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The densest subgraph problem (DSP) is of great significance due to its wide applications in different domains.

Meanwhile, diverse requirements in various applications lead to different density variants for DSP. Unfortu-

nately, existing DSP algorithms cannot be easily extended to handle those variants efficiently and accurately.

To fill this gap, we first unify different density metrics into a generalized density definition. We further

propose a new model, 𝑐-core, to locate the general densest subgraph and show its advantage in accelerating

the searching process. Extensive experiments show that our 𝑐-core-based optimization can provide up to three

orders of magnitude speedup over baselines. Moreover, we study an important variant of DSP under a size

constraint, namely the densest-at-least-k-subgraph (Dal𝑘S) problem. We propose an algorithm based on graph

decomposition, and it is likely to give a solution that is at least 0.8 of the optimal density in our experiments,

while the state-of-the-art method can only ensure a solution with density at least 0.5 of the optimal density.

Our experiments show that our Dal𝑘S algorithm can achieve at least 0.99 of the optimal density for over

one-third of all possible size constraints.
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1 INTRODUCTION
Graph data plays essential roles in modeling relationships among objects of interest in various

domains, such as social networks, electrical circuits, transportation, and biology. To name a few,

the Facebook community has been studied using a graph model with a mapping between users

and vertices [64]. The pages and hyperlinks in the World Wide Web can be viewed as vertices and

edges in a directed graph [38]. In a graph representing proteins and their interactions, chemical

molecules and covalent bonds are mapped to vertices and edges, respectively [65]. To study the
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alternation of patterns and functional connectivity in brains, neuroscientists examine weighted

3-D graphs transformed from brain images [3].

The densest subgraph problem (DSP) has received much attention and lies in the heart of graph

mining [9] since it has applications in many fields such as anomaly detection [2, 17], bioinformatics

[16, 28, 53], community detection [15], and financial markets [21]. The original density definition

of a graph is given by the number of edges over the number of vertices, i.e.,
𝑚
𝑛
, where𝑚 and 𝑛

denote the edge and vertex number, respectively.

Generalized density. However, there are many scenarios that the original density cannot cover.

The relationship of different densities is depicted in Figure 2 and will be illustrated soon. First,

the edges of graphs in real applications often carry weights. For example, in the flight network

[18] where airports are denoted as vertices, flights are denoted as edges, and the weight of an

edge represents the flight frequency between two airports. Second, Goldberg [31] proposed the

denominator weighted density where the weights of vertices are on denominators, and such a

weighted density is also adopted by several follow-up studies such as [14, 56]. For instance, Sawlani

and Wang [56] developed a method to solve DSP on directed graphs by transforming the directed

graph into a set of vertex-weighted graphs and solving the DSP upon the weighted density, where

vertex weights are on denominators. There are ample applications for the above density metrics.

Taking the weighted density where all weights are on the numerator as an example, a method to

detect fraudsters in camouflage adopts the weighted density on weighted graphs and solves the

corresponding DSP [34]. Goldberg’s max-flow-based algorithm [31], and Chandra’s flow-based

near-optimal algorithm [14] can be extended to handle the weighted density. Charikar’s peeling

algorithm [13] and Greedy++ [11], which repeats the peeling algorithm several times, can also be

extended to handle some of the above density metrics.

However, the limitation of these aforementioned methods under new density metrics is that

they are either not scalable to large-scale graphs or not capable of yielding a dense graph with a

near-optimal density guarantee. Meanwhile, previous work barely targets for building a general

framework to boost DSP algorithms over a diverse range of density metrics. To fill this gap, we

propose to use a generalized supermodular density to unify different density metrics and develop a

framework to speed up the generalized densest subgraph problem (GDS).

Dal𝑘S. In some circumstances, users demand for finding large dense graphs. For example, an

activity organizer may want to have at least 𝑘 participants who are familiar with each other. Given

such a kind of demand, the densest at-least-𝑘-subgraph problem (Dal𝑘S) [4], which is an important

yet well-studied variant of DSP, is proposed to ensure that the dense graph has at least 𝑘 vertices.

Large dense subgraphs are useful in many domains such as distributed system [55], spam detection

[29] and social networks [47]. Finding the exact solution for Dal𝑘S has been proven to be NP-hard

[6–8, 26, 46]. Therefore, some algorithms [4, 9, 14, 37, 55] are developed to approximate the exact

Dal𝑘S. However, no existing work has devised a method to generate a solution with guarantees

better than 0.5 ·𝑂𝑃𝑇 , i.e. half of the optimal density
1
. In this paper, we will propose a new algorithm

based on graph decomposition, which can obtain a solution better than the 0.5 ·𝑂𝑃𝑇 solution with

a very high likelihood.

Contributions. In this paper, one of our main goals is to devise a method to accelerate the densest

subgraph discovery w.r.t. the generalized density, particularly on large graphs, so that the near-

optimal densest subgraphs can be found within a short time. Another breakthrough we make

for Dal𝑘S, an important variant of DSP, is proposing a new algorithm that is likely to obtain a

1
A solution with at least 𝑓 ·𝑂𝑃𝑇 density (0 < 𝑓 ≤ 1) means its density is at least 𝑓 of the optimal density. For simplicity,

we call this solution an 𝑓 ·𝑂𝑃𝑇 solution.
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solution better than the 0.5 ·𝑂𝑃𝑇 solution achieved by the state-of-the-art. We briefly summarize

our contributions below.

• We introduce a new dense subgraph model, 𝑐-core, which is general to cover many density

metrics for discovering GDS.We propose a computational framework to accelerate algorithms

for GDS based on 𝑐-core.

• Based on 𝑐-cores, we propose an exact algorithm and an approximation algorithm with

advanced pruning techniques for flow-based computations and a new strategy to search for

the optimal density.

• We successfully derive the upper bound for the size of the exact solution for Dal𝑘S and devise

a new approximation to Dal𝑘S based on our density-friendly decomposition.

• We conduct experiments on 12 real-world weighted and unweighted graphs with up to 1.8

billion edges. Our proposed algorithm cCoreExact for GDS is up to three orders of magnitude

faster than the original FlowExact [31].
In addition, we empirically show that our proposed approximation Dal𝑘S algorithm can

output a solution very close to the optimal in most scenarios.

Outline. The organization of the paper is as follows. In Section 2, we review the related work.

In Section 3, we unify different density metrics into the generalized supermodular density and

define the GDS problem. Section 4 introduces the new 𝑐-core model and builds its connection with

the GDS problem. Section 5 follows with GDS algorithms based on 𝑐-core. The approximation

algorithm to Dal𝑘S will be presented in Section 6. Experimental results are shown in Section 8, and

Section 9 concludes our work.

2 RELATEDWORK
Finding dense subgraphs from graphs has been extensively studied [54, 61]. Among different types

of dense subgraphs, the Densest Subgraph Problem (DSP) [25] lies at the core of large-scale data

mining [9]. Other related topics include 𝑘-core [57], 𝑘-truss [36], clique and quasi-clique [12], which

is described in more detail in [24]. We focus on the densest subgraph problem and its variants in

the following.

Densest subgraph problem (DSP). A fundamental focus which lies in the heart of graph

mining is to find dense subgraphs [30, 39]. The commonly used edge-density of an undirected

unweighted graph 𝐺 (𝑉 , 𝐸) is 𝑚
𝑛
with 𝑛 = |𝑉 | and𝑚 = |𝐸 | [31]. Works on weighted graphs mainly

use two density metrics; one places all the weights on the numerator [31, 34], and the other places

the weights of vertices on the denominator [31, 56]. We will give a generalized density definition

to cover both cases and more variants.

To solve the densest subgraph problem (DSP), Goldberg [31] devised a max-flow-based algorithm

to obtain exact solutions in unweighted and weighted graphs. Despite the high accuracy, the

flow-based approach fails to be scaled to very large graphs with tens of millions of edges. Later,

researchers proposed the new concept of clique-density and developed efficient exact algorithms

for finding the corresponding DS [45, 62]. Generally, the exact DSP algorithms [31, 45, 62] work

well on graphs of small or moderate size, but suffer from large graphs.

To further boost efficiency, several approximation algorithms have been developed. Charikar [13]

proposed a
1

2
-approximation method

2
for unweighted graphs by repeatedly peeling the vertex with

the smallest degree. Bahmani et al. [9] introduced a new algorithm over streaming models running

in 𝑂 (𝑚 · log𝑛
𝜖
) to guarantee a

1

2+2𝜖 -approximation. Feng et al. [27] used spectral theory to develop

an algorithm faster than Charikar’s peeling to yield a solution with comparable accuracy. In order

2 𝑓 -approximation method/algorithm means that for every input, the algorithm can guarantee a 𝑓 ·𝑂𝑃𝑇 solution, 0 < 𝑓 ≤ 1.

In general, all solutions output by the 𝑓 -approximation algorithm are called 𝑓 -approximation.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 169. Publication date: June 2023.



169:4 Yichen Xu, Chenhao Ma, Yixiang Fang, & Zhifeng Bao

to avoid calling maximum flow, Boob et al. [11] designed an empirically efficient method called

Greedy++ by repeating the peeling process multiple times. Chandra et al. [14] gave a flow-based

(1 − 𝜖)-approximation algorithm by performing a limited number of blocking flows on the flow

network.

Despite the focus on DSP, very little can find an approximation close to the exact solution

while maintaining high efficiency, especially for the generalized density definition. This bottleneck

becomes even trickier when large-scale graphs of up to billions of edges are considered. Therefore,

some applications involving DSP on large graphs only utilize naive peeling to make the approxima-

tion. For instance, Hooi et al. [34] used a
1

2
-approximation DSP algorithm on weighted graphs to

find the fraudsters as the alternative to the exact solution.

Variants of DSP. DSP has also been studied on other graphs, e.g., directed graphs [13, 37, 42–44],

dynamic graphs [23, 36], and hypergraphs [10, 35]. Tatti et al. [60] and Danisch et al. [19] studied

the density-friendly decomposition problem to decompose the graph into a chain of subgraphs,

where each inner subgraph is denser than the outer ones. Qin et al. [51] and Ma et al. [41] studied

the locally densest subgraphs problem to find multiple locally dense regions from the graph.

When size-bound restrictions are imposed, the densest subgraph problem becomes NP-hard

[6–8, 26, 46]. Specifically, Andersen and Chellapilla [4] utilized Charikar’s peeling algorithm to

always yield a
1

3
· 𝑂𝑃𝑇 solution to the densest at-least-𝑘-subgraph problem (Dal𝑘S), where an

at-least-𝑘-subgraph means a subgraph with at least 𝑘 vertices. Chekuri et al. [14] then extended the

1

3
-approximation method to the densest at-least-𝑘 supermodular subset problem. To achieve better

solutions, Khuller and Saha [37] provided a combinatorial algorithm and a linear-programming-

based algorithm to output a
1

2
·𝑂𝑃𝑇 solution result. However, the existing Dal𝑘S solution cannot

obtain a better guarantee than a solution with density of at least 0.5 of the optimal density.

Comparison. Since some parts of our work are based on [14], we identify our related contribu-

tions compared to [14]: First, Chekuri et al. [14] devised a novel flow network and a brief idea for

finding DSP with this flow network. Based on the flow network, we complete the implementation

detail of how to search for subgraphs with new guessed densities and developed the algorithm

FlowApp. We also observe that FlowApp is not efficient enough and propose a faster algorithm

FlowApp* to achieve acceleration (Section 5). Second, Chekuri et al. [14] directly investigated the

generalized supermodular density, while we manage to show that multiple density metrics are

special cases of the generalized supermodular density (Section 3). To the best of our knowledge, we

propose to unify weighted density (Definition 3.5), denominator weighted density (Definition 3.7)

and h-clique density (Definition 3.9) by the generalized supermodular density (Definition 3.4) for

the first time.

3 PROBLEM DEFINITION
In this section, we first review the concept of generalized supermodular density and the generalized

densest subgraph based on this density. We then show that several existing DSP variants can be

viewed as special cases of the generalized densest subgraph.

Definition 3.1 (DoublyWeighted Graph [66]). Adoublyweighted graph is a 4-tuple𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸),
where𝑉 and 𝐸 denote the sets of vertices and edges, respectively,𝑊𝑉 = {𝑤𝑣 |𝑣 ∈ 𝑉 } contains vertex
weights, and𝑊𝐸 = {𝑤𝑒 |𝑒 ∈ 𝐸} contains edge weights.

We denote the subgraph induced by 𝑆 ⊆ 𝑉 as 𝐺 [𝑆], and the edge set in 𝐺 [𝑆] as 𝐸 (𝑆).

Example 3.2. Figure 1 presents an instance of doubly weighted graph. The numbers on vertices

and edges are their weights, respectively. For instance, node 𝑐 has weight 4 and edge (𝑐, 𝑒) has
weight 3.
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Fig. 1. Doubly weighted graph and 𝑐-core.

The doubly weighted graph is general and it covers the concept of the weighted graph. Many

density metrics can be defined on the doubly weighted graph such as weighted density and clique

density. We propose to unify these density metrics by a generalized supermodular density. Before

introducing the generalized supermodular density definition, we first review the concepts of

supermodular and submodular as its foundation.

Definition 3.3 (Supermodular & Submodular [14]). Given a space 2
𝑉
, a real-valued set function

𝑓 : 2
𝑉 → R is supermodular if and only if 𝑓 (𝑊 ) + 𝑓 (𝑈 ) ≤ 𝑓 (𝑊 ∪𝑈 ) + 𝑓 (𝑊 ∩𝑈 ), where𝑊 and𝑈

are any two subsets of𝑉 . A set function 𝑔 : 2
𝑉 → R is submodular if and only if −𝑔 is supermodular.

Definition 3.4 (Generalized Supermodular Density [14]). Given a doublyweighted graph𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸)
and 𝑆 ⊆ 𝑉 , the generalized supermodular density of 𝑆 can be described as

𝜌 (𝑆) = 𝑓 (𝑆)
𝑔(𝑆) , (1)

where 𝑓 : 2
𝑉 → R+ is a nonnegative supermodular function and 𝑔 : 2

𝑉 → R+ is a nonnegative
submodular function.

Next, we show that several well-known density variants can be regarded as special cases of the

generalized supermodular density.

Definition 3.5 (Weighted Density [31, 34]). Given a weighted graph𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸) and 𝑆 ⊆ 𝑉 ,
the weighted density of 𝑆 is given by

𝜌𝑊 (𝑆) =
∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒 +

∑
𝑣∈𝑆 𝑤𝑣

|𝑆 | (2)

Proposition 3.6. The weighted density (Definition 3.5) is a special case of the generalized super-
modular density (Definition 3.4) with 𝑔(𝑆) = |𝑆 | and 𝑓 (𝑆) = ∑

𝑒∈𝐸 (𝑆 ) 𝑤𝑒 +
∑
𝑣∈𝑆 𝑤𝑣 .

Proof. 𝑔(𝑆), the denominator, is both supermodular and submodular. For 𝑓 (𝑆), given any two

subsets𝑈 ,𝑊 ⊆ 𝑉 , we have 𝑓 (𝑊 ∪𝑈 ) + 𝑓 (𝑊 ∩𝑈 ) ≥ 𝑓 (𝑊 ) + 𝑓 (𝑈 ), as the left hand side contains

extra edge weights for all 𝑒 = (𝑢, 𝑣) where 𝑢 ∈𝑊 \𝑈 and 𝑣 ∈ 𝑈 \𝑊 . □
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Generalized supermodular density

Weighted density

Denominator 
weighted density

h-clique densityOriginal 
density

Fig. 2. Relationship of different densities.

Definition 3.7 (Denominator weighted density [31]). Given a weighted graph 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸) and
𝑆 ⊆ 𝑉 , the denominator weighted density of 𝑆 is given by

𝜌𝐷𝑊 (𝑆) =
∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒∑
𝑣∈𝑆 𝑤𝑣

(3)

Proposition 3.8. The denominator weighted density is a special case of the generalized supermod-
ular density (Definition 3.4).

Definition 3.9 (ℎ-clique density [45, 63]). Given a graph 𝐺 , for any 𝑆 ⊆ 𝑉 its ℎ-clique density can

be defined as

𝜌ℎ (𝑆) =
𝑐ℎ (𝑆)
|𝑆 | ,

where 𝑐ℎ (𝑆) is the number of ℎ-cliques induced by 𝑆 .

Proposition 3.10. The ℎ-clique density is a special case of the generalized supermodular density
(Definition 3.4).

Proposition 3.8 and Proposition 3.10 can be proved similarly as Proposition 3.6. The relationship

of different density definitions is also illustrated in Figure 2.

Figure 2 depicts the relationships among different density metrics. As can be seen, the generalized

supermodular density covers the original density, the weighted density, the denominator density

and the ℎ-clique density. The original density is a special case of all of the other density metrics.

Based on the generalized supermodular density definition, we can define the generalized densest

subgraph problem.

Problem 1 (Generalized Densest Subgraph (GDS) Problem [14]): Given a doubly weighted graph

𝐺 and a generalized supermodular density metric 𝜌 (𝑆) = 𝑓 (𝑆 )
𝑔 (𝑆 ) , the GDS problem aims to find the

generalized densest subgraph, i.e., 𝐺 [𝑆∗] where 𝑆∗ = argmax𝑆⊆𝑉 𝜌 (𝑆).
Example 3.11. Taking the graph on Figure 1 as an example, if the generalized supermodular

density 𝜌 (𝑆) = 𝜌𝑊 (𝑆), i.e., the weighted density (Definition 3.5), then the GDS will be a subgraph

induced by {𝑐, 𝑔, 𝑒} with the density of
17

3
. Similarly, if 𝜌 (𝑆) = 𝜌𝐷𝑊 (𝑆), then the GDS will be

𝐺 [{𝑒, 𝑓 , 𝑑}] with a density of 1.5; if 𝜌 (𝑆) = 𝜌ℎ (𝑆) with ℎ = 3, then the GDS will be 𝐺 [{𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}]
with a density of

3

5
.

In some applications, the densest subgraph with a size constraint is desired. For example, when

organizing conferences, the organizer may want to have at least 𝑘 participants. Hence, the densest

at least 𝑘 subgraph problem (Dal𝑘S) is one kind of DSP with size constraint.

Problem 2 (Densest at-least-𝑘-subgraph (Dal𝑘S) problem [4]): Given a doubly weighted graph

𝐺 , a corresponding density metric 𝜌 (𝑆) and a size lower bound 𝑘 , Dal𝑘S aims to find the densest

at-least-𝑘-subgraph 𝐺 [𝐾∗], where 𝐾∗ = argmax𝐾⊆𝑉 𝜌 (𝐾), ∀|𝐾 | ≥ 𝑘 .
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In this paper, we mainly consider the weighted density (Definition 3.5) for the Dal𝑘S problem.

Example 3.12 can show what are the exact solutions for Dal𝑘S for different size constraints 𝑘 .

Example 3.12. If 𝜌 (𝑆) = 𝜌𝑊 (𝑆) is adopted for Dal𝑘S on the graph shown in Figure 3, the Dal𝑘S is

just the GDS when 𝑘 ≤ 3. When 𝑘 = 4, the Dal𝑘S is induced by {𝑐, 𝑑, 𝑒, 𝑔} with a density
11

2
; when

𝑘 = 5, the Dal𝑘S is induced by {𝑐, 𝑑, 𝑒, 𝑓 , 𝑔} with a density
27

5
; when 𝑘 = 6, the Dal𝑘S is induced by

{𝑎, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔} with a density
31

6
; when 𝑘 = 7, the whole graph serves as the Dal𝑘S.

4 𝑐-CORE AND GDS
In this section, we introduce a new core model inspired by 𝑘-core [57] on unweighted graphs. Next,

we present an algorithmic framework that leverages the connection between the cores and the

GDS to speed up the GDS searching process.

4.1 Contribution and 𝑐-core
The new core model is based on a novel concept, namely contribution.

Definition 4.1 (Contribution). Given a doubly graph𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), a generalized supermodular

density 𝜌 (𝑆) = 𝑓 (𝑆 )
𝑔 (𝑆 ) , and a subset 𝑆 ⊆ 𝑉 , where 𝑓 and 𝑔 are defined on space 2

𝑉
. The contribution

of a vertex 𝑣 ∈ 𝑆 is

𝑐𝑆 (𝑣) =
𝑓 (𝑆) − 𝑓 (𝑆\𝑣)
𝑔(𝑆) − 𝑔(𝑆\𝑣) (4)

The subscript of contribution notation means the contribution of the node is calculated with respect

to a specific subset 𝑆 ⊆ 𝑉 .
Definition 4.2 (𝑐-core). Given a weighted graph 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), a positive real value 𝑐 , and a

generalized supermodular density 𝜌 (𝑆) = 𝑓 (𝑆 )
𝑔 (𝑆 ) , where 𝑆 ∈ 𝑉 , a subgraph 𝐺 [𝑆] is a 𝑐-core w.r.t 𝐺 if

it satisfies

(1) ∀𝑣 ∈ 𝑆 , 𝑐𝑆 (𝑣) ≥ 𝑐;
(2) �𝑆 ′ ⊆ 𝑉 , s.t. 𝑆 ⊂ 𝑆 ′ and 𝑆 ′ satisfies (1).
Next, we use an example to illustrate 𝑐-cores on a weighted graph when the generalized super-

modular density 𝜌 (𝑆) = 𝜌𝐷𝑊 (𝑆) (Definition 3.7). Specifically, we have 𝜌 (𝑆) = 𝑓 (𝑆 )
𝑔 (𝑆 ) =

∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒∑
𝑣∈𝑆 𝑤𝑣

.

Example 4.3. Reconsider the graph in Figure 1. According to Definition 4.1, the contribution

of a vertex 𝑢 w.r.t. a subset 𝑆 ⊆ 𝑉 is 𝑐𝑆 (𝑢) =
∑

𝑒 :𝑣∈𝑒∧𝑒∈𝐸 (𝑆 ) 𝑤𝑒

𝑤𝑢
. Based on the contribution formula,

the whole graph 𝐺 [𝑉 ] is a 0.25-core, as 𝑐𝑉 (𝑎) = 0.25 is the smallest contribution value among

all vertices. If we remove the vertices whose contribution values are not larger than 0.25, we will

obtain a subset 𝑆1 = {𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}, i.e., 𝑎 and 𝑏 are removed. 𝐺 [𝑆1] is a 1-core, as 𝑐𝑆1 (𝑐) = 1 is the

smallest among 𝑆1. Peeling vertex with a contribution not larger than one will give us a new subset

𝑆2 = {𝑑, 𝑒, 𝑓 , 𝑔}, where 𝐺 [𝑆2] is a 2-core. Similarly, we can also obtain the 2.5-core, 𝐺 [𝑆3], where
𝑆3 = {𝑒, 𝑓 , 𝑑} by peeling vertices with a contribution not larger than two.

The above example shows that a series of 𝑐-cores with increasing coreness of a graph can be

obtained by keeping peeling vertices. Similar to the generalized supermodular density covering

several density variants, the 𝑐-core model can also cover several well-known core models. 𝑠-core

[22], related to the weighted density (Definition 3.5), is one of such core models.

Definition 4.4 (Strength [22]). Given a doubly weighted graph𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸) and a vertex 𝑣 ∈ 𝑉 .
The strength of the node w.r.t. a subset 𝑆 is defined as

𝑠𝑆 (𝑣) = 𝑤𝑣 +
∑︁

𝑒 :𝑣∈𝑒∧𝑒∈𝐸 (𝑆 )
𝑤𝑒 (5)

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 169. Publication date: June 2023.



169:8 Yichen Xu, Chenhao Ma, Yixiang Fang, & Zhifeng Bao

Definition 4.5 (𝑠-core [22]). Given a doubly weighted graph 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸) and a vertex set

𝑆 ∈ 𝑉 . A subgraph 𝐺 [𝑆] is a 𝑠-core w.r.t 𝐺 if it satisfies

(1) ∀𝑣 ∈ 𝑆 , 𝑠𝑆 (𝑣) ≥ 𝑠;
(2) �𝑆 ′ ⊆ 𝑉 , s.t. 𝑆 ⊂ 𝑆 ′ and 𝑆 ′ satisfies (1).

Proposition 4.6. Strength (Definition 4.4) is a special case of contribution (Definition 4.1) and thus
𝑠-core is a special case of 𝑐-core.

Proof. Let 𝑔(𝑆) = |𝑆 | and 𝑓 (𝑆) = ∑
𝑣∈𝑆 𝑤𝑣 +

∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒 in the generalized supermodular density.

Observe that 𝑔 is submodular and 𝑓 is supermodular. We specialize contribution to strength by

definition, i.e. 𝑐𝑆 (𝑣) = 𝑠𝑆 (𝑣). □

Definition 4.7 (ℎ-clique degree [45]). Given a graph 𝐺 (𝑉 , 𝐸) and a vertex 𝑣 ∈ 𝑉 . The ℎ-clique
degree of the node 𝑣 w.r.t. a subset 𝑆 is defined as

𝑑𝑒𝑔𝑆 (𝑣, ℎ) = |{𝜓 |𝜓 ∈ 𝐺 [𝑆], 𝑣 ∈ 𝜓 }|, (6)

where𝜓 is an instance of ℎ-clique.

Definition 4.8 (ℎ-clique-core [45]). Given a graph𝐺 (𝑉 , 𝐸) and a vertex set 𝑆 ∈ 𝑉 , a subgraph𝐺 [𝑆]
is a ℎ-core w.r.t. 𝐺 if it satisfies

(1) ∀𝑣 ∈ 𝑆 , 𝑑𝑒𝑔𝑆 (𝑣, ℎ) ≥ ℎ;
(2) �𝑆 ′ ⊆ 𝑉 , s.t. 𝑆 ⊂ 𝑆 ′ and 𝑆 ′ satisfies (1).

Proposition 4.9. h-clique degree (Definition 4.7) is a special case of contribution (Definition 4.1)
and thus ℎ-clique-core is a special case of 𝑐-core.

Proof. Let 𝑔(𝑆) = |𝑆 | and 𝑓 (𝑆) = |{𝜓 |𝜓 ∈ 𝐺 [𝑆]}| in the generalized supermodular density.

Observe that 𝑔 is submodular and 𝑓 is supermodular. We specialize contribution to ℎ-clique-degree

by definition, i.e. 𝑐𝑆 (𝑣) = 𝑑𝑒𝑔𝑆 (𝑣, ℎ). □

Based on the above discussions, we can find that 𝑐-core is efficient to compute via peeling and

general to cover different core models. Next, we will show that 𝑐-core can also be used to locate the

GDS in a small subgraph to speed up the GDS searching.

4.2 Locating GDS in 𝑐-cores
We derive some useful properties of 𝑐-core and show that these properties are powerful to locate

the GDS in some cores. Lemma 4.10 reveals that the contribution (Definition 4.1) of any vertex in

the GDS is at least the density of the GDS.

Lemma 4.10. Given a doubly weighted graph𝐺 and a generalized supermodular density 𝜌 (𝑆) = 𝑓 (𝑆 )
𝑔 (𝑆 ) ,

suppose 𝐺 [𝑆∗] is the GDS w.r.t. 𝜌 . For any𝑈 ⊆ 𝑆∗, we have 𝑓 (𝑆∗ )−𝑓 (𝑆∗\𝑈 )
𝑔 (𝑆∗ )−𝑔 (𝑆∗\𝑈 ) ≥ 𝜌 (𝑆

∗).

Proof. We prove the lemma by contradiction. Suppose we have
𝑓 (𝑆∗ )−𝑓 (𝑆∗\𝑈 )
𝑔 (𝑆∗ )−𝑔 (𝑆∗\𝑈 ) < 𝜌 (𝑆∗).

𝜌 (𝑆∗) · (𝑔(𝑆∗) − 𝑔(𝑆∗\𝑈 )) > 𝑓 (𝑆∗) − 𝑓 (𝑆∗\𝑈 )
=⇒ 𝑓 (𝑆∗\𝑈 ) > 𝜌 (𝑆∗) · 𝑔(𝑆∗\𝑈 )

=⇒ 𝜌 (𝑆∗\𝑈 ) = 𝑓 (𝑆∗\𝑈 )
𝑔(𝑆∗\𝑈 ) > 𝜌 (𝑆∗)

(7)

□

To locate the GDS in 𝑐-cores, we first introduce an important property of vertex contribution.
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Lemma 4.11. Suppose there are two vertex subsets 𝑆1 and 𝑆2 satisfying 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 . We have
∀𝑣 ∈ 𝑆1, 𝑐𝑆1 (𝑣) ≤ 𝑐𝑆2 (𝑣).

Proof. 𝑐𝑆2 (𝑣) =
𝑓 (𝑆2 )−𝑓 (𝑆2\𝑣)
𝑔 (𝑆2 )−𝑔 (𝑆2\𝑣) ≥

𝑓 (𝑆1 )−𝑓 (𝑆1\𝑣)
𝑔 (𝑆1 )−𝑔 (𝑆1\𝑣) = 𝑐𝑆1 (𝑣). The inequality holds because 𝑓 (𝑆) is

supermodular and 𝑔(𝑆) is submodular. □

Based on Lemmas 4.10 and 4.11, we can derive the theorem to locate the GDS in some 𝑐-cores.

Let the GDS be𝐺 [𝑆∗] and its density be 𝜌 (𝑆∗) which is the optimal density. Theorem 4.12 indicates

that the GDS 𝐺 [𝑆∗] is a subgraph of the 𝑐-core with 𝑐 equal to the optimal density.

Theorem 4.12. Given a doubly weighted graph𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), suppose𝐺 [𝑆∗] is the GDS. Denote
the 𝜌 (𝑆∗)-core as 𝐺 [𝐶]. Then, 𝑆∗ ⊆ 𝐶 .
Proof. We prove the theorem by contradiction. Suppose𝑈 = 𝑆∗ \𝐶 ≠ ∅. By Lemma 4.10, for any

𝑢 ∈ 𝑈 ⊆ 𝑆∗, we have 𝑐𝑆∗ (𝑢) ≥ 𝜌 (𝑆∗). By Lemma 4.11, ∀𝑢 ∈ 𝑈 , 𝜌 (𝑆∗) ≤ 𝑐𝑆∗ (𝑢) ≤ 𝑐𝑆∗∪𝐶 (𝑢). Hence,
𝐺 [𝑆∗ ∪𝐶] is a larger 𝜌 (𝑆∗)-core than 𝐺 [𝐶], which contradicts the definition of 𝑐-core. □

4.3 𝑐-core-based algorithmic framework
Based on Theorem 4.12, we know that the GDS can be located in the 𝜌 (𝑆∗)-core. However, we do
not know the exact value 𝜌 (𝑆∗) as a priori before the GDS is found. Fortunately, the density of the

densest 𝑐-core via peeling can serve as a lower bound of 𝜌 (𝑆∗). In practice, utilizing the density of

the densest 𝑐-core can help reduce the graph size.

We present an algorithmic framework to accelerate the GDS searching in Algorithm 1. Let 𝐺 [𝑆]
be the densest c-core obtained by peeling on G. In the framework for acceleration, we first find

the 𝐺 [𝑆] via peeling (line 1), use the density of the 𝐺 [𝑆] as the lower bound 𝜌 of 𝜌 (𝑆∗) (line 2)
and find the 𝜌-core, 𝐺 ′ (line 3). Note that 𝐺 [𝑆∗] ⊆ 𝜌 (𝑆∗)-core ⊆ 𝜌-core ⊆ 𝐺 ′ . Next, we can run

any GDS algorithm GDSalg on 𝐺 ′ to find the (approximate) GDS (line 4). We can observe that this

framework can locate the GDS in a small subgraph. Hence, the invoked GDS algorithm will be

boosted as it only needs to process a small subgraph.

Algorithm 1: cCoreGDS
Input: 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), density metric 𝜌 (·)
Output: The GDS 𝐺 [𝑆∗] or its approximation

1 𝐺 [𝑆] ← densest 𝑐-core in 𝐺 via peeling;

2 𝜌 ← 𝜌 (𝑆);
3 𝐺 ′ ← 𝜌-core in 𝐺 via peeling ;

4 𝑆∗ ← GDSalg(𝐺 ′);

5 Return 𝐺 [𝑆∗];

Example 4.13. This example shows the process of Algorithm 1 cCoreGDS on the graph in Figure 1

with denominator weighted density (Definition 3.7). Following Example 4.3, we obtain a series of

𝑐-cores, 𝑆1 = {𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}, 𝑆2 = {𝑑, 𝑒, 𝑓 , 𝑔} and 𝑆3 = {𝑑, 𝑒, 𝑓 } with density 1, 16
11
,
12

7
and

3

2
respectively.

Observe that in this case, the densest 𝑐-core is the subgraph induced by 𝑆2, which is not the 𝑐-core

with the largest coreness. Then we let 𝑆 in Algorithm 1 be 𝑆2 and 𝜌 = 𝜌 (𝑆2) = 12

7
. Starting from the

whole graph, we peel all vertices with their contribution less than the coreness 𝜌 . Vertices 𝑎, 𝑏, 𝑐

are peeled sequentially and the remaining vertices all have at least 𝜌 contributions. The subgraph

induced by {𝑑, 𝑒, 𝑓 , 𝑔} is a 𝜌-core by definition and it is the 𝐺
′
in Algorithm 1. Finally, we run the

GDS algorithm on the graph 𝐺
′
.
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5 GDS ALGORITHMS
In this section, we first review existing DSP algorithms on unweighted graphs and discuss how they

can be adapted to the GDS problem and fitted into our algorithmic framework. Next, we propose

new acceleration techniques for flow-based algorithms to improve their efficiency.

5.1 Existing algorithms
The flow-based exact algorithm [31]. The main idea of Goldberg’s flow-based approach [31] is

to compare the density of the densest subgraph with a guess value 𝑔 via max-flow computation

and do the binary search to narrow the guess range. Although it can provide accurate results, the

max-flow computation is very time costly, especially on large-scale graphs.

Algorithm 2 gives the pseudo-code of Goldberg’s FlowExact [31]. First, the guess range of the
density is initialized as 𝑙 = 0 and 𝑟 = max𝑣∈𝑉 𝑐𝑉 (𝑣), the maximum contribution (Definition 4.1)

among all vertices (line 1). Next, the while loop repeats the binary search to shrink the guess range

until the range is smaller than a given coreness (lines 2–8). For each guessed 𝑔, the algorithm

constructs a flow network (line 4), computes the minimum st-cut (line 5), and updates the range as

well as 𝑆∗ based on st-cut (lines 6–7). FlowExact can be extended to handle the weighted density

(Definition 3.5). When the weights on edges and vertices are integers, we can guarantee an exact

solution by requiring 𝛿 < 1

|𝑉 | · ( |𝑉 |−1) [31].

Algorithm 2: FlowExact [31]

Input: 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), 𝛿 ∈ R+
Output: The densest subgraph 𝐺 [𝑆∗]

1 Initialize 𝑙 ← 0, 𝑟 ← max𝑣∈𝑉 𝑐𝑉 (𝑣), 𝑆∗ ← ∅;
2 while 𝑟 − 𝑙 > 𝛿 do
3 𝑔← 𝑟+𝑙

2
;

4 Construct flow network 𝐹 based on 𝐺 and 𝑔;

5 ⟨S,T⟩ ← the min st-cut on 𝐹 ;

6 if S = {𝑠} then 𝑟 ← 𝑔 ;

7 else 𝑙 ← 𝑔, 𝑆∗ ← S \ {𝑠} ;
8 Return 𝐺 [𝑆∗]

The flow-based approximation algorithm [14]. The flow-based approximation algorithm FlowApp
is proposed by Chekuri et al. [14] to solve DSP. Compared to Goldberg’s FlowExact, FlowApp does

not need to run the full maximum flow algorithm. In other words, it can terminate in advance for a

given error tolerance 𝜖 . But it also suffers from the huge cost of performing flow computations on

large-scale graphs.

Both FlowExact and FlowApp can be applied to doubly weighted graphs. For example, if the

weighted density (Definition 3.5) is adopted as the generalized supermodular density, the flow

network can be constructed as shown in Figure 3 for the 2.5-core in Figure 1. Besides, [31] and [14]

provide the flow network for GDS on denominator weighted density (Definition 3.7).

Example 5.1. Figure 3 shows the flow network built upon the 2.5-core in Figure 1 to solve GDS

based on Definition 3.5. Each element in the vertex set {𝑒, 𝑓 , 𝑑} and the edge set {(𝑒, 𝑓 ), (𝑓 , 𝑑), (𝑒, 𝑑)}
is treated as a node in the constructed flow network. A source node 𝑠 is linked to vertex nodes and

edge nodes by arcs. The capacity of arcs from 𝑠 to vertex nodes are weights on the vertices, while

the capacity of arcs from 𝑠 to edge nodes are weights on the edges. Each vertex node is connected
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Fig. 3. Flow network constructed from the 2.5-core.

to its incident edge nodes by arcs having infinite capacity. Finally, arcs with the capacity of guessed

value 𝑔 will be built between each edge node and the sink node 𝑡 .

Apart from the above two flow-based algorithms, Greedy++ [11] and the Frank-Wolfe-based

algorithm [19] can also be adapted to doubly weighted graphs, and fitted into the cCoreGDS
framework by replacing GDSalg in line 4 of Algorithm 1 with the corresponding algorithm. By

wrapping the algorithms into the cCoreGDS framework, we can perform the GDS searching on

smaller subgraphs instead of the whole large graph.

5.2 Boosting flow-based algorithms via cores
Taking a closer look at the flow-based algorithms, we can find that the searching range of the

optimal density is shrinking along with the binary search. Hence, the lower bound of the density

is monotonically increasing during the binary search. In this case, when the lower bound 𝑙 in

Algorithm 2 increases, we can locate the GDS in a 𝑐-core with a higher coreness and smaller

size. Replacing the if statement (lines 6–7) in Algorithm 2 with the following lines (Algorithm 3),

FlowExact will be further boosted by 𝑐-cores with smaller sizes during the binary search. Similar

code with minor changes can also be added to FlowApp to accelerate the GDS searching.

Algorithm 3: 𝑐-core-based pruning in flow-based algos

1 if S = {𝑠} then 𝑟 ← 𝑔 ;

2 else
3 𝑙 ← 𝑔, 𝑆∗ ← S \ {𝑠};
4 𝐺 ← the 𝑙-core in 𝐺 via peeling;

5.3 New density search strategy for FlowApp
The flow-based approximation algorithm FlowApp [14] needs a strategy to search for the optimal

density value like the binary search in FlowExact. However, Chekuri et al. only gave a brief idea

about the strategy (Corollary 2.1 in [14]). That is one can initialize the error tolerance as 𝜖 = 0.5

and then decrease it by half once the (1-𝜖)-approximation of the subgraph with the new guessed

density is found. However, they did not elaborate on how to find the (1-𝜖)-approximation. We give

the details and present the strategy in Algorithm 4. Next, to further reduce the searching cost, we

develop an advanced searching strategy, which will be given in Algorithm 5.

Similar to the binary search in FlowExact, the searching strategy in FlowApp [14] also needs to

guess the density 𝑔 within a range (𝑙, 𝑟 ) with some error tolerance 𝜖0. For the guessed 𝑔, FlowApp
will perform a fixed number of blocking flows [1, 5, 32, 58, 59] on the constructed flow network
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such as the one in Figure 3. On the residual network after blocking flows, either there exists an

easy-to-get subgraph with a density of at least (1 − 𝜖) · 𝑔, or there exists no subgraph of density

larger than 𝑔. The searching range (𝑙, 𝑟 ) will be shrunk accordingly based on one of the two possible

outcomes until the error tolerance given by the user is fulfilled.

Algorithm 4: FlowApp [14]

Input: 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), 𝜖 ∈ (0, 1)
Output: The (1 − 𝜖)-approximation GDS

1 Initialize 𝜖 ← 1

2
, 𝑙 ← 0, 𝑟 ← max𝑣∈𝑉 𝑐𝑉 (𝑣);

2 while 𝜖 > 𝜖
2
do

3 𝑔← 𝑟+𝑙
2
;

4 Construct flow network 𝐹 based on 𝐺 and 𝑔;

5 ℎ ← the number of blocking flows needed;

6 for 𝑖 = 1→ ℎ do perform blocking flow on 𝐹 ;

7 if there exists an augmenting path in 𝐹 then
8 if (1 − 𝜖) · 𝑔 ≤ 𝑙 then 𝜖 ← 𝜖

2
;

9 else 𝑙 ← (1 − 𝜖) · 𝑔, 𝑅𝑙 ← the residual graphs of 𝐹 ;

10 else
11 𝑟 ← 𝑔;

12 if 1 − 𝑙
𝑟
< 𝜖 then 𝜖 ← 𝜖

2
;

13 Extract the approximate GDS 𝐺 [𝑆∗] from 𝑅𝑙 ;

14 Return 𝐺 [𝑆∗];

Algorithm 4 gives the pseudo-code of FlowApp. FlowApp first initializes the error bound 𝜖 to
1

2
, and the density range (𝑙, 𝑟 ) to (0,max𝑣∈𝑉 𝑐𝑉 (𝑣)) (line 1). Then, we have a while loop to keep

guessing the density 𝑔 and shrink the density range (𝑙, 𝑟 ) based on the result of blocking flows

(lines 2–12). In each iteration, the algorithm guesses 𝑔, constructs the flow network 𝐹 , and performs

a fixed number of blocking flows (lines 3–6). If there exists an augmenting path in 𝐹 after blocking

flows, this means that there exists a subgraph with the density of at least (1 − 𝜖) · 𝑔 (lines 7–9). If
(1 − 𝜖) · 𝑔 ≤ 𝑙 , FlowApp reduces the error guarantee 𝜖 by half, as shown in Case 2 in Figure 4 (a);

otherwise 𝑙 will be updated to (1 − 𝜖) · 𝑔, as shown in Case 1 in Figure 4 (a) and FlowApp saves the

residual graph of 𝐹 to 𝑅𝑙 (lines 8–9). If no augmenting path exists, FlowApp updates 𝑟 to 𝑔 (line 11),

and halves the error bound 𝜖 . FlowApp terminates the loop until the error bound 𝜖 satisfies the

requirement 𝜖 (line 2). Finally, it extracts the (1 − 𝜖)-approximation GDS 𝐺 [𝑆∗] from the residual

graph 𝑅𝑙 and returns it as the output (lines 13–14).

Reviewing the above process, we can find that when the while loop is terminated, we have the

possible density range (𝑙, 𝑟 ) satisfying 𝑙
𝑟
> (1 − 𝜖). Hence, we can extract a (1 − 𝜖)-approximate

GDS from the residual graph 𝑅𝑙 by Theorem 2.1 in [14].

Observations. In practice, we find the strategy to update 𝜖 in FlowApp [14], which initializes

𝜖 = 1

2
and decreases it by half when appropriate, is sometimes not efficient. The reason lies in the

case where there exists a subgraph with density at least (1 − 𝜖) · 𝑔, as shown in Figure 4 (a). The

narrowing of the density range is slow when (1 − 𝜖) · 𝑔 is only slightly greater than 𝑙 in Case 1

or even unchanged in Case 2. Meanwhile, the error bound 𝜖 is halved only in Case 2 and can stay

the same for several iterations. Hence, the error bound 𝜖 cannot fall below 𝜖
2
quickly to fulfill the

requirement.
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Fig. 4. Illustration of density searching strategies.

To overcome the inefficiency caused by the above intricate strategy, we propose a novel and

simple strategy, where the error bound 𝜖 is decided adaptively based on the density range (𝑙, 𝑟 ).
The advantage of our strategy is that the density range

(1) reduces by
1

4
steadily, when there exists a subgraph with density at least (1 − 𝜖) · 𝑔, as shown

in Figure 4 (b);

(2) reduces by half, when there exists no such subgraph.

Based on this novel strategy, we design a new (1 − 𝜖)-approximation algorithm, FlowApp*, in
Algorithm 5. The steps of FlowApp* are similar to FlowApp. The differences are mainly related to

the density searching strategy, as listed below:

(1) the error bound 𝜖 is given by
𝑔−𝑙
2𝑔

, where 𝑔 = 𝑟+𝑙
2

is the guessed density, and does not follow a

fixed decreasing strategy like that in FlowApp (line 3);

(2) if there exists a augmenting path in 𝐹 , 𝑙 can be safely updated to (1 − 𝜖) · 𝑔 =
𝑔+𝑙
2

(lines 7–8);

(3) the while loop will be terminated when 𝜖 < 𝜖
3−2𝜖 (line 2).

Algorithm 5: FlowApp*
Input: 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), 𝜖 ∈ (0, 1)
Output: The (1 − 𝜖)-approximation GDS

1 Initialize 𝜖 ← 1

2
, 𝑙 ← 0, 𝑟 ← max𝑣∈𝑉 𝑐𝑉 (𝑣);

2 while 𝜖 ≥ 𝜖
3−2𝜖 do

3 𝑔← 𝑟+𝑙
2
, 𝜖 ← 𝑔−𝑙

2𝑔
;

4 Construct flow network 𝐹 based on 𝐺 and 𝑔;

5 ℎ ← the number of blocking flows needed;

6 for 𝑖 = 1→ ℎ do perform blocking flow on 𝐹 ;

7 if there exists an augmenting path in 𝐹 then
8 𝑙 ← 𝑔+𝑙

2
, 𝑅𝑙 ← the residual graphs of 𝐹 ;

9 else
10 𝑟 ← 𝑔

11 Extract the approximate GDS 𝐺 [𝑆∗] from 𝑅𝑙 ;

12 Return 𝐺 [𝑆∗];
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With the new density searching strategy, our FlowApp* can still output a (1 − 𝜖)-approximation

result.

Proposition 5.2. Algorithm 5 can output a (1 − 𝜖)-approximation.

Proof. Consider the last iteration of the while loop. If there exists a subgraph with a density of

at least (1 − 𝜖)𝑔, we have (1 − 𝜖)𝑔 < 𝜌 (𝑆∗) ≤ (1 + 2𝜖)𝑔. The condition𝑚𝑎𝑥𝜌 (𝑆∗ ) (1 − 𝑙
𝜌 (𝑆∗ ) ) < 𝜖 can

guarantee that we have a (1 − 𝜖)-approximation. Then we get 1 − (1−𝜖 )𝑔(1+2𝜖 )𝑔 < 𝜖 which is equivalent

to 𝜖 < 𝜖
3−2𝜖 . Otherwise, we do not have a subgraph with density larger than 𝑔, 𝑙 < 𝜌 (𝑆∗) ≤ 𝑔 and

𝑚𝑎𝑥𝜌 (𝑆∗ ) (1 − 𝑙
𝜌 (𝑆∗ ) ) < 𝜖 can imply 𝜖 < 𝜖

2
. But this condition is satisfied automatically when we

require 𝜖 < 𝜖
3−2𝜖 . □

We further analyze why FlowApp* (Algorithm 5) is faster than FlowApp (Algorithm 4). Comparing

(a) and (b) in Figure 4, we observe that FlowApp cannot guarantee how much the searching range

is decreased, while FlowApp* ensures that it can reduce the searching range by
1

4
. From the

perspective of the termination condition, the faster the decrease of 𝜖 , the faster the speed of the

whole algorithm. In FlowApp, 𝜖 cannot decrease (Case 1 in Figure 4 (a)). In FlowApp*, we notice
that 𝜖 always decreases during the while loop, shown in the following proposition.

Proposition 5.3. In Algorithm 5, 𝜖 strictly decreases. 𝜖 in the (𝑖 + 1)-iteration is smaller than the
value in the 𝑖-th iteration, i.e., 𝜖𝑖+1 < 𝜖𝑖 .

Proof. Suppose in the 𝑖-th loop, there is an augmenting path in 𝐹 . Then
𝜖𝑖+1
𝜖𝑖

=

𝑔𝑖+1−𝑙𝑖+1
2𝑔𝑖+1
𝑔𝑖 −𝑙𝑖
2𝑔𝑖

=

𝑔𝑖
𝑔𝑖+1
· 𝑔𝑖+1−𝑙𝑖+1

𝑔𝑖−𝑙𝑖 , where the subscripts (𝑖 or 𝑖 + 1) denote the values in the corresponding iteration of

the while loop. Observe that
𝑔𝑖
𝑔𝑖+1

< 1 and
𝑔𝑖+1−𝑙𝑖+1
𝑔𝑖−𝑙𝑖 = 3

4
. Consequently

𝜖𝑖+1
𝜖𝑖

< 3

4
. On the other hand, if

there is no augmenting path, we have
𝜖𝑖+1
𝜖𝑖

< 1 because 𝜖𝑖+1 =
𝑔𝑖+𝑙𝑖

2
−𝑙𝑖

2· 𝑔𝑖+𝑙𝑖
2

=
𝑔𝑖−𝑙𝑖
2𝑔𝑖+2𝑙𝑖 <

𝑔𝑖−𝑙𝑖
2𝑔𝑖

= 𝜖𝑖 . □

6 OUR DAL𝑘S APPROXIMATION ALGORITHM
The densest at-least-𝑘-subgraph (Dal𝑘S) problem is one kind of DSP with a size constraint, which

has been proven to be NP-hard [6–8, 26, 46]. Although the peeling-based Dal𝑘S algorithm [4] is fast,

it can only output a
1

3
·𝑂𝑃𝑇 solution result, which is far from optimal. To the best of our knowledge,

the state-of-the-art approach proposed by Khuller and Saha [37] can output a 0.5 ·𝑂𝑃𝑇 solution,

which is still not satisfactory. This section proposes a new algorithm to extract subgraphs close to

the optimal solution of Dal𝑘S from the density-friendly graph decomposition [60], inspired by [37].

In Section 8, we empirically verify that our solution is usually better than a 0.5 ·𝑂𝑃𝑇 solution.

A key finding inspires our Dal𝑘S algorithm DecomDalkS that the GDS 𝐺 [𝑆∗] must be contained

in the Dal𝑘S 𝐺 [𝐾∗] if |𝑆∗ | ≤ 𝑘 , as shown in Theorem 6.1. In this paper, we focus on the weighted

density (Definition 3.5) for Dal𝑘S. The reason for choosing the weighted density is that it is more

general than the original density. Existing works on Dal𝑘S only consider the original density. Thus,

our algorithm is more general than existing ones in the literature.

Theorem 6.1. Given a doubly weighted graph 𝐺 and size constraint 𝑘 , let 𝐺 [𝑆∗] denote the GDS
and 𝐺 [𝐾∗] denote the Dal𝑘S. If 𝑘 ≥ |𝑆∗ |, we have 𝑆∗ ⊆ 𝐾∗.

Proof. Suppose for contradiction, |𝑆∗ \ 𝐾∗ | ≠ ∅. Adding 𝑆∗ \ 𝐾∗ to 𝐾 will result in a subgraph

denser than 𝐺 [𝐾∗] by Lemma 4.10. □

Motivated by Theorem 6.1 that the GDS is contained in Dal𝑘S, can we adopt the following

strategy to obtain the near-optimal Dal𝑘S?
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(1) Find the GDS from doubly weighted graph 𝐺 ;

(2) Remove the GDS from 𝐺 and redistribute some weights;

(3) Repeat the above process until the size of the union of all GDS’s is larger than 𝑘 , and use the

union as a result.

The above strategy can give us a high-quality result, which will be proven later. Meanwhile, Tatti

[60] used the above process to perform the density-friendly graph decomposition on unweighted

graphs. By deriving properties of density-friendly graph decomposition, which are not shown in

[60] and other decomposition work [19], we successfully extract the solution close to the exact

Dal𝑘S from the decomposition for the first time.

Algorithm 6: DecomDalkS
Input: 𝐺 (𝑉 , 𝐸,𝑊𝑉 ,𝑊𝐸), size lower bound 𝑘
Output: The 𝑘

|𝐾̃∗ | -approximation Dal𝑘S 𝐺 [𝐾̃∗]
1 𝐾̃∗ ← ∅;
2 while |𝐾̃∗ | < 𝑘 do
3 𝐺 [𝑆∗] ← the GDS in 𝐺 via cCoreGDS (Algorithm 1);

4 foreach 𝑒 = (𝑢, 𝑣) ∈ 𝐸 ∩ (𝑆∗ × (𝑉 \ 𝑆∗)) do
5 𝑤𝑣 ← 𝑤𝑣 +𝑤𝑒
6 Remove 𝑆∗ and its adjacent edges from 𝐺 ;

7 𝐾̃∗ ← 𝐾̃∗ ∪ 𝑆∗;
8 Return the subgraph induced by 𝐾̃∗;

We present our Dal𝑘S algorithm DecomDalkS for doubly weighted graphs in Algorithm 6.

DecomDalkS first initializes the approximate Dal𝑘S as an empty set (line 1). Next, we repeat ex-

tractions of the GDS 𝐺 [𝑆∗] from 𝐺 (line 3), redistribute weights of edges between vertices inside

and outside 𝑆∗ to corresponding vertices outside 𝑆∗ (lines 4–5), remove 𝑆∗ and its adjacent edges

from 𝐺 (line 6), and merge 𝑆∗ to 𝐾̃∗ (line 7), until 𝐾̃∗ contains at least 𝑘 vertices (line 2). We return

𝐺 [𝐾̃∗] as the approximate Dal𝑘S (line 8).

As DecomDalkS keeps updating𝐺 at each iteration, we use Table 1 to denote the related variables

in 𝑖-th iteration of the while loop to facilitate the explanation of the procedure and relevant

derivation.

Table 1. Notations in the while loop of DecomDalkS.

Notations Meaning

𝐺𝑖 updated 𝐺 at the start of 𝑖-th iteration

𝐺𝑖 [𝑆∗𝑖 ] the GDS in 𝐺𝑖
𝐺𝑖 [𝐻𝑖 ] the Dal𝑘S in 𝐺𝑖 with at least (𝑘 − |⋃𝑖−1

𝑗=1 𝑆
∗
𝑗 |) vertices

By the following theorem, our algorithm DecomDalkS is likely to give a solution with density

larger than 0.5·𝑂𝑃𝑇 , which is the density of the solution given by the state-of-the-art approximation.

Theorem 6.2. 𝐺 [𝐾̃∗] output by DecomDalkS (Algorithm 6) is a 𝑘

|𝐾̃∗ | -approximation to the Dal𝑘S,
𝐺 [𝐾∗], with size lower bound 𝑘 .
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Example 6.3. Take the graph in Figure 1 as an example to demonstrate steps in DecomDalkS with
different required 𝑘 . For clarity, we first list the result of decomposition beforehand. It is easy to

obtain 𝑆∗
1
= {𝑐, 𝑔, 𝑒}, 𝑆∗

2
= {𝑓 , 𝑑}, 𝑆∗

3
= {𝑎} and 𝑆∗

4
= {𝑏}. If 𝑘 ≤ 3, the output is exactly the GDS

induced by 𝑆∗
1
; if 𝑘 = 4, the output is the subgraph induced by 𝑆∗

1
∪ 𝑆∗

2
, which is a 0.8 ·𝑂𝑃𝑇 solution;

if 𝑘 = 5, the output is the same with the case when 𝑘 = 4, but this time it is an exact solution;

similarly when 𝑘 = 6 or 𝑘 = 7, DecomDalkS is able to return an exact solution.

According to our experimental results, the approximation ratio given by DecomDalkS, 𝑘

|𝐾̃∗ | is at

least 0.8 in most cases.

To prepare for the proof of Theorem 6.2, we define the so-called marginal weights as the extension

of marginal edge number in [60].

Definition 6.4 (Marginal weight). Suppose we have two disjoint vertex subsets 𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑉 .
Denote the edge set to connect 𝑋 and 𝑌 as 𝐸 (𝑋,𝑌 ) = {𝑒 = (𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 }. The marginal

weight of 𝑋 w.r.t 𝑌 is𝑊Δ (𝑋,𝑌 ) :=
∑
𝑒∈𝐸 (𝑋 ) 𝑤𝑒 +

∑
𝑣∈𝑋 𝑤𝑣 +

∑
𝑒∈𝐸 (𝑋,𝑌 ) 𝑤𝑒 .

We denote the weight of 𝑋 as𝑊 (𝑋 ) = ∑
𝑒∈𝐸 (𝑋 ) 𝑤𝑒 +

∑
𝑣∈𝑋 𝑤𝑣 . Hence, the marginal weight of 𝑋

w.r.t. 𝑌 contains more weights of edges connecting 𝑋 and 𝑌 compared to𝑊 (𝑋 ).
Next, we introduce some useful lemmas related to marginal weights.

Lemma 6.5. Let 𝐺 [𝑆∗] be the GDS in 𝐺 . Then we have ∀𝑋 ⊆ 𝑉 \ 𝑆∗, 𝑊 (𝑆
∗ )

|𝑆∗ | >
𝑊Δ (𝑋,𝑆∗ )
|𝑋 | .

Proof. Because 𝐺 [𝑆∗] is the GDS of 𝐺 , the following inequality holds

𝜌 (𝑆∗ ∪ 𝑋 ) = 𝑊 (𝑆
∗) +𝑊Δ (𝑋, 𝑆∗)
|𝑆∗ | + |𝑋 | <

𝑊 (𝑆∗)
|𝑆∗ | = 𝜌 (𝑆∗).

Then the result will be straightforward to see. □

Lemma 6.6. Suppose we have vertex subsets 𝐷 , 𝐴, and 𝐵, where 𝐷 is disjoint from both 𝐴 and 𝐵 and
nonempty. If 0 < |𝐴| < |𝐵 | and 𝑊 (𝐷 )

|𝐷 | >
𝑊Δ (𝐴,𝐷 )
|𝐴 | >

𝑊Δ (𝐵,𝐷 )
|𝐵 | , we have 𝜌 (𝐴 ∪ 𝐷) = 𝑊 (𝐷 )+𝑊Δ (𝐴,𝐷 )

|𝐷 |+|𝐴 | >

𝑊 (𝐷 )+𝑊Δ (𝐵,𝐷 )
|𝐷 |+|𝐵 | = 𝜌 (𝐵 ∪ 𝐷).

Proof. Firstly we let

𝑊1 = (
𝑊 (𝐷)
|𝐷 | −

𝑊Δ (𝐴, 𝐷)
|𝐴| ) · ( |𝐵 | − |𝐴|) · |𝐷 |

𝑊2 = (
𝑊Δ (𝐴, 𝐷)
|𝐴| −𝑊Δ (𝐵, 𝐷)

|𝐵 | ) · |𝐵 | · ( |𝐷 | + |𝐴|)
(8)

Taking the difference between
𝑊 (𝐷 )+𝑊Δ (𝐴,𝐷 )

|𝐷 |+|𝐴 | and
𝑊 (𝐷 )+𝑊Δ (𝐵,𝐷 )

|𝐷 |+|𝐵 | yields

𝑊 (𝐷) +𝑊Δ (𝐴, 𝐷)
|𝐷 | + |𝐴| −𝑊 (𝐷) +𝑊Δ (𝐵, 𝐷)

|𝐷 | + |𝐵 |

=
𝑊1 +𝑊2

( |𝐷 | + |𝐵 |) · ( |𝐷 | + |𝐴|) > 0

(9)

□

In the following, we refer readers to Figure 5 (a) for visualizing Lemma 6.7 and Theorem 6.8; and

Figure 5 (b) for visualizing Theorem 6.9.

Lemma 6.7. For any iteration in the while loop, we have ∀𝑖 , |𝐻𝑖 | ≤ |𝑆∗𝑖 | + |𝐻𝑖+1 |.
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(a)

𝑆1
′

𝑆2
′

𝑆3
′

𝐼

𝐵

(b)

𝑆1
∗ ∪⋯∪ 𝑆𝑖−1

∗

𝑆𝑖
∗

𝐻𝑖

𝐺1

Fig. 5. Relationship among subgraphs.

Proof. Firstly, 𝑆∗𝑖 ⊆ 𝐻𝑖 by Theorem 6.1. Let 𝐻𝑖 = 𝐵𝑖 ∪ 𝑆∗𝑖 , where 𝐵𝑖 is disjoint from 𝑆∗𝑖 . We claim

that |𝐵𝑖 | ≤ |𝐻𝑖+1 |. Otherwise suppose that |𝐵𝑖 | > |𝐻𝑖+1 |. By the definition of 𝑆∗𝑖 and Lemma 6.5, we

have

𝑊 (𝑆∗𝑖 )
|𝑆∗

𝑖
| >

𝑊Δ (𝐻𝑖+1,𝑆∗𝑖 )
|𝐻𝑖+1 | >

𝑊Δ (𝐵𝑖 ,𝑆∗𝑖 )
|𝐵𝑖 | w.r.t. 𝐺𝑖 . We use Lemma 6.6 and conclude that

𝑊 (𝐻𝑖 )
|𝐻𝑖 |

=
𝑊 (𝑆∗𝑖 ) +𝑊Δ (𝐵𝑖 , 𝑆∗𝑖 )

|𝑆∗
𝑖
| + |𝐵𝑖 |

≤
𝑊 (𝑆∗𝑖 ) +𝑊Δ (𝐻𝑖+1, 𝑆∗𝑖 )

|𝐻𝑖+1 | + |𝐵𝑖 |
=
𝑊 (𝑆∗𝑖 ∪ 𝐻𝑖+1)
|𝑆∗
𝑖
| + |𝐻𝑖+1 |

(10)

Observe that the graph induced by 𝑆∗𝑖 ∪ 𝐻𝑖+1 is now a denser subgraph than 𝐻𝑖 with at least

𝑘 − |⋃𝑖−1
𝑗=1 𝑆

∗
𝑗 | vertices on 𝐺𝑖 . It contradicts with the fact that 𝐻𝑖 is the densest subgraph with at

least 𝑘 − |⋃𝑖−1
𝑗=1 𝑆

∗
𝑗 | vertices. Because |𝐵𝑖 | ≤ |𝐻𝑖+1 |, we have |𝐻𝑖 | = |𝑆∗𝑖 | + |𝐵𝑖 | ≤ |𝑆∗𝑖 | + |𝐻𝑖+1 |. □

Theorem 6.8. Suppose the exact solution for Dal𝑘S is 𝐺 [𝐾∗]. Then we have |𝐾∗ | ≤ |𝐾̃∗ |, where 𝐾̃∗
is the vertex set of the final output in Algorithm 6.

Proof. Because 𝑆∗𝑖 ’s are disjoint, we have

|
𝑖⋃
𝑗=1

𝑆∗𝑗 ∪ 𝐻𝑖+1 | =
𝑖∑︁
𝑗=1

|𝑆∗𝑗 | + |𝐻𝑖+1 | (11)

Suppose the while loop is executed for 𝑝 iterations. Based on Lemma 6.7, the following inequality

holds ∀0 ≤ 𝑖 ≤ 𝑝 − 2
𝑖∑︁
𝑗=1

|𝑆∗𝑗 | + |𝐻𝑖+1 | ≤
𝑖+1∑︁
𝑗=1

|𝑆∗𝑗 | + |𝐻𝑖+2 | (12)

Then, combining the above two, we have the sequence of inequalities, where let 𝑆∗[1,𝑝 ] =
⋃𝑝

𝑗=1
𝑆∗𝑗

|𝐾∗ | = |𝐻1 | ≤ |𝑆∗1 ∪ 𝐻2 | ≤ |𝑆∗1 ∪ 𝑆∗2 ∪ 𝐻3 | ≤ · · ·
≤ |𝑆∗[1,𝑝−1] ∪ 𝐻𝑝 | = |𝑆

∗
[1,𝑝 ] | = |𝐾̃

∗ |
(13)

We can see that 𝐻𝑝 = 𝑆∗𝑝 , so |𝐻𝑝 | = |𝑆∗𝑝 |. □

Theorem 6.9. 𝐺 [𝐾̃∗] is the Dal𝑘S with at least |𝐾̃∗ | vertices.
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Proof. Suppose 𝐺 [𝐽 ] is any subgraph of the original whole graph 𝐺 [𝑉 ], where |𝐽 | = |𝐾̃∗ |. Let
𝐼 = 𝐽 ∩ 𝐾̃∗, 𝐵 = 𝐽 \ 𝐼 and 𝑆 ′𝑖 = 𝑆∗𝑖 ∩ (𝑉 \ 𝐼 ),∀1 ≤ 𝑖 ≤ 𝑝 , where 𝑝 is the number of iterations executed

in the while loop. By Lemma 6.5, we have a sequence of inequalities

𝑊Δ (𝐵, 𝐼 )
|𝐵 | <

𝑊Δ (𝑆∗𝑝 , 𝑆∗[1,𝑝−1])
|𝑆∗𝑝 |

< · · · <
𝑊Δ (𝑆∗2, 𝑆∗[1,1])

|𝑆∗
2
| ) <

𝑊 (𝑆∗
1
)

|𝑆∗
1
| (14)

Taking a closer look at the weights that 𝐾̃∗ \ 𝐼 and 𝐵 bring to 𝐼 , one can verify the following

results with the aid of Lemma 4.10. Note that in the 𝑖-th iteration, we transform the problem of

density-friendly decomposition to solving GDS on the doubly weighted graph 𝐺𝑖 .

𝑊Δ (𝐾̃∗\𝐼 , 𝐼 ) =
𝑝∑︁
𝑖=1

𝑊Δ (𝑆
′
𝑖 , 𝑆
∗
[1,𝑖−1]) ≥

𝑝∑︁
𝑖=1

|𝑆 ′𝑖 | ·
𝑊Δ (𝑆𝑖 , 𝑆∗[1,𝑖−1])

|𝑆𝑖 |

>
𝑊Δ (𝐵, 𝐼 )
|𝐵 | ·

𝑝∑︁
𝑖=1

|𝑆 ′𝑖 | =
𝑊Δ (𝐵, 𝐼 )
|𝐵 | · |𝐵 | =𝑊Δ (𝐵, 𝐼 )

(15)

Adding both sizes by𝑊 (𝐼 ) and dividing by |𝐾̃∗ | yields

𝑊 (𝐾̃∗)
|𝐾̃∗ |

=
𝑊 (𝐼 ) +𝑊Δ (𝐾̃∗ \ 𝐼 , 𝐼 )

|𝐾̃∗ |
>
𝑊 (𝐼 ) +𝑊Δ (𝐵, 𝐼 )

|𝐾̃∗ |
=
𝑊 (𝐽 )
|𝐽 | (16)

□

Based on the above theorems and lemma, we can prove Theorem 6.2 now.

Proof of Theorem 6.2. From Theorem 6.8, we know that |𝐾∗ | ≤ |𝐾̃∗ |. Therefore,𝑊 (𝐾∗) ≤
𝑊 (𝐾̃∗) because𝐺 (𝐾̃∗) is the densest subgraph with |𝐾̃∗ | vertices. Then the result follows naturally

𝑊 (𝐾̃∗)
|𝐾̃∗ |

/𝑊 (𝐾
∗)

|𝐾∗ | =
|𝐾∗ |
|𝐾̃∗ |
· 𝑊 (𝐾̃

∗)
𝑊 (𝐾∗) ≥

𝑘

|𝐾̃∗ |
(17)

□

When |𝐾̃∗ | is close to 𝑘 , our approximation will be a good solution. In particular, we have the

exact solution if |𝐾̃∗ | = 𝑘 . In Section 8.4, we will empirically show that our approximate Dal𝑘S’s

are near-optimal in most cases.

We remark thatwhen |𝐾̃∗ | > 2𝑘 , one can use the combinatorial algorithm [14] (Combinatorial-DalkSS)
to generate a

1

2
-approximation naturally. In other words, if |𝐾̃∗ | = |𝑆∗[1,𝑝 ] | > 2𝑘 , one can extract

𝑆∗[1,𝑖 ],∀1 ≤ 𝑖 ≤ 𝑝 and randomly add max(𝑘 − |𝑆∗[1,𝑖 ] |, 0) vertices to each 𝑆
∗
[1,𝑖 ] , and choose the densest

induced subgraph among them, which will yield a 0.5 ·𝑂𝑃𝑇 solution.

7 COMPLEXITY ANALYSIS
In this section, we analyze both the time and the space complexity for our proposed algorithms

cCoreExact, cCoreApp* and DecomDalkS with the original density metric. The complexity with

other density metrics are similar. First, let the input graph be 𝐺 (𝑉 , 𝐸) and the 𝑐-core to locate GDS

be 𝐺
′ (𝑉 ′ , 𝐸 ′ ).

The space complexity for all three algorithms is𝑂 ( |𝑉 | + |𝐸 |) since storing information for vertices

and edges dominates the complexity. We provide the time complexity in the following, along with

sketches of the proof.

Proposition 7.1. The time complexity of cCoreExact is𝑂 ( |𝐸 |+|𝑉 | ·log( |𝑉 |)+|𝑉 ′ |2 · |𝐸 ′ | ·log( |𝑉 ′ |)).
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Proof. Otaining 𝐺
′
takes 𝑂 ( |𝐸 | + |𝑉 | · log( |𝑉 |)) time. The Dinic’s algorithm [20] is to run

log( |𝑉 ′ |) times blocking flows on the 𝑐-core. Every time it costs𝑂 ( |𝑉 ′ |2 · |𝐸 ′ |) time to compute the

blocking flow, so the total time cost is 𝑂 ( |𝐸 | + |𝑉 | · log( |𝑉 |)) +𝑂 ( |𝑉 ′ |2 · |𝐸 ′ | · 𝑙𝑜𝑔( |𝑉 ′ |)) and the

proposition is proved. □

Proposition 7.2. The time complexity of cCoreApp* is 𝑂 ( |𝐸 | + |𝑉 | · log( |𝑉 |) + |𝐸 ′ | · log( |𝑉 ′ |) ·
𝑙𝑜𝑔( |𝐸 ′ |) · log( ( |𝑉

′ |+|𝐸′ | )2
|𝐸′ | )/𝜖).

Proof. In FlowApp* (Algorithm 5), the number of blocking flow is set to be ℎ = 2⌈log(2|𝐸 |)⌉ + 2
[14]. When the GDS is located in 𝐺

′
, we have ℎ blocking flows for every search for new densities

and each of them takes 𝑂 (2|𝐸 ′ | · log( |𝐸 ′ |) · log( ( |𝑉
′ |+|𝐸′ | )2
|𝐸′ | )/𝜖) [33]. Using the strategy we propose

to search for new densities, we perform the search for log 4

3

( |𝑉 ′ |) times. Therefore, the total time

cost for running blocking flow is 𝑂 ( |𝐸 ′ | · log( |𝑉 ′ |) · log( |𝐸 ′ |) · log( ( |𝑉
′ |+|𝐸′ | )2
|𝐸′ | ))/𝜖). By adding the

complexity of obtaining 𝐺
′
, the result follows. □

Proposition 7.3. In the worst case, the time complexity of the algorithm DecomDalkS is 𝑂 (𝑘 ·
|𝑉 |2 · |𝐸 | · log( |𝑉 |)).

Proof. In the worst case, the time cost of cCoreExact becomes 𝑂 ( |𝑉 |2 · |𝐸 | · log( |𝑉 |)). At most

𝑘 times of decomposition is needed. □

8 EXPERIMENT
8.1 Setup
Datasets.We have used twelve real-world graphs to perform our experiments. Half of them are

unweighted graphs shown in Table 2, while the other half are weighted graphs shown in Table 3.

The second column on both tables gives short names for the datasets. The edge number varies from

around thirty thousand up to two billion.

Table 2. Unweighted graphs.

Dataset short # vertices # edges

Friendster [40] FT 65,608,366 1,806,067,135

Orkut [40] OK 30,724,41 117,185,083

LiveJournal [40] LJ 3,997,962 34,681,189

YouTube [40] YT 1,134,890 2,987,624

DBLP [40] DP 317,080 1,049,866

Amazon [40] AZ 334,863 925,872

We briefly introduce our weighted graphs in Table 3. Libimseti [52] is a weighted graph where

vertices represent users, and the weights on edges are ratings given by a user to another one.

FacebookForum [49] is a social network where vertices are users, and the weight on each edge

is the number of messages. Newman [48] is a scientific collaboration network where a vertex

represents an author, and the weight on the edge means the number of joint papers between two

authors. OpenFlights [50] contains airports as vertices, and the weight refers to the number of

routes between two airports.

An unweighted graph can be viewed as a weighted graph where each edge has a weight value

of one. Depending on the application, e.g., fraud detection [34], some methods for weighing

unweighted graphs have also been invented, and we use the method proposed by Hooi et al.
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Table 3. Weighted graphs.

Dataset short # vertices # edges weight range

LiveJournal(w) [40] LW 3,997,962 34,681,189 [2, 11]

Libimseti [52] LB 220,970 17,359,346 [1, 10]

YouTube(w) [40] YW 1,134,890 2,987,624 [2, 11]

FacebookForum [49] FF 899 142,760 [1, 1049]

Newman [48] NM 16,726 95,188 [1, 37]

OpenFlights [50] OF 7,976 30,501 [1, 11]

[34]. Suppose we have vertices 𝑢 and 𝑣 in 𝐺 with an edge 𝑒 to connect them. We assign weight

𝑤𝑒 = [log( 10

𝑑𝑒𝑔𝐺 (𝑢 )+5 )] + [log(
10

𝑑𝑒𝑔𝐺 (𝑣)+5 )] to the edge, where 𝑑𝑒𝑔𝐺 (𝑢) denotes the degree of 𝑢 in 𝐺 .

The weighing method is applied to unweighted graphs, LiveJournal [40] and YouTube [40].

Algorithm. In our experiments, several algorithms are involved, and their performance provides

evidence for our theoretical results. We list them and do a short review.

• FlowExact [31] is the exact GDS algorithm based on the flow network. Its details can be

found in [31].

• cCoreExact is our exact GDS algorithm which is based on flow network [31] and 𝑐-core

acceleration (Sections 4.3 and 5.2) on FlowExact.
• FlowApp [14] is the (1 − 𝜖)-approximation algorithm based on max-flow computation. It

differs from FlowExact, as it does not require finding the exact maximum flow.

• FlowApp* is our (1 − 𝜖)-approximation algorithm with better density searching strategy.

(Section 5.3)

• cCoreApp* is our (1 − 𝜖)-approximation algorithm FlowApp* with 𝑐-core-based acceleration.

(Sections 4.3 and 5.2)

• Greedy++ is an approximate algorithm to find GDS (especially for Definition 3.5). Each time,

it will use the information obtained in previous times. The detail of it can be found in [11].

• cCoreG++ is our accelerated Greedy++ based on c-core.

• DecomDalkS is our decomposition-based near-optimal Dal𝑘S algorithm. (Section 6)

All algorithms are implemented in C++
3
. We perform experiments on a Linux machine equipped

with two Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz processors with 10 cores and O2 op-

timization. In our experiments, Dinic’s algorithm [20] is used to find blocking flows or attain

maximum flow for all flow-based methods. For other alternative blocking flow algorithms including

parallelizable ones, we refer readers to [1, 5, 32, 58, 59].

8.2 Evaluation of 𝑐-core-based acceleration
Running time. To evaluate our 𝑐-core-based acceleration techniques, we compare the running

time of two core-based algorithms, cCoreExact and cCoreApp*, with their corresponding baseline

methods, FlowExact and FlowApp*, respectively. To show how powerful the acceleration based on

𝑐-core is, we further perform a comparison between the 𝑐-core-based approaches and Greedy++
[11]. For FlowExact and cCoreExact, we can obtain the exact GDS. For FlowApp and FlowApp*,
we require them to give 0.999 · 𝑂𝑃𝑇 solution results. For Greedy++ and cCoreG++, we run 100

iterations to obtain a 0.909 ·𝑂𝑃𝑇 solution for Greedy++ because better solutions, e.g., 0.99 ·𝑂𝑃𝑇
solution, cost too much time, based on the conjecture that Greedy++ can obtain a (1 + 1√

𝑇
) factor

3
Our code is available at https://github.com/Xyc-arch/Efficient-and-Effecive-algorithms-for-generalized-densest-subgraph-

discovery

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 169. Publication date: June 2023.



Efficient and Effective Algorithms for Generalized Densest Subgraph Discovery 169:21

Table 4. Running time of different GDS algorithms.

Dataset cCoreExact FlowExact cCoreApp* FlowApp FlowApp* Greedy++ cCoreG++ FlowExact
cCoreExact

FlowApp∗
cCoreApp∗

Greedy++
cCoreExact

LJ 38.17 s > 72 h 57.55 s > 72 h > 72 h 18 m 38 s 29.66 s > 6790.68 > 4503.91 29.30

FT 42 m 49 s > 72 h 48 m 25 s > 72 h > 72 h 18 h 36 m 34 m 17 s > 100.92 > 89.23 26.07

OK 11 m 21 s > 72 h 12 m 15 s > 72 h > 72 h 1 h 13 m 56.92 s > 380.72 > 352.65 6.42

YT 9.63 s 20 h 55 m 12.65 s 28 h 26 m 24 h 31 m 3 m 12 s 8.78 s 7819.68 6977.08 19.99

DP 1.74 s 1 h 35 m 1.49 s 1 h 13 m 53 m 9 s 41.42 s 3.90 s 3275.86 2140.27 23.80

AZ 1 m 42 s 1 h 16 m 1 m 53 s 1 h 6 m 48 m 6 s 10 m 31 s 28.33 s 44.80 25.54 1.08

LB 1 m 13 s > 72 h 1 m 9 s > 72 h > 72 h 2 m 29 s 48.36 s > 3550.68 > 3756.52 2.05

NM 0.14 s 5.63 s 0.16 s 1 m 9 s 9.99 s 7.10 s 3.12 s 40.21 62.44 50.71

FF 0.27 s 7.80 s 0.33 s 2 m 15 s 17.16 s 4.16 s 3.16 s 28.89 52.00 15.41

OF 0.20 s 1.25 s 0.46 s 20.27 s 3.27 s 3.65 s 3.10 s 6.25 7.11 18.25

LW 42.95 s > 72 h 58.34 s > 72 h > 72 h 20 m 57 s 29.66 s > 6034.92 > 4442.92 29.27

YW 17.87 s 22 h 17 m 21.92 s 17 h 42 m 15 h 32 m 3 m 25 s 8.78 s 4489.59 2551.09 11.49

approximation after 𝑇 iterations. We present the running time of the seven algorithms in Table 4.

The second to eighth columns represent the time cost of the corresponding algorithm. The last

three columns show the corresponding time-cost ratios.

From Table 4, we make the following observations:

• cCoreExact is up to three orders of magnitude faster than FlowExact, especially on large

scale-graphs. For example, FlowExact can provide more than 6000 times speedup on Live-

Journal and YouTube. The speedup of cCoreApp* over FlowApp* is similar. The c-core-based

acceleration is also effective in Greedy++. For example, cCoreG++ has 137.85, 32.55 and 76.95

speedup over Greedy++ on YouTube, Friendster and Orkut, respectively.

• Acceleration using 𝑐-core makes the flow-based approaches for GDS searching scalable

to large graphs. On large graphs such as Friendster, Orkut, LiveJournal, and MovieLens,

FlowExact and FlowApp* cannot give a satisfactory answer within a reasonable running

time. In contrast, cCoreExact and cCoreApp* make it possible to find the exact or near-

optimal solution within 50 minutes for all graphs.

• Compared with Greedy++, cCoreExact can find a better GDS with less time cost. All ratios in

the last column of Table 4 are greater than one. We observe that on nine out of twelve datasets,

cCoreExact is over ten times faster than Greedy++. The densities of the subgraphs found
by cCoreExact and Greedy++ are shown in Table 6. On four datasets, i.e., Friendster, Live-

Journal, MovieLens, and OpenFlights, Greedy++ cannot attain the optimal density achieved

by cCoreExact. This result is consistent with the iteration number chosen as 𝑇 = 100 for

Greedy++. If a 0.999-approximation is required for Greedy++, the iteration should be set

as 𝑇 = 1, 000, 000 according to the convergence conjecture provided by [11]. However, the

time cost of Greedy++ with 𝑇 = 1, 000, 000 is much larger than that of cCoreExact (one can

multiply the ratio of the last column by 10, 000 to estimate).

Memory usage. We evaluate the memory usage of cCoreExact and FlowExact over seven

datasets. For other datasets, FlowExact cannot finish reasonably within 72 hours. The memory

evaluation results are reported in Figure 6. We can find that the memory cost of cCoreExact is less

than FlowExact on all seven datasets. Besides, the memory cost of cCoreExact is smaller than

FlowApp and FlowApp*, while the cost of the latter two is comparable.

Core size. To explain the improvement of 𝑐-core-based acceleration over running time and

memory usage, we examine the sizes of 𝜌-core in cCoreGDS (Algorithm 1) and the whole graph for

different datasets. Given that the 𝜌-core is a much smaller subgraph by several orders of magnitude,

which is shown in Figure 7, the faster running time and the less memory usage are not surprising.
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Fig. 6. Memory cost of cCoreExact and FlowExact. Fig. 7. Number of vertices in the whole graph and
𝜌-core.

Table 5. Performance of GDS algorithms with Definition 3.7.

Dataset # vertex # edges 𝜌 (𝑆∗) FlowExact cCoreExact

WikiVote [40] 7,115 103,689 71.68 7.18 s 3.38 s

Standford [40] 281,903 2,312,497 75.95 5 h 26 m 12 m 34 s

NotreDame [40] 325,729 1,497,134 123.73 2 h 38 m 1 m 11 s

Table 6. Best density by cCoreExact and Greedy++.

Dataset 𝜌 (𝑆∗) by cCoreExact 𝜌 (𝑆∗) by Greedy++

Friendster 273.52 273.51

Orkut 227.87 227.87

LiveJournal 193.51 193.20

YouTube 45.60 45.60

DBLP 56.57 56.57

Amazon 4.80 4.80

Libimseti 1068.41 1068.24

FacebookForum 1632.10 1632.10

Newman 47.75 47.75

OpenFlights 39.85 39.78

LiveJournal(w) 774.05 774.05

YouTube(w) 168.05 168.05

Generality.We conduct additional experiments on other density metrics to empirically show

the generality of 𝑐-core acceleration. We choose three directed graphs with different sizes and

transform them into bipartite vertex and edge-weighted graphs as described in [56] to facilitate the

directed densest subgraph finding. The GDS is found based on the denominator weighted density

metric (Definition 3.7), where the vertex weight is placed on the denominator. The statistics of the

three directed graphs, as well as the time cost of FlowExact and cCoreExact over those graphs,
are presented in Table 5. We can find that the 𝑐-core-based acceleration can also provide up to 100

times speedup over the baseline method with Definition 3.7.

8.3 Evaluation of approximation algorithms
Here, we further evaluate the approximation algorithms.

Density searching strategies in flow-based approximation algorithms. In Section 5.3, we

design a new strategy to search the optimal density for the flow-based approximation algorithm
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and propose FlowApp* based on this new strategy. Here, we perform an ablation study over the

strategy to evaluate the speedup provided by FlowApp* over FlowApp. Figure 8 shows the ratio of

time cost by FlowApp over that by FlowApp*, i.e.
𝑡𝑖𝑚𝑒 (𝐹𝑙𝑜𝑤𝐴𝑝𝑝 )
𝑡𝑖𝑚𝑒 (𝐹𝑙𝑜𝑤𝐴𝑝𝑝∗) . It is easy to see that FlowApp* is

faster than FlowApp on eleven out of twelve datasets. On Orkut, the ratio is 0.98, just slightly less

than 1. The average speedup for the other eleven datasets is 3.07, and the greatest speedup is 7.88.

Fig. 8. Speedup of FlowApp* over FlowApp.

Time cost v.s. accuracy.We further test the tradeoff between efficiency and accuracy for the

two (1−𝜖)-approximation algorithms, cCoreApp* and Greedy++. We display the trend of time cost

w.r.t accuracy in Figure 9. From the result, we can find that cCoreApp* can achieve high accuracy

in a much shorter running time compared to Greedy++.
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Fig. 9. Time cost v.s. accuracy of approximation algos.

8.4 Evaluation of the Dal𝑘S algorithm
In Section 6, we have shown that DecomDalkS can output a

𝑘

|𝐾̃∗ | ·𝑂𝑃𝑇 solution, but have not yet

shown the optimality of the algorithm since |𝐾̃∗ | is unknown until we obtain the result 𝐾̃∗. We

execute DecomDalkS on four graphs and calculate the factor
𝑘

|𝐾̃∗ | for any positive integer parameter
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Fig. 10. Approximation ratios provided by DecomDalkS.

𝑘 , which is no larger than the total number of vertices in the whole graph. Figure 10 reports the

proportion of the factor range for
𝑘

|𝐾̃∗ | , i.e., 0 ∼ 0.8, 0.8 ∼ 0.95, 0.95 ∼ 0.99 and 0.99 ∼ 1, over four

datasets
4
We observe that on all four datasets, the fraction of 𝑘 values where DecomDalkS cannot

guarantee a solution with density at least 0.8 of the optimum is less than 1%. We also note that the

factor is larger than 0.5 for any possible 𝑘 on LiveJournal, Amazon, and DBLP. Interestingly, it is

found that on all four graphs, our algorithm can output a subgraph better than 0.99 ·𝑂𝑃𝑇 solution

for over one-third of possible 𝑘 values. Therefore, our algorithm can usually return a solution close

to the exact Dal𝑘S, while the state-of-the-art offers 0.5 ·𝑂𝑃𝑇 solution guarantees. The time cost

of DecomDalkS on LiveJournal, Amazon, DBLP, and Newman is 22 m 16 s, 1 m 53 s, 54 s, and 2 s,

respectively.

9 CONCLUSION
This paper investigates the densest subgraph discovery problem with generalized supermodular

density and size constraints. We first review and discuss the limitations of existing methods. Next,

we show the generalized supermodular density can cover several well-known density variants

and devise general acceleration strategies and efficient algorithms to find GDS. In detail, we

propose a new concept called 𝑐-core and show its applications to find the densest subgraph with

generalized supermodular density. Based on 𝑐-cores, we devise efficient algorithms cCoreExact
and cCoreApp* to find the GDS. We propose an approximation algorithm DecomDalkS based on

graph decomposition to find the Dal𝑘S. We perform extensive experiments for proposed algorithms

on twelve real-world graphs and show that they are efficient (by running up to three orders of

magnitude faster) and accurate (by providing exact or near-optimal solutions).

For future work, we will generalize 𝑐-core to apply 𝑐-core-based acceleration to more graph

variants, such as directed graphs, hypergraphs, streaming graphs, etc. For Dal𝑘S, it would be

interesting to investigate whether efficient exact algorithms based on graph decomposition can be

developed.
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