |F | log |F |) time. The first step of BC-MG is to sort v ∈ F based on f (v,pv )/pv in

a non-decreasing order. Then BC-MG iteratively selects influencers into Sc according to this order.

While this sorted list of the influencers may change with Bc decreasing, a crucial observation is

that the rank of an influencer v will not change until the remaining budget Bc < pv ; and since then,
the rank of v is calculated based on f (v,pv )/Bc rather than f (v,pv )/pv .

Thus, BC-MG maintains two pieces of information: (i) the sorted list of influencers with pv ≤ Bc ,
and (ii) the influencervmin with the smallest f () score among those with pv > Bc . In each iteration,

BC-MG just needs to compare the currently visited influencer v in the sorted list and vmin . If the

gain per unit price of v is smaller than that of vmin , then add v to Sc and update Bc ← Bc − pv (i.e.,

Line 8 in Algorithm 1), and maintain vmin with respect to the updated Bc . Otherwise, add vmin to

Sc and terminate the algorithm.

Running Time Analysis. Clearly, the time cost of each iteration is just O (1), and there can be at

most |F | iterations. Thus, the time cost after sorting is bounded by O ( |F |). Putting together with
the sorting cost of O ( |F | log |F |), the running time is bounded by O ( |F | log |F |).
Approximation Guarantee. We have the following theorem whose proof can be found in the

technical report [24].

Theorem 3. Let OPTγ+X denote the optimal value of Objective (3), and Sc denote the influencer
set chosen by BC-MG under budget Bc =

∑
v ∈F pv − B. Sc is a 2-approximate solution such that

γ +
∑
v ∈Sc f (v,pv ) ≤ 2 ·OPTγ+X .

6 PDMICWITH INTEGER PRICE CHOICES
As the binary-choice restriction might be too strict, the practical result quality of the aforementioned

binary-choice algorithms may not be good enough. In this section, we relax this restriction by

enlarging the search space – the price for hiring an influencer v can be 0 or chosen from a given set

Rv of integers in the corresponding acceptable price range [τ (v ),B]. For this setting, we propose

an exact algorithm, namely Integer-Choice based Exact Method (IC-Exact), which is also based on

dynamic programming.

The pseudo code of IC-Exact is presented in Algorithm 2. Here, the price of each influencerv ∈ F
can be chosen from the set Rv , and we assume that elements in Rv are sorted in ascending order

for ease of presentation. At the beginning, the influencers are sorted by their influence δ (v ) in a

non-decreasing order. The whole idea of this approach is to compute a matrixM of three dimensions.

Next, we will describe the purpose ofM and then how to computeM .

Purpose of matrixM . Each entryM[h][b][ph] records the f () score sum of the optimal solution

when we only consider hiring (i) the first h influencers (in the aforementioned sorted list) and (ii)

the h-th influencer with price ph ∈ Rh under budget b. Clearly, the global optimal solution satisfies

these two considerations with some h, ph and b. Considering that increasing b while fixing h and

ph will not decrease the f () score sum, the global optimal solution can be found at the largest entry

amongM[·][B][·].
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Algorithm 2: IC-Exact
Input :A set F of candidates where each candidate v has an asking price pvask and an integer price choice set Rv ,

and B =
∑
v∈F pvask .

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) in non-decreasing order;

2 Initialize entries of M with 0 where M[h] has dims. B × |Rh |;
3 for b = 0 to B do
4 foreach p1 ∈ R1 do
5 if p1 ≤ b then M[1][b][p1] = f (1, p1) ;

6 for h = 2 to |F | do
7 foreach ph ∈ Rh do
8 for b = ph to B do
9 M[h][b][ph ] = f (h, ph );

10 for j = 1 to h-1 do
11 if δ (j ) = δ (h) and ph ∈ Rj and b − ph ≥ ph then
12 // j must be hired with ph to meet the investment persuasive constraint, and ph is a feasible

price for j
13 M[h][b][ph ] = max(M[h][b][ph ], M[j][b − ph ][ph ] + f (h, ph ));
14 Continue;

15 foreach pj ∈ Rj do
16 if b − ph < pj then Break;

17 if pj /δ (j ) ≥ ph/δ (h) then
18 M[h][b][ph ] = max(M[h][b][ph ], M[j][b − pj ][pj ] + f (h, ph ));
19 k, p = arg maxh∈[1, |I |],ph ∈Rh

M[h][B][ph ];

20 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

21 Compute P by backtracking from M[k][B][p];

22 return B −M[k][B][p];

Computation of matrixM . If ph ≥ b, the h-th influencer cannot be hired and thusM[h][b][ph] is

set as 0. Otherwise,M[h][b][ph] is initialized as f (h,ph ) (Lines 5 and 9). It indicates that currently

only influencer h is hired. Thus, we need to find the optimal solution when we only consider

hiring the first h − 1 influencers with the remaining budget b − ph . Specifically, we need to find

the entryM[j∗][b − ph][pj∗] with the greatest value from candidate entries where each candidate

entryM[j][b − ph][pj ] satisfies two requirements: (i) j < h and pj ≤ b − ph , and (ii) hiring j with
price pj will not break the investment constraint. That is, pj must be equal to ph if δ (j ) = δ (h), or
pj/δ (j ) ≥ ph/δ (h) otherwise.

Afterwards,M[h][b][ph] = M[h][b][ph]+M[j∗][b −ph][pj∗]. To findM[j∗][b −ph][pj∗] and thus
compute the final M[h][b][ph], we iterate each pair of j and pj (Lines 10 to 18) where Lines 11

and 17 ensure the investment-persuasive, and Lines 13 and 18 ensure thatM[h][b][ph] is correct.

After the computation of matrixM , we find the greatest value among all the entriesM[·][B][·] and

subtract this value from B to obtain an optimal value with respect to Objective (1).

Example 2. Suppose F = {v1,v2} and B = 280, where δ (1) = 100, p1

ask = 80, R1 = {80, 100},
δ (2) = 200, p2

ask = 200 and R2 = {140, 200}. Then M[1][b][80] = f (1, 80) = 80 (80 ≤ b ≤ B) and
M[1][b][100] = f (1, 100) = 60 (100 ≤ b ≤ B). To compute M[2][B][140], the highest possible f ()
score when we have budget B and hire v2 with $140 as the last influencer, we need to consider hiring
v1 while maintaining an investment-persuasive campaign. Thus, the legit hiring price of v1 can be $80

or $100. Therefore,M[2][B][140] = f (2, 140) +max (M[1][B − 140][100],M[1][B − 140][80]) = 220.
ForM[2][B][200], the only legit price for hiring v1 is $100, which exceeds the remaining budget 80.
Thus,M[2][B][200] = f (2, 200) = 200. By searching all entriesM[·][B][·],M[2][B][140] = 220 is the
maximum and the optimal divergence is 280 − 220 = 60.
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Algorithm 3: CR-Inf
Input :A set F of candidates where each candidate v has an asking price pvask and the input acceptable price range

Rv , and B =
∑
v∈F pvask .

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) in non-increasing order.;

2 S = ∅, b = B;
3 Initialize the campaign P where P (v ) = 0, ∀v ∈ F ;
4 foreach v ∈ F do
5 Update Rv ;
6 if Qv = Rv ∩ [0, b] , ∅ then
7 pv = BestPr ice (Qv );

8 P (v ) = pv ; b = b − pv ; S = S ∪ {v };
9 if b = 0 then Break;

10 return B −
∑
v∈S f (v, pv ) ;

Running Time Analysis. Despite its effectiveness, computing the matrix M incurs pseudo-
polynomial time complexity of O ( |F |2 · |Rmax |

2 · B), where Rmax is the largest price choice set.

7 PDMICWITH CONTINUOUS PRICE RANGES
In this section, we further relax the previous restrictions on the price choices such that we set the

hiring price of each influencer v as 0 or any price in the acceptable price range Rv = [τ (v ),B].

According to the hardness result in Section 4, it is unlikely that efficient exact algorithms for PDMIC

could be found. Next, we introduce two heuristic algorithms which do not achieve any non-trivial

approximation guarantees but are highly effective in practice, as confirmed by our experiments.

7.1 An Influence based Greedy Method
Our first heuristic algorithm is called Continuous-Range and Influence based Method (CR-Inf), which

is a greedy method by prioritizing the satisfaction of influencers with high influence. The pseudo

code is shown in Algorithm 3. The intuition behind this algorithm is that influencers with higher

influence usually have higher asking prices. Thus, prioritizing the satisfaction of top influencers

will potentially result in a large contribution to the total f () score.
Suppose we sort all the influencers by their influence in a non-increasing order and break ties by

considering smaller asking prices first. The basic idea of the CR-Inf algorithm is to iteratively assign

a price to an influencer v based on this order. In each iteration, it updates and maintains Rv for

the current candidate v . Specifically, Rv is initialized as [τ (v ),B] and updated based on the current

selected influencer set S such that any price in Rv for influencer v to be chosen will not violate the

criteria of investment-persuasive campaigns (Line 5). If Qv = Rv ∩ [0,b] , ∅ (i.e., there exists a
price for v that can be chosen without violating either the budget or the investment-persuasive

constraint), it adds v to S , assigns to v the price pv in Qv that is closest to v’s asking price (i.e.,

minpv ∈Qv |pv − p
v
ask |), and updates b ← b − pv (Lines 6 to 8). This iterative process terminates

when no more influencers could be selected.

Running Time Analysis. Considering that the influencers are selected with their influence in a

non-increasing order. to avoid violating the investment-persuasive constraint, influencers must

be selected with price rate non-decreasingly. As a result, when an influencer v is checked, the

feasible price range Rv can be easily calculated in O (1) time by the price rate of the most recent

selected influencer; and Qv is just simply Rv ∩ [0,b]. Therefore, the processing cost for checking

each influencer is bounded byO (1) and hence,O ( |F |) in total. Plus the sorting cost at the beginning,

the overall running time is bounded by O ( |F | log |F |).
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Algorithm 4:WeightedSubsequenceScore (WSS)

Input :A set F of candidates where each candidate v has an asking price pvask and the input acceptable price range

Rv .
1 Sort each v ∈ F based on δ (v ) in non-increasing order;

2 Initialize M where M[h] = f (h, phask ) = p
h
ask if phask is in Rh ; otherwise, M[h] = 0;

3 for h = 1 to |F | do
4 for j = 1 to h − 1 do
5 if M[j] + phask > M[h] then
6 if δ (j ) = δ (h) and p jask /δ (j ) = p

h
ask /δ (h) then

7 M[h] = M[j] + phask ;

8 if δ (j ) > δ (h) and p jask /δ (j ) ≤ p
h
ask /δ (h) then

9 M[h] = M[j] + phask ;
10 return M ;

Limitations. Despite its high efficiency, CR-Inf tends to satisfy asking prices of top influencers,

making it often lack of a global view. And hence, it may fail to consider the impact brought by the

investment-persuasive constraint. If the price rates of influencers chosen in S are very high, the price
rates of subsequent influencers must be set higher to ensure the campaign is investment-persuasive.

If the asking prices of subsequent influencers (in the sorted list) are much lower than the prices that

CR-Inf assigns to them, these influencers will be overly satisfied, and the budget is “wasted”. The

excessive budget spent on these influencers actually brings no increments to the total f () score.
This strategy will cause a domino effect such that the budget could be “wasted” significantly and

thus many influencers cannot even be hired.

7.2 A Weighted-Subsequence based Method
To further improve the effectiveness, we propose a Continuous-Range and Maximum-Weighted-
Subsequence based Method called (CR-MWS). Observe that the price rate deviation of each influencer

from her asking one can lead to: this influencer being either overly satisfied or unsatisfied. In the

former case, some budgets would be “wasted”. In the latter case, every unit budget spent on the

current influencer contributes to the increment of the f () score. Thus, we need to carefully decide

the order of satisfying influencers to avoid notable price deviation and budget “abuse”.

Algorithm 5 describes its overall procedure. The CR-MWS algorithm consists of three steps,

namely maximum weighted subsequence discovery (Lines 3 to 4), price rate adjustment (Lines 5 to 28)
and candidate finalization (Lines 29 to 35). In step 1, some influencers are hired by paying for their

asking prices; in step 2, the price rates of the remaining influencers are adjusted based on those

hired ones; in step 3, among the remaining influencers, who to be hired is determined based on the

adjusted price rates.

Step 1: Maximum-weighted subsequence discovery. CR-MWS first sorts influencers by their

influence in a non-increasing order. Next, it finds a subsequence of influencers, selecting whom

would bring the maximum increment of the total f () score without compromising the prices from

their asking prices while still meeting the criteria of an investment-persuasive campaign. Such a

subsequence is called the maximum weighted subsequence (MWS) and its f () score is computed by

our proposed method, called Weighted Subsequence Score (WSS) (Algorithm 4). Here, influencers in

any subsequence are sorted non-increasingly w.r.t. influence.

Specifically, WSS uses a matrixM to record the results whereM[h] stores the total f () score of
the local maximum weighted subsequence among all qualified weighted subsequences ended with

influencer h. We say a subsequence is qualified if hiring all influencers in this subsequence with

their asking prices does not violate the investment-persuasive constraint. If phask is in the input price
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Algorithm 5: CR-MWS

Input :A set F of candidates where each candidate v has an asking price pvask and the input acceptable price range

Rv , and B =
∑
v∈F pvask ..

Output :Divergence score.
1 Sort each v ∈ F based on δ (v ) and then δ (v )/pvask in non-increasing order, and relabel their IDs from 1 to |F |;
2 S = ∅;
3 M =WeiдhtedSubsequenceScore (F );
4 WeiдhtedSubsequence (F , M, max(M ), |F |, S ) // Obtain an ordered subsequence S of F that achieves the

maximum score max(M ) in M ;

5 Br = B −max(M ); if Br = 0 then return B −
∑
v∈S f (v, pv );

6 l = min(S ), r = max(S ) // Obtain the smallest and largest ID in S ;
7 for h = 1 to l − 1 do ph = δ (h) · plask /δ (l ) ;
8 for h = r + 1 to |F | do ph = δ (h) · prask /δ (r ) ;
9 for j = 1 to |S | − 1 do

10 l = S (j ); r = S (j + 1) // Two consecutive influencers in S ;
11 if r − l < 2 then break; // No segment between l and r ;
12 ub = prask /δ (r ); lb = p

l
ask /δ (l ); preInf = δ (r );

13 for h = (r − 1) to (l + 1) do
14 if lb = ub or δ (h) = δ (l ) then
15 if lb · δ (h) ∈ Rh then ph = lb · δ (h) ;
16 else ph = 0 // h does not have a feasible price range ;

17 Continue;

18 if δ (h) = preInf then
19 if ub · δ (h) ∈ Rh then ph = ub · δ (h) ;
20 else ph = 0 ;

21 Continue;

22 ranдe = [lb ∗ δh, ub ∗ δh ] ∩ Rh ;
23 if ranдe , ∅ then
24 if phask /δ (h) < plask /δ (l ) then ph =min (ranдe ) ;
25 else ph =max (ranдe ) ;
26 ub = ph/δ (h);
27 preInf = δ (h);
28 else ph = 0;

29 F r e = {h |h ∈ F \ S and ph > 0};

30 sort each v ∈ F r e based on f (v, pvask )/pv in descending order;

31 foreach v ∈ F r e do
32 // Select the rest influencers greedily

33 if pv ≤ Br then S = S ∪ {v }; Br = Br − pv ;

34 Initialize the campaign P: ∀v ∈ F , P (v ) = 0;

35 foreach v ∈ S do P (v ) = pv ;
36 return B −

∑
v∈S f (v, pv );

range, the entryM[h] is initialized as phask ; otherwise, it is 0. IfM[h] = phask , it indicates that the
local maximum weighted subsequence ended with h currently only contains influencer h. To update
M[h], we need to append influencer h to a weighted subsequence which (i) ends with an influencer

j ranked before h (i.e., 1 ≤ j < h), (ii) can include h without breaking the investment-persuasive

constraint, and (iii) has the greatest f () score among all subsequences satisfying the previous two

requirements. Once we find such an entryM[j], we setM[h] = phask +M[j]. Lines 4-9 in Algorithm 4

describes the process of updatingM[h]. After we update the f () scores for all entries inM , we find

the greatest entry max(M ) which records the f () score of the global MWS.
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Fig. 2. A running example of CR-MWS

Afterwards, we propose a backtracking process called WeightedSubsequence (i.e., invoked in

Line 4 of Algorithm 5), to retrieve all influencers in the maximum weighted subsequence based

on max(M ) and store them into the initially empty solution set S . These influencers are hired

with their asking prices. The pseudo code of theWeightedSubsequence method is in the technical

report [24].

Step 2: Price rate adjustment. In this step, we adjust the price rates of the influencers in F \ S to

ensure the investment-persuasive constraint if they are hired. Lines 5 to 28 in Algorithm 5 describes

the adjustment process and we describe its details below.

Observe that by removing the influencers in the global maximum-weighted subsequence S , the
influencers in F \ S are divided into “segments” (in the sorted order). Given that all the influencers

in S are hired, to ensure an investment-persuasive campaign, we adjust the price rates for the rest

influencers in each segment in F \ S as follows. Let min(S ) and max(S ) be the smallest and largest

influencer ID’s in S . Firstly, for each influencer h in the possibly existing segment [1,min(S ) − 1]

([max(S ) + 1, |F |]), she will be unsatisfied (overly satisfied) if hired. Thus, we need to set her hiring

price as high (low) as possible, and thus assign her with the same price rate as the influencer min(S )
(max(S )), as shown in Lines 7 and 8.

Secondly, for each segment [l + 1, r − 1] defined by two consecutive influencers l and r in S , we
enforce the price rates of the ordered influencers in this segment to be in non-decreasing order

and in the range of [lb = plask/δ (l ),ub = p
r
ask/δ (r )], where lb and ub denote the lower and upper

bounds of the hiring price rate respectively. Such non-decreasing price rates can be obtained by

deciding the hiring price for each influencer one-by-one. There are two possible ways: (i) the

forwardway: decide the price for l +1 first and all the way to r −1; and (ii) the backwardway: decide
the price for r − 1 first and all the way to l + 1. Based on our experimental results, the backward

way is more effective, and hence, we adopt this direction. Intuitively, the backward way tends to

increase the prices for unsatisfied influencers, as shown later in Example 3.

Step 3: Candidate finalization. Once CR-MWS adjusts the prices for hiring the remaining influ-

encers, the third step is to greedily choose them based on the f () score gain per unit adjusted price

until the budget is exhausted or all remaining influencers have been processed (Lines 29 to 35 in

Algorithm 5).

More specifically, given an influencer h in a segment, we first compute its qualified price range

[lb · δh ,ub · δh]∩Rh (Line 22). If the asking price rate is smaller than plask/δ (l ) (i.e., h will be overly

satisfied if hired), we assign h with the minimum price from the qualified price range (Line 24).

Otherwise, we assign h with the maximum price (Line 25). Afterwards, update the upper bound

ub to be the hiring price rate of h (Line 26). Besides, there are two edge cases where we need to
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decide the prices more carefully. The first case is when lb = ub or δ (h) = δ (l ), we need to check if

h can be assigned with price lb · δ (h) (i.e., Lines 14 to 17). The second case is when h has the same

influence (i.e., preInf computed in Line 28) as the influencer most recently assigned with a price,

we need to check if h can be assigned with the same price (i.e., Lines 18 to 21).

Example 3. Figure 2 shows the pricing strategy of Algorithm 5 for six influencers. Here, the hiring
price threshold τ (v ) = 0 for allv , budget B = 800, and influencersv4 tov6 have the same influence and
asking price. In Step 1, we need to find the Maximum Weighted Subsequence (MWS). The subsequence
formed by v1 and v2 is not a qualified candidate because v1 has larger influence but a higher asking
price rate. On the other hand, the subsequence formed by v1 and v3 is qualified. Among the f () scores
of all the qualified subsequences,M[6] = 500 is the largest. Then, we invoke WeightedSubsequence

(Line 4 of Algorithm 5) to collect those influencers (in the MWS achievingM[6]) into S . In Step 2, after
identifying the MWS, we adjust the price rates of the remaining influencers (i.e., v2 and v3) in the
segment defined by v1 and v4 in a backward way. As a result, both v2 and v3 have the same adjusted
price rate of 0.4 and adjusted price of $200. However, due to the remaining budget limit (of $300),
only v3 is hired as it has higher f () score per price unit. Thus, the total f () score is 700 = 500 + 200

contributed by the MWS and v3 respectively.
Running Time Analysis. Sorting the influencers takes O ( |F | log |F |) time. The first step runs in

O ( |F |2) time, and the second and third step both run in O ( |F |) time. The total time complexity is

O ( |F |2).

8 EXPERIMENTS
In this section, we conduct extensive experiments on real-world datasets to demonstrate the

effectiveness and efficiency of our proposed methods. In Section 8.1, we introduce some interesting

evaluation metrics. Then we describe the experimental setup in Section 8.2. Afterwards, we present

the experimental result in Section 8.3.

8.1 Evaluation Metrics
Since there is no prior work on this topic, we carefully design the evaluation metrics by considering

the interests of all stakeholders. We believe these metrics would be useful to future efforts on this

topic. Specifically, we use the Divergence Ratio (D-Ratio) to evaluate whether a campaign P can

maintain a good balance between conflicting interests of the brand and the influencers on the cost:

D-Ratio = DP/B, where DP refers to the divergence score of this campaign (see Definition 1)

and B is the input budget from the brand. Observe that the budge B actually also represents the

worst possible profit divergence. The D-ratio measures how “far” a method’s effectiveness is away

from the worst solution.

To evaluate the advertising exposure achieved by a campaign, we use the Influence Ratio
(I-Ratio) to estimate the influence: I-Ratio = δP/OPTinf , where δP =

∑
v ∈F∧P (v )>0

δ (v ) and

OPTinf refers to the optimal influence with the influence maximization objective
1
. In the influence

maximization objective, the cost for hiring an influencer is the standard price rate times her

influence. Thus, this optimal influence approximates the brand’s estimation on the ideal advertising
exposure effect. For simplicity, we assume the standard price rate to be 1 since it does not impact

the methods’ effectiveness. Thus, to compute the optimal influence, we just set the f () score of
each influencer to be her influence in BC-Exact.

To evaluate whether a campaign is able to bring considerable investment which impacts the

agency’s commission and the number of potential influencers being involved, we use the In-
vested Budget Ratio (B-Ratio) to measure the invested budget: B-Ratio = BP/B, where BP =
1
We assume there is barely influence overlap between influencers found in Step 2 in Figure 1, as it can be easily detected,

preprocessed and orthogonal to our study.
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Table 4. Data statistics

Dataset User size Total Degree Maximum Degree Average Degree
LastFM 7.6K 55.6K 216 7.29

Dogster 426.8K 17.1M 46.5K 40.0

Flixster 2.5M 15.8M 1.5K 6.3

Orkut 3.1M 234.4M 33.3K 76.3

Macro

Micro
Nano

20%
20%

20%

(a) LastFM

Macro

Micro
Nano

20%
20%

20%

(b) Orkut

Fig. 3. Degree distributions and influencer categorization.∑
v ∈F P (v ) ≤ B. Due to the timeliness of marketing, efficiency is also important. Thus, we report

the Running Time to build a campaign.

8.2 Experimental Setup
Datasets. We use four real-world social network datasets [44] whose statistics are shown in Table 4.

Given the space limit and consistent observations on the results across all datasets, we only report

experiments on LastFM and Orkut in the main paper. Results on the other two datasets can be

found in the technical report [24].

Categorization of influencers. As elaborated in Section 3, the influence measurement is orthog-

onal to our study and here we use the number of followers as the influence δ (v ) of each influencer v .
This metric is one of the most important and widely adopted metrics for evaluating influencers at

the initial stage of campaigns [11, 16, 25]. To test the robustness of our methods to candidate sets

with different influence distributions, we coarsely divide influencers into three tiers, Macro, Micro
and Nano, with the naming convention in this domain [6]. Specifically, we order online users in a

non-increasing order of their degrees, and then group influencers upon this order into the same

tier if their total degrees constitute 20% of the total degrees in the network, as shown in Figure 3.

Methods for comparison.
• Binary-Choice based methods, BC-Exact and BC-MG, which can only hire an influencer with the

cost equal to her influence or not hire her with no cost. Notably, BC-MG is an extension of a

general strategy in resource allocation, as discussed in Section 2.

• Integer-Choice based method IC-Exact which finds the optimal solution when each influencer v
is assigned with an integer price choice set Rv . Note that it can also be used as a near-optimal
solution to the PDMIC problem that allows choosing any price in the input acceptable price range

if Rv is sufficiently large. Specifically, Rv consists of her influence plus a number, num, of integer

prices evenly dividing the continuous range [0.5 ∗ δ (v ), 1.5 ∗ δ (v )] in a coarse-grained level.

That is, Rv consists of the integers which are floors of floats in {δ (v ) (0.5 + 1/num),δ (v ) (0.5 +
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2/num), . . . , 1.5δ (v )}, where |Rv | is set as 10 by default. If Rv ⊈ [τ (v ),B], Rv = Rv ∩ [τ (v ),B].

Note that this continuous range to be divided is decided based on our many testings which show

that a greater range with the same |Rv | will incur much more computational cost without helping

IC-Exact produce better solutions.

• Continuous-Range based methods CR-Inf and CR-MWS which can choose any price in the

acceptable price range [τ (v ),B] to hire each influencer v . Notably, CR-Inf is an extension of a

general strategy in resource allocation, as discussed in Section 2.

Parameter settings.

• Hiring price thresholds. Considering that the solution space is heavily impacted by the ac-

ceptable price range [τ (·),B] and our objective is to effectively and efficiently solve the PDMIC

for any instance, we tackle the largest possible search space by setting the price thresholds of all

influencers as 0, which can reflect the efficiency and accuracy gaps among the methods to the

maximum extent. Furthermore, with this setup, all the inputs naturally satisfy δ (v ) ≥ τ (v ) = 0

for any candidate influencer v and hence the restriction (i.e., δ (v ) ≥ τ (v )) of BC-Exact and
BC-MG no longer exists.

• The investment budget. The brand offers a budget to the agency. The agency will find suitable

candidate influencers who have high alignments with the brand’s product to be promoted, and

whose total influence should match with the budget considering the standard price rate (i.e., 1 in

experiments) in this market [16]. The final budget B is set by a negotiation between the brand

and the agency based on candidates being found.

• The candidate influencers. Here, we assume the candidate set has been found since this

process is orthogonal to our study. Considering the charges on contracted influencers for agent

commission (usually 20% [26]) and that it may not be possible to find suitable candidates perfectly

matched with the budget, we create the candidate set F by randomly selecting a number of

candidates (|F | = 90 by default) from the aforementioned three tiers of influencers (i.e., Macro,
Micro and Nano), and set B as a percentage β (80% by default) of the total influence of candidates

times the standard price rate (i.e., 1). To show the robustness of our methods to the combinations

of influencers of different categories, we create the candidate set with the following different

sampling distributions: {Macro:0.5, Micro:0.25, Nano:0.25}, {Macro:0.25, Micro:0.5, Nano:0.25},

{Macro:0.25, Micro:0.25, Nano:0.5}, and {Macro:0.33, Micro:0.33, Nano:0.33}. For simplicity, we

call them as Macro-focused, Micro-focused, Nano-focused and Uniform sampling distributions,

respectively. Due to the page limit and consistent observations in different distributions, in the

experiment, we create the candidate set F with only the Uniform and Micro-focused sampling

distributions. Please refer to our technical report [24] for experiments under other sampling

distributions.

• Asking price. Since each influencer v values her own influence differently in reality, depending

on concrete campaign contract and personal factors (e.g., exclusive collaboration with this brand,

likeness towards the product to be promoted, choices of media channels, etc.) [17, 18], we use the

weighted influence sampled from a consecutive integer range to include these realistic factors.

Considering that influencers usually overprice their influence and following the findings reported

in [25], we use the range [δ (v ), 1.5δ (v )] for sampling. The asking price controlled by the agency

is a weighted-influence related percentage over the budget, and we compute this percentage as
the weighted influence of the influencer over the total one of all candidates.

Environments. We conduct all experiments on a Linux server with Intel Xeon E5 (2.60 GHz) CPUs

and 512 GB RAM. All codes are implemented in Python and any method which cannot finish within

60 hours will be terminated. Our code is at [24].
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Fig. 4. The divergence ratio comparison. Methods with lower ratios are more effective. (Note: cases are
independent).
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Fig. 5. The influence ratio comparison. Methods with higher ratios are more effective.
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Fig. 7. Running time comparison.
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Fig. 8. Ablation study on |R | in IC-Exact. The price choices of other methods are set by default.

Table 5. Running time (s) of IC-Exact on LastFM

Distribution

|R |
10 20 30 40 50

Uniform 1.4E+3 3.7E+3 5.3E+3 5.9E+3 6.5E+3

Micro-focused 1.4E+3 3.9E+3 5.3E+3 6.0E+3 6.2E+3

Table 6. Running time (s) of IC-Exact on Orkut

Distribution

|R |
10 20 30 40 50

Uniform 9.1E+3 3.3E+4 6.9E+4 1.2E+5 1.9E+5

Micro-focused 8.9E+3 3.1E+4 6.7E+4 1.3E+5 1.9E+5
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Fig. 9. Ablation study: The divergence ratio comparison with different β

8.3 Experimental Results
Wefirst evaluate all the methods. Then, we further compare the performance of CR-Inf and CR-MWS

with the near-optimal solution produced by the IC-Exact method with more price choices.

8.3.1 Divergence ratio comparison. Figure 4 compares the divergence ratio on LastFM and Orkut

w.r.t. different candidate set sizes.We have the following observations: (1) BC-MG is very competitive

with BC-Exact, thereby demonstrating that the empirical effectiveness of BC-MG is way better than

what its worst-case approximation ratio indicates. However, both of them are notably outperformed

by the other methods. (2) With CR-Inf as the reference, the performance of IC-Exact is generally

better under the Uniform sampling distribution than in the Micro-focused one. We suspect that

IC-Exact is able to produce better campaigns from the limited price choices when the degree

distribution of candidates is sparser. When candidates have similar degrees, IC-Exact requires more

fine-grained and similar price choices to achieve lower divergence. As for other methods, we do not

see any clear impact of sampling distributions on the performance. (3) CR-MWS outperforms other

methods in all cases, which demonstrates its effectiveness of protecting stakeholders’ benefits.

8.3.2 Influence ratio comparison. Figure 5 compares the influence ratios of each competitor method

over the optimal influence based on the standard price rate. The observations are summarized as

following: (1) the influence ratio is above 1.0 in many cases. The reason is that, in the problem

setting with the influence maximization objective, the hiring price of an influencer is equal to the

influencer’s influence and can be higher than the hiring price computed by our algorithms which
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are flexible on the hiring prices. As a result, our algorithms may be able to hire more influencers and

thus achieve larger influence coverages than OPTinf . (2) BC-Exact and BC-MG with our objective

achieve very competitive influence compared with BC-Exact with the influence maximization

objective. Furthermore, the performance ranking of BC-Exact and BC-MG under this metric can

be indicated from their profit divergence scores. For example, when BC-Exact achieves a lower

divergence score than BC-MG in Figure 4 (c) with |F | = 30, it also achieves greater influence under

the same setting. These observations indicate the positive correlations between profit divergence

minimization and influence maximization under the binary-choice setting. (3) Integer-Choice and

Continuous-Range based methods are able to achieve better influence ratios since they have greater

space for price adjustment. While maintaining very competitive divergence scores, IC-Exact tends to

hire more candidates than CR-Inf which emphasizes satisfying the influencers with great influence

and thus quickly exhausts the hiring budget. IC-Exact is very effective since it makes the best

strategy with limited integer price choices. (4) Among all the methods, CR-MWS achieves the

greatest influence ratios in most cases while maintaining the lowest divergence scores. It indicates

that protecting the benefits of influencers does not necessarily compromise the brand’s interests.

8.3.3 Invested budget ratio comparison. Figure 6 compares the invested budget ratios of different

methods. The invested budget ratio is the least important effectiveness evaluation metric to the

agency compared to other metrics since protecting the benefits of the brand and influencers is

the first priority. Even though BC-Exact and CR-Inf slightly outperform CR-MWS in many cases

under this metric, they attract the investment in a way that sacrifices the benefits of the brand or

influencers, as we can see from Figure 4 and Figure 5. Thus, the agency should compare different

methods under this metric only when they are very competitive in previous evaluation.

8.3.4 Efficiency comparison. Figure 7 shows the running time of different methods. BC-MG is the

fastest one due to its simple strategy and is up to two-orders-of-magnitude faster than BC-Exact.

CR-Inf and CR-MWS are ranked as the second and the third. Despite the notable difference between

their time complexity (i.e.,O ( |F | log |F |) andO ( |F |2) ), CR-MWS is very competitive with CR-Inf in

practice since candidate sets are usually small. On the other hand, IC-Exact can be up to seven-

orders-of-magnitude slower than other methods, which makes it infeasible in real world despite its

competitive performance against many methods.

8.3.5 Comparison with near-optimal solutions. In order to see the performance limit of IC-Exact

and further demonstrate the effectiveness of CR-MWS, we gradually increase the size of R for each

influencer in IC-Exact which is optimal for integer price choices. When IC-Exact converges, the

solution should be near to the optimal solution to our problem that allows choosing any price in

the continuous acceptable price range.

Figure 8 shows the performance of IC-Exact with different sizes of R, where CR-InfInt refers
to the version of CR-Inf allowing integer price choices only. As |R | increases, the performance of

IC-Exact notably increases and converges to a stable state on LaftFM but fails to converge on Orkut

within the time limit (i.e., 60 hours). An interesting observation is that, CR-MWS still outperforms

IC-Exact which is the second best. We suspect that it is mainly caused by the fact that IC-Exact can

only work with integer price choices, as evidenced by the notable performance difference between

CR-Inf and CR-InfInt which may even be outperformed by binary-choice based methods. As we can

see from Table 5 and Table 6, the running time of IC-Exact increases drastically as |R | increases, and
it can be up to eight-orders-of-magnitude slower than Continuous-Range based methods, which

makes it infeasible in real-world scenarios.

8.3.6 Ablation study on β . Recall that the budget B is a percentage β of the total influence of

candidates. We study the impact of β on the D-Ratio, and the results are presented in Figure 9. Since
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BC-Exact, BC-MG and IC-Exact require trial-and-error to set fixed price choices to (efficiently)

produce high-quality solutions, their performance based on the default price choice setting for

β = 0.8 may not be effective for a different β and can degrade as β decreases. Since the asking

price of an influencer, a percentage over the budget, tends to decrease as β decreases and so does

the optimal hiring price, the difference between the opimal hiring price and the best price we

can choose from the predefined price choices tends to be larger as β decreases, and so does the

D-Ratio. On the other hand, CR-Inf and CR-MWS always produce notably better solutions since

they consider any price under the budget. Similar to the results in Figure 4, test cases under different

settings of β are independent such that the D-Ratio achieved by a method under a specific β cannot

be indicated by the ones under other settings of β , and so does the optimal D-ratio. Thus, there is

no expected trend of the performance of CR-Inf and CR-MWS. In terms of efficiency comparison,

we find that the impact of β is significantly smaller than that of |F | and is barely noticeable in

figures. Due to space limit, please refer to our technical report [24] for details.

9 CONCLUSION
In this paper, we study howminimizing the profit divergenceminimization helps build an investment-

persuasive influencer marketing campaign, so as to attract investments from the brand while

benefiting all stakeholders. We prove this problem to be NP-hard and then propose several methods

whose efficiency and effectiveness are demonstrated by our extensive experiments. In future, we

plan to analyze the accuracy of our Continuous-Range based approximate methods theoretically

and extend our solutions to other marketing scenarios with similar needs.
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