
Approximate Range Thresholding Technical Report

Zhuo Zhang
†

The University of Melbourne

zhuo.zhang@student.unimelb.edu.au

Junhao Gan
†∗

The University of Melbourne

junhao.gan@unimelb.edu.au

Zhifeng Bao
‡

RMIT University

zhifeng.bao@rmit.edu.au

Seyed Mohammad Hussein

Kazemi
†

The University of Melbourne

kazemis@student.unimelb.edu.au

Guangyong Chen

Zhejiang Lab and Zhejiang University

chen.guangyong2@gmail.com

Fengyuan Zhu

Kaifeng Investment

zfy@kffund.cn

ABSTRACT
In this paper, we study the (approximate) Range Thresholding (RT)

problem over streams. Each stream element is a 𝑑-dimensional

point and with a positive integer weight. An RT query 𝑞 specifies a

𝑑-dimensional axis-parallel rectangular range 𝑅(𝑞) and a positive

integer threshold 𝜏 (𝑞). Once the query 𝑞 is registered in the system,

define 𝑠 (𝑞) as the total weight of the elements that satisfy: (i) they

arrive after 𝑞’s registration, and (ii) they fall in the range 𝑅(𝑞). The
task of the system is to capture the first moment when 𝑠 (𝑞) ≥ 𝜏 (𝑞).
In addition, it admits a more general approximate version: given a

real number 0 < 𝜀 < 1, the task is to capture an arbitrary moment

during the period between the first moment when 𝑠 (𝑞) ≥ (1 −
𝜀) · 𝜏 (𝑞) and the first moment when 𝑠 (𝑞) ≥ 𝜏 (𝑞). The challenge
is to support a large number of RT queries simultaneously while

achieving sub-quadratic overall running time.

We propose a new algorithm called FastRTS , which can reduce

the exponent in the poly-logarithmic factor of the state-of-the-

art QGT algorithm from 𝑑 + 1 to 𝑑 , yet slightly increasing the log

term itself. A crucial technique to make this happen is our bucketing
technique, which eliminates the logarithmic factor caused by the use

of heaps in QGT algorithm. Moreover, we propose two extremely

effective optimization techniques which significantly improve the

performance of FastRTS by orders of magnitude in terms of both

running time and space consumption. Experimental results show

that FastRTS outperforms the competitors by up to three orders of
magnitude in both running time and peak memory usage.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
Range Thresholding, Streams, Data Structures, Algorithms

1 INTRODUCTION
In this paper, we study a type of passive queries, called Range
Thresholding (RT) queries (or queries for short when the context is

clear). Specifically, we consider a system which receives elements
from a data stream; each element 𝑒 is represented by a point 𝑣 (𝑒)
in a 𝑑-dimensional space with a positive integer weight𝑤 (𝑒). The
system supports RT queries, where each query 𝑞 consists of a query

∗
The corresponding author

†
School of Computing and Information Systems

‡
School of Computing Technologies

range that is a 𝑑-dimensional axis-paralleled rectangular range 𝑅(𝑞)
and a specified positive integer threshold 𝜏 (𝑞). Once a query 𝑞 is

registered, let 𝑠 (𝑞) denote the total weight of the elements which (i)

arrive after 𝑞’s registration, and (ii) fall into the query range 𝑅(𝑞).
Then the task of the system for the RT query 𝑞 is to capture the first
moment when 𝑠 (𝑞) ≥ 𝜏 (𝑞). Such a moment is called the maturity
moment of 𝑞, at which 𝑞 is said to be matured.

In addition, RT queries admit a more general approximate ver-

sion. Given a parameter 0 < 𝜀 < 1, the task of an 𝜀-approximate
RT query 𝑞 is to capture an arbitrary moment during the period

between the first moment when 𝑠 (𝑞) ≥ (1 − 𝜀) · 𝜏 (𝑞) and the first

moment when 𝑠 (𝑞) ≥ 𝜏 (𝑞). Particularly, when 𝜀 < 1

𝜏 (𝑞) , the ap-
proximate RT query 𝑞 is equivalent to capturing the exact maturity

moment of 𝑞.

Applications. The RT queries are especially useful in many sce-

narios where some time-critical actions must be taken as soon as

certain events are detected.

Scenario 1: Stock Trading Systems. A typical application of the RT

queries is in the stock trading systems. Each transaction of a stock

(e.g., APPL:NSQ) can be considered as a stream element, where the

selling (or buying) price is a 1-dimensional point and the number

of shares traded in this transaction is the weight. For a query 𝑞,

its range 𝑅(𝑞) can be a sensitive price range and the threshold

𝜏 (𝑞) is a specified number of shares of the stock. As soon as a

substantial total amount of shares (at least (1− 𝜀) · 𝜏 (𝑞)) are sold at
sensitive prices in 𝑅(𝑞) since the registration of 𝑞, the system raises

an alarm to notify the user. Such a notification is important because

a substantial amount of shares sold at some sensitive prices is often

an early signal of either a blow-up or a fall of the stock price. Thus,

a timely notification is crucial for a user to take timely actions (e.g.,

either sell or buy the stock) to protect their interests.

Moreover, the above RT query can be easily extended to a multi-

dimensional one. For example, a 2-dimensional query may have a

form like:

Notify me when in total 𝜏 (𝑞) shares (from now) of Ap-
ple Inc. (APPL:NSQ) are sold at prices in [$140, $150)
while the price of Alphabet Inc. (GOOG:NSQ) is in
[$2800, $2900).

Scenario 2: Public Health Management. During the pandemic, it is

important for business to keep track of contact tracing. As such, a

shop can register an RT query with a 2-dimensional range around

the shop and a threshold of the number of certain close-contact

1

or confirmed-case visiting within the specified range. Each stream

element is a visit of either a close-contact or confirmed-case person.

As soon as the query is matured, the shop gets a notification to take

further actions for safety.

Scenario 3: Bushfire Detection. Likewise, for bushfire detection, an
RT query can keep track of the number of abnormal temperature

detections from the sensors within a specified area. A larger number

of such detections within an area would be an early signal of a

bushfire. Therefore, receiving a notification from the system is

important to prevent or control the fire as early as possible.

Conventional Solutions. It is not difficult to see that the RT

problem is trivial if there is only one query. In this case, one can

maintain a counter for the query and check for each element 𝑒

whether 𝑣 (𝑒) is in the query range. However, the challenge lies in
supporting a large number of queries simultaneously. Let𝑚 be the

number of queries and 𝑛 be the number of elements arrived from

the stream so far. For each element, this naive algorithm needs to

check and increase counters (if necessary) for𝑚 queries. Hence,

the time complexity becomes𝑂 (𝑛 ·𝑚), which is quadratic and thus,
prohibitively expensive since both𝑚 and 𝑛 can be very large.

More sophisticated solutions are to adopt certain data structures,

such as the Interval Tree (for 𝑑 = 1) [9, 13], the Segment Tree [13],

and the R-tree [5, 17], to efficiently identify those queries whose

ranges are “stabbed” by the element 𝑒 , i.e., 𝑣 (𝑒) ∈ 𝑅(𝑞), and then

increase their counters accordingly. However, since each query 𝑞

can be stabbed as many as (1−𝜀) ·𝜏 (𝑞) times, the time complexity of

these algorithms inevitably has the term𝑂 ((1−𝜀) ·𝜏max ·𝑚), which
is another form of quadratic term. Here, 𝜏max is the largest thresh-

old values among the queries. Unfortunately, none of the above

conventional algorithms can overcome these quadratic bounds.

The State of the Art. The QGT algorithm [22] (named by the last

names of its authors) is the first sub-quadratic solution for the RT

problem. Its crucial idea stems from an observation on the con-

nection between the RT problem and a seemingly remote problem

called the Distributed Tracking (DT) [10], where, interestingly, the
latter problem is defined in a distributed environment. Based on the

DT technique, the QGT algorithm achieves an overall time complex-

ity of𝑂 (𝑚 · log
𝑑+1𝑚 · log

1

𝜀 +𝑛 · log
𝑑+1𝑚), and a space consumption

bounded by 𝑂 (𝑚
alive
· log

𝑑𝑚
alive
) at all time, where𝑚 is the num-

ber of queries that have ever been registered in the system, 𝑛 is the

total number of elements from the stream so far, and𝑚
alive

is the

number of queries that are still running in the system.

Limitations and Challenges. In theory, both the running time

and the space consumption of the QGT algorithm are near-linear to
both𝑚 and 𝑛, and hence, these bounds are considered as “efficient”.

However, in practice, just with log
2
𝑚 ≈ 20, the actual perfor-

mance of the QGT algorithm is already significantly impacted by

the polynomial-logarithmic factors with exponents 𝑑 + 1 (in the

running time) and 𝑑 (in the space) when 𝑑 ≥ 3. As we show later

in experiments (in Section 7), the performance of QGT deteriorates

quickly and becomes worse than some of those aforementioned

quadratic competitors for 𝑑 ≥ 3. Even worse, on 3-dimensional

(rsp. 4-dimensional) datasets just with a moderate size of 2 million

(rsp. 1 million) queries, the space consumption of QGT quickly ex-

hausts all the available memory (100GB) of our machine! Hence,

it fails to complete the corresponding experiment task. This space

consumption issue has seriously limited the applicability of the

QGT algorithm. It turns out that it is still a big challenge to design a

sub-quadratic algorithm that is fast and space-efficient in practice.

Our Contributions.We make the following contributions.

A New RT Algorithm. We propose a new algorithm called Fas-
tRTS for solving the RT problem. Specifically, FastRTS achieves

an expected overall running time complexity𝑂 (𝑚 · log
𝑑 𝑁 · log

1

𝜀 +
𝑛 · log

𝑑 𝑁) and a space consumption bounded by𝑂 (𝑚
alive
· log

𝑑 𝑁)
at all time, where 𝑁 is the size of the universe U on each dimen-

sion. Comparing to the time complexity of the QGT algorithm,

FastRTS reduces the exponential dependence on dimensionality

𝑑 for the logarithmic term from 𝑑 + 1 to 𝑑 , yet slightly increases

this term from log𝑚 to log𝑁 . Table 1 shows a summary of the

complexity comparison.

A Novel Bucketing Technique. We propose a new Bucketing Tech-
nique which is crucial for FastRTS to achieve the theoretical bounds.
As we will see in Section 5.2, our bucketing technique allows Fas-
tRTS to eliminate the 𝑂 (log𝑚)-factor caused by the use of min-

heaps for organizing the DT instances. We note that this bucketing

technique is of independent interests; it may be able to remove the

similar logarithmic factor overhead for all those algorithms which

need to organize DT instances with heaps, e.g., the QGT algorithm

and a very recent work [23].

A New DT Algorithm. In order to facilitate our bucketing technique,

we propose a new DT algorithm called Power-of-Two-Slack DT (P2S-

DT) in Section 5.1. We perform theoretical analysis to show both the

correctness and the communication cost of the algorithm. A nice

property of our P2S-DT is that all the slack values in this algorithm

are power-of-two integers. Thus, our P2S-DT may be of interests

in certain scenarios.

Two Effective Optimizations. As the space consumption bound of

our FastRTS is slightly worse than that of the QGT algorithm, to

remedy this, we propose two extremely effective optimization tech-

niques: (i) the Range Shrinking technique (Section 6.1), and (ii) the

Range Counting technique (Section 6.2). We show that these two

techniques not only are theoretically sound, but also dramatically

improve the actual performance of FastRTS . According to the exper-
imental results in the ablation study, these two techniques improve

both the running time and space consumption of our FastRTS by
up to three orders of magnitude.

Extensive Experiments. We conduct extensive experiments on both

synthetic datasets and two real stock trading datasets. Experimental

results show that our FastRTS outperforms all the state-of-the-art

competitors by orders of magnitude in both overall running time

and space consumption.

2 PRELIMINARIES
We first formally define the Range Thresholding (RT) problem and

then introduce the Distributed Tracking technique and the state-of-

the-art QGT algorithm for solving the RT problem. These prelimi-

naries will ease the understanding on our proposed techniques.

2

Table 1: A summary of the complexity comparison, where the meaning of the notations can be found in Table 2.

Algorithms Elem. & Query Dyn. Cost Range Thresholding Cost Overall Running Time Cost Space Consumption
FastRTS 𝑂 (𝑛 · log

𝑑 𝑁) 𝑂 (𝑚 · log
𝑑 𝑁 · log

1

𝜀) expected 𝑂 (𝑚 · log
𝑑 𝑁 · log

1

𝜀 + 𝑛 · log
𝑑 𝑁) expected 𝑂 (𝑚

alive
· log

𝑑 𝑁)
QGT [22] 𝑂 (𝑛 · log

𝑑+1𝑚) 𝑂 (𝑚 · log
𝑑+1𝑚 · log

1

𝜀) 𝑂 (𝑚 · log
𝑑+1𝑚 · log

1

𝜀 + 𝑛 · log
𝑑+1𝑚) 𝑂 (𝑚

alive
· log

𝑑𝑚)
Rtree [5, 17] 𝑂 (𝑛 ·𝑚) 𝑂 (𝑚 · (1 − 𝜀) · 𝜏max) 𝑂 (𝑛 ·𝑚 +𝑚 · (1 − 𝜀) · 𝜏max) 𝑂 (𝑚

alive
)

SegInvTree [13] 𝑂 (𝑛 · log
𝑑𝑚) 𝑂 (𝑚 · (1 − 𝜀) · 𝜏max) 𝑂 (𝑚 · (1 − 𝜀) · 𝜏max + 𝑛 · log

𝑑𝑚) 𝑂 (𝑚
alive
· log

𝑑−1𝑚)

2.1 The RT Problem Formulation
Let U = {0, 1, 2, . . . , 𝑁 − 1} be a finite consecutive integer domain,

whose size is |U| = 𝑁 , and where each integer in U can be encoded

with𝑂 (1) words. All the integers considered in this paper are𝑂 (1)-
word representable. Consider a systemwhich receives data elements
from a stream 𝑆 and supports the range thresholding queries.
The Stream and Elements. The stream 𝑆 is a sequence of elements

𝑒1, 𝑒2, · · · ; the 𝑖-th element 𝑒𝑖 arrives at time stamp 𝑖 , where 𝑖 =

1, 2, · · · . In particular, at time stamp 0, the stream 𝑆 is empty: no

element has arrived yet. Each element 𝑒𝑖 consists of two fields:

• a value, denoted by 𝑣 (𝑒𝑖), which is a 𝑑-dimensional point in U𝑑 ;
• a weight, denoted by𝑤 (𝑒𝑖), which is a positive integer.

Range Thresholding Queries. Each (range thresholding) query

𝑞 can be registered in the system at any time stamp immediately
after the arrival of the corresponding element. Specifically, a query

is composed of two fields:

• a range, denoted by 𝑅(𝑞) = [𝑎1, 𝑏1)× [𝑎2, 𝑏2)×· · · [𝑎𝑑 , 𝑏𝑑), which
is a 𝑑-dimensional axis-parallel rectangular range in U𝑑 , where
𝑎𝑖 and 𝑏𝑖 are integers and 𝑎𝑖 < 𝑏𝑖 for all 𝑖 = 1, 2, · · · , 𝑑 ;
• a threshold, denoted by 𝜏 (𝑞), which is a positive integer.

Furthermore, 𝑅 𝑗 (𝑞) = [𝑎 𝑗 , 𝑏 𝑗) is defined as the projection of 𝑅(𝑞)
on the 𝑗 th dimension, where 𝑗 = 1, 2, . . . , 𝑑 . When the context is

clear, a query 𝑞 and its range 𝑅(𝑞) are used interchangeably.

𝜀-Maturity. Consider a query 𝑞 registered in the system at time

stamp 𝑡 ; we define 𝑆 (𝑞) ⊆ 𝑆 as the set of all the elements in the

stream so far that: (i) arrive since𝑞’s registration, and (ii) have values

falling in the range 𝑅(𝑞). Given a query 𝑞 and a real number 0 < 𝜀 <

1, the task of the system is to raise an alarm during the period of time

between the first moment when the total weight of the elements

in 𝑆 (𝑞) becomes no less than (1 − 𝜀) · 𝜏 (𝑞), i.e., ∑𝑒∈𝑆 (𝑞) 𝑤 (𝑒) ≥
(1 − 𝜀) · 𝜏 (𝑞), and the first moment when

∑
𝑒∈𝑆 (𝑞) 𝑤 (𝑒) ≥ 𝜏 (𝑞).

Such a time period is called 𝜀-maturity period of 𝑞. Any time stamp

in the 𝜀-maturity period of 𝑞 is called an 𝜀-maturity moment of 𝑞. If
a query 𝑞 is not 𝜀-matured yet, then 𝑞 is called an alive query.

Problem Statement. Given a stream 𝑆 of elements and a real

number 0 < 𝜀 < 1, the task of the Range Thresholding problem
is to design an algorithm for the system such that: (i) it supports

dynamic query registrations and terminations, and (ii) it correctly

captures an arbitrary one of the 𝜀-maturity moments for every alive

query. The goal is to minimize both the overall running time and

the space consumption.

About 𝜀. Although in the above problem statement, the parameter

𝜀 is specified to be the same for all queries, each query can actually

have a dedicated 𝜀. In particular, by setting 𝜀 < 1/𝜏 (𝑞), the system
can exactly capture the first moment 𝑡∗ for the query 𝑞.

2.2 Loosely Related Work
In addition to the conventional and the state-of-the-art solutions

to the RT problem that we introduce in the next paragraph, We

hereby describe a range of (sub-)fields that are loosely related to

our problem.

The first one is triggers in DBMS, which can be viewed as a

form of RT in concept. Triggers were primarily designed to ensure

certain integrity constraints on underlying relations. Subsequently,

more complicated forms of triggers were introduced to enable a

DBMS to activate itself in response to a greater variety of events,

and many efforts have been made to implement such triggers in an

efficient manner, falling in the topic of active databases [21].

The second field within which the RT problem might fall is con-
tinuous query processing over data streams [2, 3, 8, 19]. Essentially, a

continuous query is a query that is issued once over a database, and

then logically runs continuously over the data in database until it is

terminated. When mapping it to the RT problem, the user issuing

an RT query should get an alert at the query’s maturity time.

The third sub-field is a variant of triggers on streaming data,

called publish/subscribe system. In this context, users can specify

their particular interest via a subscription query (e.g. keywords,

tags), such that whenever new data elements flow through the

system (e.g. tweets, products, promotions, news articles, etc.), only

those elements that are “relevant” to a user’s subscription will

be “pushed” to the user instantly. In this way, users can alleviate

themselves from being overwhelmed in the era of information

explosion. Interested readers can refer to [8, 15, 16, 18, 20, 25] for

some representative work. To this end, we find RT can be viewed as

a form of subscription but even so, it is a new type of subscription

query with its unique computational challenge.

The last sub-field is essentially a rejuvenation of the aforemen-

tioned active databases on data streams, which yields another line

of research under the umbrella of complex event processing [24].

We refer interested readers to some earlier work [12, 14] for more

background knowledge. Our work actually complements it in the

sense that RT can be treated as another atomic event type that

needs to be supported in an efficient and scalable manner.

We note that, unfortunately, none of these related work could

solve the RT problem directly or achieve sub-quadratic overall

running time.

2.3 Distributed Tracking
The DT problem [11] is defined in a distributed environment, where

there are ℎ participants 𝑢𝑖 (𝑖 = 1, 2, · · · , ℎ) and one coordinator 𝑞.
Each participant can only communicate with 𝑞 by sending and

receiving messages, each with 𝑂 (1) words. For each participant

𝑢𝑖 , there is a counter 𝑐𝑖 which is 0 initially. The coordinator 𝑞 has

a positive integer threshold 𝜏 . At each time stamp, at most one
participant has its counter increased by an arbitrary positive integer

3

value. Given a real number 0 < 𝜀 < 1, the task of the coordinator is

to capture an arbitrary moment during the 𝜀-maturity period which
is the period between the first moment when

∑ℎ
𝑖=1

𝑐𝑖 ≥ (1 − 𝜀) · 𝜏
and the first moment when

∑ℎ
𝑖=1

𝑐𝑖 ≥ 𝜏 . Any such moment during

the maturity period is called a 𝜀-maturity moment. The goal is to
minimize the communication cost: the total number of messages

sent and received by the coordinator.

A straightforward solution is to instruct each participant to

send a message to the coordinator 𝑞 when its counter is increased.

In this way, 𝑞 can keep track of the counter sum precisely and

report 𝜀-maturity as soon as this sum ≥ (1 − 𝜀) · 𝜏 . Clearly, the
communication cost is𝑂 ((1−𝜀) ·𝜏) as each counter increment could

be 1. When the threshold 𝜏 is large, the𝑂 ((1−𝜀) ·𝜏) communication

cost is expensive. A state-of-the-art DT algorithm [10] can achieve

a 𝑂 (ℎ · log
1

𝜀) communication cost bound. Let 𝜏 be the current

threshold and initially, 𝜏 ← 𝜏 . The DT algorithm works in rounds;
in each round, it works as follows:

• If 𝜏 ≤ 2ℎ, run the naive algorithm with 𝑂 (𝜏) = 𝑂 (ℎ) communi-

cation cost and done;

• Otherwise,

– 𝑞 sends a slack 𝜆 = ⌊ 𝜏
2ℎ
⌋ to each participant;

– for every 𝜆 increments on the counter 𝑐𝑖 , participant 𝑢𝑖 sends

a message to 𝑞;

– when𝑞 receives theℎth message in the current round,𝑞 collects

the precise counters of all the participants and computes 𝜏 ′ =
𝜏 −∑ℎ

𝑖=1
𝑐𝑖 ; if 𝜏

′ ≤ 𝜀 ·𝜏 , 𝑞 reports 𝜀-maturity; otherwise, 𝑞 starts

a new round by running a new DT instance with threshold

𝜏 ← 𝜏 ′ from scratch (with all the counters 𝑐𝑖 reset to 0).

Analysis. It can be verified that at the end of each round, 𝜏 ′ is at
most a constant fraction of the threshold 𝜏 , and no more rounds

will be performed when 𝜏 ≤ 2ℎ. As a result, there are 𝑂 (log
𝜏
𝜀 ·𝜏) =

𝑂 (log
1

𝜀) rounds. In each round, the coordinator 𝑞 receives and

sends at most𝑂 (ℎ) messages. The total communication cost is thus

bounded by 𝑂 (ℎ · log
1

𝜀).

Fact 1 ([11]). There exists an algorithm which solves the DT prob-
lem with 𝑂 (ℎ · log

1

𝜀) communication cost.

2.4 The Segment Tree
The next piece of preliminaries is a classic textbook data struc-

ture called the Segment Tree [13], which is useful for indexing a

given set of 𝑑-dimensional axis-parallel rectangular ranges, 𝐿 =

{ℓ1, ℓ2, . . . , ℓ𝑚}.

The One-Dimensional Case. For the ease of presentation, we

start with the case of 𝑑 = 1. Consider a set of 1-dimensional ranges

(i.e., intervals) in the universe U, denoted by 𝐿 = {ℓ1, ℓ2, . . . , ℓ𝑚},
where ℓ𝑖 = [𝑎𝑖 , 𝑏𝑖) for 𝑖 = 1, 2, . . . ,𝑚. Let 𝑃 = ∪𝑚

𝑖=1
{𝑎𝑖 , 𝑏𝑖 } be the set

of the distinct endpoints of all the intervals in 𝐿.

The Segment Tree on 𝐿 is essentially an augmented complete

binary search tree (BST) on 𝑃 satisfying:

• each endpoint in 𝑃 is stored in one and exactly one leaf node;

• all the leaf nodes are stored at the same level in ascending order;

• each internal node has exactly two child nodes, except possibly

the last one at each level which may have only one child;

• the 𝑖th leaf node 𝑢 is associated with a left-closed-right-open in-
terval 𝑅(𝑢) = [𝑣𝑖 , 𝑣𝑖+1), where 𝑣𝑖 is the endpoint stored in this

leaf node and 𝑣𝑖+1 is the endpoint stored in the next one, where

𝑖 = 1, 2, . . . , |𝑃 | − 1; for the last leaf node, it is associated with

[𝑣 |𝑃 | ,∞);
• the associated range 𝑅(𝑢) of an internal node 𝑢 is the union of

the associated ranges of its child nodes;

• each node 𝑢 is also associated with a range set 𝐿(𝑢) ⊆ 𝐿 of all

the ranges ℓ ∈ 𝐿 satisfying: (i) the range of 𝑢 is fully contained

in ℓ , i.e., 𝑅(𝑢) ⊆ ℓ , and (ii) the range of 𝑢’s parent 𝑣 is not fully

contained in ℓ , i.e., 𝑅(𝑣) ⊈ ℓ .

Canonical Node Set. For each range ℓ ∈ 𝐿, the set of all the nodes 𝑢
that have ℓ ∈ 𝐿(𝑢) is defined as the Canonical Node Set of ℓ , denoted
by N(ℓ). The associated ranges of all the nodes in N(ℓ) are called
the Canonical Sub-ranges of ℓ , and the set of them is denoted by

C(ℓ). By the standard results, C(ℓ) constitutes a partition of ℓ . That

is, 𝑅(𝑢) ∩ 𝑅(𝑣) = ∅ for ∀𝑢, 𝑣 ∈ N (ℓ) and ∪𝑢∈N(ℓ)𝑅(𝑢) = ℓ .

Example 1. Figure 1(a) shows a set𝑄 of 2-dimensional queries. Let
us focus on the first dimension only. The upper tree in Figure 1(b) is
the resulted Segment Tree on 𝑄 on the first dimension. The associated
range of the leaf node 𝑢1 (highlighted in grey) is 𝑅(𝑢1) = [3, 4) and
that of the node 𝑢2 is 𝑅(𝑢2) = [4, 10) which is the union of the associ-
ated ranges of its two child nodes. Moreover, the associated range set
𝐿(𝑢2) is {𝑞2, 𝑞5, 𝑞7, 𝑞8} because𝑅(𝑢2) is fully contained in those query
ranges while 𝑅(𝑢2 .parent) = [0, 10) is not fully contained in any of
them. Furthermore, the Canonical Node Set of 𝑞8 is N(𝑅1 (𝑞8)) =
{𝑢1, 𝑢2, 𝑢3}, where 𝑅1 (𝑞8) = [3, 17) = [3, 4) ∪ [4, 10) ∪ [10, 17).

TheMulti-Dimensional Case. The above 1-dimensional Segment

Tree can be easily extended to 𝑑 ≥ 2. The 𝑑-dimensional Segment

Tree on 𝐿 has 𝑑 layers, the 𝑖th of which corresponds to the 𝑖th dimen-

sion. Specifically, the 1
st
layer is a Segment Tree on 𝐿 on the first

dimension only. For each node 𝑢 in the current layer with 𝐿(𝑢) ≠ ∅,
a Segment Tree on 𝐿(𝑢) on the next dimension is constructed at the

next layer. Such a construction is repeated until all the 𝑑th-layer

trees are constructed. For example, Figure 1(b) shows the Segment

Trees at the second layer constructed on 𝐿(𝑢1), 𝐿(𝑢2) and 𝐿(𝑢3) on
the second dimension, respectively.

Canonical Node Set. The tree nodes at the 𝑑th layer are called as

last-layer nodes. Each last-layer node 𝑢 essentially corresponds to a

𝑑-dimensional range. With slight abuse of notation, we define this

range as the associated range of 𝑢, denoted by 𝑅(𝑢). For example,

for the last-layer node 𝑣1 in Figure 1(b), 𝑅(𝑣1) = [3, 4) × [6, 15);
and 𝑅(𝑣5) = [10, 17) × [6, 13). For each range ℓ ∈ 𝐿, the Canonical
Node Set is defined as the set of all last-layer nodes that have

ℓ ∈ 𝐿(𝑢). Their associated ranges are the Canonical Sub-ranges

of ℓ , the set of which is denoted by C(ℓ). It is known that C(ℓ)
forms a partition of the range ℓ . Continuing the previous example,

N(𝑞8) = {𝑣1, 𝑣2, . . . , 𝑣6}, as shown in Figure 1(b). Their associated

ranges are shown in Figure 1(c) and constitute a partition of 𝑅(𝑞8).
Finally, we summarize some key results in the following fact:

Fact 2 ([13]). A 𝑑-dimensional Segment Tree on a set of𝑚 axis-
parallel rectangular ranges 𝐿 can be constructed in 𝑂 (𝑚 · log

𝑑𝑚)
time and consumes𝑂 (𝑚 · log

𝑑𝑚) space. For each range ℓ ∈ 𝐿, |N (ℓ) |
is bounded by 𝑂 (log

𝑑𝑚).
4

1 2 3 4 5 6 7 8 1011 1213141516 1718 19209

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20

9

0
0

q1

q2
q3

q4
q5

q6

q7

q8

{q5} {q8} {q1} {q3} {q4} {q2} {q6} {q5}

{q5, q7} {q6} {q2, q3} {q5, q7}

{q1}

{q2} {q5} {q8}

{q2, q8} {q7, q8}

{q7}

{q5}

0 1 2 3 4 6 7 9 10 14 15 16 17 18 19 20

[0, 4) [4, 10) [10, 17) [17,∞)

[10,∞)[0, 10)

[0,∞)

[6, 12) [12, 14)

0 4 6 8 12 13 14 15
{q6} {q7} {q6}

{q8, q6} {q6, q8}

{q7}

{q5}

[6, 13) [13, 15)

0 2 6 8 13 14 15 16

R1(q8) = [3, 17)

R2(q8) = [6, 15) R2(q8) = [6, 15)

{q8}

[6,∞)

6 15

{q2, q5, q7, q8} {q5, q6, q7, q8}

u1

u2 u3

v1

v2
v3 v4

v5
v6

1 2 3 4 5 6 7 8 1011121314151617189
4
5
6
7
8

10
11
12
13
14
15
16

9

q8

v1
v2

v3
v4

v5

v6

(a) A set of query ranges 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞8} (b) The Segment Tree on 𝑄 with some secondary trees omitted (c) The canonical cub-ranges of 𝑅(𝑞8)

Figure 1: A 2-Dimensional Segment Tree Example

Table 2: A summary of frequently used notations

Notations Descriptions
𝑚 the total number of queries that have ever been registered

𝑛 the total number of elements from the stream so far

𝑚
alive

the number of queries that are still running in the system

𝑁 the size of the universe U on each dimension

𝜀 the approximation parameter of maturity condition

𝜏 (𝑞) the threshold of query 𝑞

𝑅 (𝑞) the range of query 𝑞

𝑢, 𝑣 tree nodes in the (Incremental) Segment Tree

N(𝑞) the Canonical Node Set of query 𝑞

𝐿 (𝑢) the list of all the queries 𝑞 having node 𝑢 in N(𝑞)
B𝑖 a bucket with the slack value 2

𝑖

2.5 The State-of-the-Art RT Algorithm
Next, we introduce the QGT algorithm [22], a state of the art for

solving the RT problem.

The One-Time Registration Case. For simplicity, we start with a

restricted case that all the𝑚 queries are registered before the first

element in the stream 𝑆 arrives, i.e., at time stamp 0, and since then,

no query registrations are allowed.

The Connection to the Distributed Tracking. The basic idea of the

QGT algorithm is to construct a 𝑑-dimensional Segment Tree T on

(the ranges of) the𝑚 queries. As a result, the associated ranges of

all nodes in the canonical node set of 𝑞, N(𝑞), form a partition of

the range 𝑅(𝑞). the range of each query 𝑞 can be partitioned into

a set of canonical sub-ranges C(𝑞 A crucial observation in QGT is

that by maintaining a counter 𝑐𝑢 for each last-layer node𝑢, the total

weight of those elements that fall in 𝑅(𝑞) is equal to the counter

sum of all the nodes in N(𝑞), namely,∑︁
𝑢∈N(𝑞)

𝑐𝑢 =
∑︁

𝑢∈N(𝑞)

©«
∑︁

𝑒∈𝑆∧𝑣 (𝑒) ∈𝑅 (𝑢)
𝑤 (𝑒)ª®¬ =

∑︁
𝑒∈𝑆∧𝑣 (𝑒) ∈𝑅 (𝑞)

𝑤 (𝑒) .

In other words, the query 𝑞 and N(𝑞) constitute a DT instance,

denoted by 𝐷𝑇 (𝑞). Specifically, the query 𝑞 is the coordinator with

𝜏 (𝑞) as the threshold and each node 𝑢 ∈ N (𝑞) is a participant with
𝑐𝑢 as the counter. As a result, an 𝜀-maturity moment of 𝑞 can be

captured by 𝐷𝑇 (𝑞). Therefore, continuing the previous example, an

𝜀-maturity moment of 𝑞8 can be captured by a DT instance with 𝑞8

as the coordinator and 𝜏 (𝑞8) as the threshold, and {𝑣1, 𝑣2, . . . , 𝑣6}
as the participants with the counters, respectively.

Organizing DT Participants with Heaps. A last-layer node may in-

volve as a participant in multiple DT instances, e.g., the node 𝑣6

in Figure 1(b) involves in 𝐷𝑇 (𝑞6) and 𝐷𝑇 (𝑞8). The QGT algorithm

organizes all the participants of a last-layer node 𝑢 in the 𝐷𝑇 (𝑞) for
all 𝑞 ∈ 𝐿(𝑢) with a min-heap. Qiao et al. [22] show that, with those

min-heaps, all the 𝐷𝑇 (𝑞) can run properly, yet each “communica-

tion” between a participant and its coordinator will be followed

by 𝑂 (1) heap operations. Consequently, an extra 𝑂 (log𝑚) factor
overhead is introduced in the overall DT running cost.

Running Time Analysis. The overall running time of the one-time

registration case consists of two types of costs: (i) the cost for

element processing, and (ii) the cost for the DT instances.

First, for each element 𝑒 , the QGT algorithm needs to increase

the counter 𝑐𝑢 by𝑤 (𝑒) for all the last-layer nodes 𝑢 whose ranges

are “stabbed” by 𝑒 , namely, 𝑣 (𝑒) ∈ 𝑅(𝑢). This can be performed in

𝑂 (log
𝑑𝑚) time. Thus, the total element processing cost is bounded

by 𝑂 (𝑛 · log
𝑑𝑚).

Second, for the DT part, by implementing the min-heap of a

node 𝑢 with the standard binary heap [9], each heap operation

can be performed in 𝑂 (log |𝐿(𝑢) |) = 𝑂 (log𝑚) time. The cost of

each𝐷𝑇 (𝑞) takes𝑂 (|N (𝑞) | · log
1

𝜀 · log𝑚) time. By Fact 2, |N (𝑞) | =
𝑂 (log

𝑑𝑚). Therefore, the overall cost is bounded by𝑂 (𝑚 ·log
𝑑+1𝑚 ·

log
1

𝜀) for𝑚 queries.

Putting the above two costs together gives the overall running

time cost for the one-time registration case, which is bounded by

𝑂 (𝑚 · log
𝑑+1𝑚 · log

1

𝜀 + 𝑛 · log
𝑑𝑚).

Space Analysis. The space consumption is dominated by the size

of the Segment Tree T along with all the DT instances. Thus,

this size is bounded by 𝑂 (𝑚 · log
𝑑𝑚). Moreover, by a careful tree

rebuilding strategy (i.e., rebuilding everything if 𝑚
alive

< 𝑚/2),
the QGT algorithm warrants a space consumption bounded by

𝑂 (𝑚
alive
· log

𝑑𝑚
alive
) at all time, where 𝑚

alive
is the number of

queries that are alive in the system.

5

Supporting Query Dynamics. In order to strengthen the above

solution for the one-time registration case to support query regis-

trations and terminations (referred as query dynamics), the QGT al-

gorithm adopts the standard logarithmic method [4, 6], which is a

general technique for making a static data structure dynamic. In

the case of QGT algorithm, the logarithmic method introduces an

extra logarithmic factor, i.e., 𝑂 (log𝑚), to the element processing

cost, and admits an amortized cost of 𝑂 (log
𝑑+1𝑚) for each query

registration and termination, while keeping the space consumption

bound unchanged. The final result is summarized below:

Fact 3 ([22]). For𝑚 queries (along with their registrations and
terminations) and 𝑛 elements, the QGT algorithm solves the 𝜀-
approximate RT problem with:
• 𝑂 (𝑚 · log

𝑑+1𝑚 · log
1

𝜀 + 𝑛 · log
𝑑+1𝑚) overall running time, and

• 𝑂 (𝑚alive · log
𝑑𝑚alive) space consumption at all time, where𝑚alive

is the number of alive queries.

3 AN OVERVIEW OF OUR ALGORITHM
In this section, we give an overview of our proposed algorithm,

called Fast Range Thresholding over Streams (FastRTS), for solving
the RT problem. Basically, FastRTS adopts the same algorithmic

framework of QGT .

Comparing to QGT , FastRTS eliminates:

• the need of the logarithmic method for query dynamics: thus,

it removes the logarithmic overhead in element processing and

query dynamic;

• the need of heaps for organizing the DT instances: hence, it

removes the logarithmic overhead in the DT running cost.

As a result, FastRTS improves the overall running time bound of

QGT by roughly a logarithmic factor.

The FastRTS Algorithm. FastRTS consists of two main modules:

(i) the Query and Element Processing (QEP) Module, and (ii) the DT

Manager (DTMgr) Module. Specifically, the QEP module handles

both the element processing and query dynamics, while the DTMgr

manages the DT instances.

In the next two sections, we introduce the details of these two

modules and prove the following theorem:

Theorem 3.1. For𝑚 queries (along with their registrations and
terminations) and 𝑛 elements, the FastRTS algorithm solves the 𝜀-
approximate RT problem with:

• 𝑂 (𝑚 ·log
𝑑 𝑁 ·log

1

𝜀 +𝑛 ·log
𝑑 𝑁) overall running time in expectation,

• 𝑂 (𝑚alive · log
𝑑 𝑁) space consumption at all time,

where 𝑁 is the size of the universe U on each dimension.

4 THE QEP MODULE
In this section, we reveal the details of the Query and Element

Processing module in FastRTS . We first start with a simple idea

without worrying about the space consumption. This idea is to con-

struct a full Segment Tree on the universe U𝑑 , where the base tree
in each layer is on U of the corresponding dimension. Specifically,

we build a Segment Tree on U for the first dimension, and then

for each node, we recursively build a Segment Tree on U for the

next dimension. Figure 2(a) shows a full Segment Tree T (including

all the grey nodes) on U = {0, . . . , 20}. For the 2-dimensional case,

each node of T is associated with a full Segment Tree on the next

dimension, as shown in Figure 2(b).

Since the full Segment Tree captures all the possible endpoints

on each dimension, the structure of the tree is static (i.e., fixed)
under query insertions and deletions. Therefore, a query insertion

(deletion) is just as simple as to associate (remove) the query to

(from) the corresponding canonical nodes in the tree. While the full

Segment Tree is efficient for query dynamics, its space consumption

can be prohibitive. To see this, there are 𝑂 (𝑁) nodes in the base

tree at the first layer of a full Segment Tree on U𝑑 ; each of these

nodes has a full Segment Tree on U𝑑−1
. As a result, solving the

recursion gives the overall space of the 𝑑-dimensional base tree

bounded by 𝑂 (𝑁𝑑).
An Incremental Segment Tree on U𝑑 . We address this issue by

constructing a full Segment Tree on U𝑑 incrementally. We call this

variant as Incremental Segment Tree (IncSegTree). The basic idea of
the IncSegTree is to perform query insertions and deletions as if it

is a full Segment Tree, yet a node in IncSegTree is materialized only

when it is “touched” by some query. For example, in Figure 2 the

nodes in black are materialized while those in grey are not. From

the standard results [13], a query insertion and deletion can only

touch at most 𝑂 (log
𝑑 𝑁) nodes in a full Segment Tree. Thus, only

the same number of nodes in IncSegTree will be materialized. Thus,

for𝑚 query insertions, the space consumption of the IncSegTree
is bounded by 𝑂 (𝑚 · log

𝑑 𝑁). A node in IncSegTree is deleted only

when there is no query associated to any node in its sub-tree. We

summarize the key results in the following fact.

Fact 4 ([13]). For a 𝑑-dimensional IncSegTree on U𝑑 ,

• each query insertion and deletion takes in 𝑂 (log
𝑑 𝑁) time;

• for each query 𝑞, |N (𝑞) | = 𝑂 (log
𝑑 𝑁);

• each element from the stream can be processed in 𝑂 (log
𝑑 𝑁) time;

• the space consumption is bounded by𝑂 (𝑚alive · log
𝑑 𝑁) at all time.

5 THE DT MANAGER MODULE
We first introduce a new variant of the DT algorithm, namely Power-
of-Two-Slack DT (P2S-DT). A nice property of P2S-DT is that the

slack values are all power-of-two integers. With it, we introduce

our bucketing technique to organize the DT instances. For each last-

layer node 𝑢, instead of using a min-heap, the bucketing technique

adopts a linked list of non-empty buckets, where each bucket stores

all the queries in 𝐿(𝑢) having the same power-of-two slacks. As we

will show in Section 5.2, our bucketing technique can eliminate the

𝑂 (log𝑚) factor caused by the min-heaps from the overall DT cost.

5.1 A New DT Algorithm
To facilitate our bucketing technique, we first develop a new DT

algorithm, called Power-of-Two-Slack DT (P2S-DT). As shown in Al-

gorithm 1, P2S-DT works in rounds. In each round, the coordinator

𝑞 sends a slack value 𝜆 to each participant; whenever a counter 𝑐𝑖
gets increased and “crosses” the next multiple of 𝜆, participant 𝑢𝑖
reports the count increment to𝑞. When𝑞 receives “enough” counter

increments in the current round, it collects the precise counters

from all the participants and check 𝜀-maturity. If 𝑞 matures, then

report the maturity; otherwise, 𝑞 starts a new round.

Example 2. Figure 3 shows a running example of the P2S-DT
algorithm on a DT instance, where the coordinator 𝑞 has a threshold

6

{q3, q4}

{q3} {q8}

R1(q8) = [3, 17)

0

1

2

3

4

5

level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[0, 4) [4, 8) [8, 12) [12, 16)

[0, 8) [8, 16) [16, 20]

[16, 20][0, 16)

[0, 20]

{q5} {q8} {q6} {q3} {q7}

{q5, q7} {q1} {q3, q4} {q6, q7}

{q1} {q2, q5, q7, q8}

L(u) = {q2, q5, q6, q7, q8}

{q5}
[20, 20][16, 20)

20

u

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[0, 4) [4, 8) [8, 12) [12, 16) [16, 20)

[0, 8) [8, 16)

[0, 16)

{q2, q6} {q2, q5, q7, q8}

{q5}

{q6}

{q6}{q7}

{q7, q8}{q8}

{q8}

R2(q8) = [6, 15)

0

1

2

3

4

5

level

[16, 20]

[16, 20]

[0, 20]

[20, 20]

20

(a) IncSegTree materialized by 𝑄 on the first dimension (b) IncSegTree materialized by 𝐿(𝑢) on the second dimension

Figure 2: Part of the IncSegTree on U2 = {0, . . . , 20}2 on the query set 𝑄 as shown in Figure 1(a)

Algorithm 1: The Power-of-Two-Slack DT Algorithm

Data: a coordinator 𝑞 with a threshold 𝜏 and ℎ participants

𝑢1, . . . ,𝑢ℎ : each is with a counter 𝑐𝑖 for 𝑖 = 1, . . . , ℎ

Result: capture an 𝜀-maturity moment for 𝑞

1 𝜏 ← 𝜏 ;

2 while true do
3 if 𝜏 ≤ 2ℎ then
4 report to 𝑞 for every counter increment until an 𝜀-maturity

is captured and then return;

5 for 𝑖 = 1, . . . , ℎ 𝑐′
𝑖
← 𝑐𝑖 , 𝑐𝑖 ← 𝑐𝑖 , for 𝑖 = 1, . . . , ℎ;

6 𝑞 sends a slack 𝜆 = 2
⌊log

2

𝜏
2ℎ
⌋
to each participant;

7 if 𝑐𝑖 is increased and ⌊ 𝑐𝑖𝜆 ⌋ − ⌊
𝑐𝑖
𝜆
⌋ ≥ 1 then

8 𝑢𝑖 sends the counter increment 𝑐𝑖 − 𝑐𝑖 to 𝑞;
9 update the last communicated counter: 𝑐𝑖 ← 𝑐𝑖 ;

10 if 𝑞 has ≥ 𝜏/2 counter increments since current round then
11 collect counter 𝑐𝑖 from 𝑢𝑖 for 𝑖 = 1, . . . , ℎ;

12 compute 𝜏 ′ ← 𝜏 − (∑ℎ
𝑖=1

𝑐𝑖 −
∑ℎ

𝑖=1
𝑐′
𝑖
) ;

13 if 𝜏 ′ ≤ 𝜀 · 𝜏 then
14 report 𝜀-maturity and return;

15 else
16 𝜏 ← 𝜏 ′; continue, i.e., start a new round;

𝜏 = 80 and there are ℎ = 4 participants 𝑢1, 𝑢2, 𝑢3, 𝑢4. Moreover,
𝜀 = 0.01 < 1/𝜏 means this instance is to capture the exact maturity.
In round 1, 𝑐′

𝑖
← 0 and 𝑐𝑖 ← 0 for 𝑖 ∈ {1, 2, 3, 4}, 𝜏 ′ ← 𝜏 = 80, and

slack 𝜆 = 2
⌊log

2

𝜏
2ℎ
⌋ = 8. As shown in Figure 3, 𝑢1 reports a counter

increment 9 to 𝑞, 𝑢3 reports 12 and 𝑢4 reports twice: one counter
increment is 10 and the other is 9. As a result, 𝑞 receives in total
40 ≥ 𝜏 ′/2 in the current round and hence,𝑞 collects the precise counter
increments from the four participants and 𝜏 ′ ← 𝜏 ′−∑𝑖 (𝑐𝑖 −𝑐′𝑖) = 33.
Round 2 starts with 𝑐′

1
= 𝑐1 = 11, 𝑐′

2
= 𝑐2 = 2, 𝑐′

3
= 𝑐3 = 15,

𝑐′
4
= 𝑐4 = 19, and 𝜆 = 2

⌊log
2

33

2×4
⌋ = 4. Likewise, in this round the

total counter increments received by 𝑞 is 2 + 5 + 6 + 2 + 5 = 20 ≥
𝜏 ′/2 = 33/2. Hence, 𝑞 collects the precise counter increments and
𝜏 ′ ← 𝜏 ′−∑𝑖 (𝑐𝑖 −𝑐′𝑖) = 8 ≤ 2 ·ℎ. Therefore, in round 3, the algorithm
switches to the branch of Line 4 in Algorithm 1, where the participants
report every counter increment to 𝑞, until the exact maturity of 𝑞 is
captured.

Next, we prove the correctness of the P2S-DT algorithm and

analyse its communication cost.

Lemma 5.1. During a round before 𝑞 receives 𝜏/2 counter incre-
ment, the total counter increment must satisfy:

∑ℎ
𝑖=1

𝑐𝑖 −
∑ℎ
𝑖=1

𝑐′
𝑖
< 𝜏 ,

and hence, 𝑞 will not miss the 𝜀-maturity period.

0

4

8

12

16

20

24

28

u1 u2 u3 u4

Round 3Round 2Round 1

Figure 3: A DT running example

Proof. According to the P2S-DT algorithm, at any time during

a round before 𝑞 receives 𝜏/2 counter increment, the total actual
counter increment is upper bounded by the sum of the counter

increment received by 𝑞 and the maximum possible total counter

increment that 𝑞 is not yet aware of, i.e., ℎ · (𝜆 − 1). Thus,
ℎ∑︁
𝑖=1

𝑐𝑖 −
ℎ∑︁
𝑖=1

𝑐′𝑖 <
𝜏

2

+ ℎ · (𝜆 − 1) < 𝜏

2

+ ℎ · 𝜏
2ℎ

= 𝜏 .

□

Lemma 5.2. In each round, the coordinator receives at most 3ℎ

messages from the participants.

Proof. It suffices to show that after receiving 3ℎ messages from

the participants, 𝑞 must be aware of a total counter increment ≥ 𝜏/2
in the current round. Recall that in P2S-DT, a participant 𝑢𝑖 sends

a counter increment to 𝑞 only when 𝑐𝑖 reaches or exceeds the 𝜆-

multiple successor of 𝑐𝑖 ,i.e, ⌊ 𝑐𝑖𝜆 ⌋ − ⌊
𝑐𝑖
𝜆
⌋ ≥ 1. While in the worst

case, the counter increment 𝑐𝑖 − 𝑐𝑖 can be as small as just 1, such

worst case can only happen for the first report of each participant.

Therefore, if a participant 𝑢𝑖 has reported 𝑘 + 1 times (for 𝑘 ≥ 0),

the total counter increment in𝑢𝑖 that 𝑞 is aware of is at least 𝑘 ·𝜆+1.

As a result, for 3ℎ reports from the participants, in the worst case,

the total counter increment which 𝑞 is aware of is at least:

ℎ · 1 + 2 · ℎ · 𝜆 = ℎ + 2 · ℎ · 2⌊log
2

𝜏
2ℎ
⌋ ≥ ℎ + 2 · ℎ · 𝜏

4ℎ
≥ 𝜏

2

.

□

According to Algorithm 1, the threshold 𝜏 decreases by at least

half at the end of each round. Thus, there are at most 𝑂 (log
1

𝜀)
rounds. Moreover, by Lemma 5.2, each round takes𝑂 (ℎ) communi-

cation cost. Combining Lemma 5.1, we have the following theorem:

Theorem 5.3. The P2S-DT correctly solves the 𝜀-approximate DT
problem with 𝑂 (ℎ · log

1

𝜀) communications. When 𝜀 < 1

𝜏 , it captures
the exact maturity with 𝑂 (ℎ · log

𝜏
ℎ
) communications.

7

5.2 The Bucketing Technique
Let us go back to the context of the RT problem. According to the

algorithmic framework of both our FastRTS and theQGT algorithms,

for a last-layer node 𝑢 in the 𝑑-dimensional (incremental) Segment

Tree, 𝑢 serves as a participant in those DT instances 𝐷𝑇 (𝑞)’s, for
all 𝑞 ∈ 𝐿(𝑢), where 𝐿(𝑢) is the list of all the queries 𝑞 having 𝑢 in

the canonical node set N(𝑞). When 𝑢’s counter is incremented, 𝑢

needs to identify all those DT instances, in which the participant

of 𝑢 should notify the corresponding coordinators according to the

DT algorithm. In the following, the DT algorithm we consider is

P2S-DT, where all the slack values are power-of-two integers.

A Linked List of Buckets. For a last-layer node 𝑢, we organize
𝐿(𝑢) with a linked list of buckets. Specifically, we conceptuallymain-

tain a dedicated bucket, denoted by B𝑖 , to store all the queries

𝑞 ∈ 𝐿(𝑢) where the participants of 𝑢 have a slack value of 2
𝑖
in the

corresponding DT instances, for each 𝑖 ∈ {0, 1, . . . , ⌊log
2
𝜏max⌋}. In

particular, we denote the corresponding slack value of a bucket B
as 𝜆(B), e.g., 𝜆(B𝑖) = 2

𝑖
. However, physically maintaining all these

buckets for each last-layer node 𝑢 may cause an extra 𝑂 (log𝑁)
overhead in the overall space consumption. Instead, we only main-

tain a linked list, denoted by A(𝑢), of all those non-empty buckets

sorted in ascending order by their corresponding slack values. Fur-

thermore, for each bucket B, we maintain a counter, denoted by

𝑐𝑢 (B), to record the value of 𝑐𝑢 when the queries in B last commu-

nicated with their coordinators; initially, 𝑐𝑢 (B) is set to the value

of 𝑐𝑢 when B is created. Similarly, we also maintain a counter, de-

noted by 𝑐𝑢 (𝑞), for each query 𝑞 to record the value of 𝑐𝑢 when

the participant of 𝐷𝑇 (𝑞) last communicated with the coordinator;

initially, 𝑐𝑢 (𝑞) is set to the value of 𝑐𝑢 when 𝑞 is registered.

The Detailed Procedures of the Bucketing Technique.
Procedure for Query Registrations.When a query 𝑞 is registered, for

each node 𝑢 ∈ N (𝑞), perform the following steps:

• find the bucket B w.r.t. the slack of 𝐷𝑇 (𝑞) in A(𝑢);
• if B does not exist in A(𝑢),
– create the bucket B and insert B at a proper position in A(𝑢)
such that all the buckets are still sorted;

– initialize B’s last communicated counter value: 𝑐𝑢 (B) ← 𝑐𝑢 ;

• set 𝑞’s last communicated counter value in 𝑢: 𝑐𝑢 (𝑞) ← 𝑐𝑢 ;

• store 𝑞 in B;
Procedure for Query Terminations and Maturity. When a query 𝑞 is

terminated or matured, for each node 𝑢 ∈ N (𝑞),
• locate 𝑞 in the bucket B in A(𝑢);
• remove 𝑞 from B;
• if B becomes empty, remove B from A(𝑢).
Procedure for Counter Increments. It is shown in Algorithm 2.

Procedure for New Round Starting. The pseudo code is in Algo-

rithm 3.Example 3. Figure 4 shows a running example of the bucketing
technique on a node 𝑢 of range [8, 16) × [8, 12) in the IncSegTree
in Figure 2. This node 𝑢 serves as participants for the DT instances
of the queries 𝑞2, 𝑞5, 𝑞7, 𝑞8. The upper half of Figure 4 shows the
status on the bucket listA(𝑢) before the counter increment𝑤 (𝑒) = 4.
Specifically, at this moment, the counter of 𝑢, 𝑐𝑢 = 158 and there are
three buckets B3, B4 and B6. Furthermore, the last communicated
counter values for the buckets and queries are as shown. Now, we

Algorithm 2: Procedure for Counter Increment

Data: 𝑐𝑢 is increased from 𝑐𝑢 to 𝑐𝑢 ← 𝑐𝑢 + 𝑤 (𝑒)
1 for each bucket B in A(𝑢) do
2 if ⌊ 𝑐𝑢

𝜆 (B) ⌋ == ⌊
𝑐𝑢 (B)
𝜆 (𝐵) ⌋ then

3 break;

4 if ⌊ 𝑐𝑢
𝜆 (B) ⌋ − ⌊

𝑐𝑢 (B)
𝜆 (𝐵) ⌋ ≥ 1 then

5 𝑐𝑢 (B) ← 𝑐𝑢 ;

6 for each 𝑞 ∈ B do
7 send counter increment 𝑐𝑢 − 𝑐𝑢 (𝑞) to 𝑞; 𝑐𝑢 (𝑞) ← 𝑐𝑢 ;

8 if 𝐷𝑇 (𝑞) needs to start a new round then
9 invoke Algorithm 3;

10 else if 𝐷𝑇 (𝑞) matures then
11 invoke Procedure for Query Maturity;

Algorithm 3: Procedure for New Round Starting

Data: 𝐷𝑇 (𝑞) starts a new round with a new slack 𝜆 = 2
𝑖

1 for each node 𝑢 ∈ N(𝑞) do
2 find the bucket B in A(𝑢) w.r.t. the previous slack in 𝐷𝑇 (𝑞) ;
3 B′ ← B;
4 while true do

// scan the bucket list A(𝑢) ;
5 if 𝜆 (B′) == 𝜆 then // this implies B𝑖 is found
6 break;

7 if 𝜆 (B′) < 𝜆 then // B𝑖’s predecessor is found
8 create the bucket B𝑖 ; insert B𝑖 after B′ in A(𝑢) ;
9 𝑐𝑢 (B𝑖) ← 𝑐𝑢 ; break;

10 if B′ is the head of A(𝑢) and 𝜆 (B′) > 𝜆 then
11 create the bucket B𝑖 ; insert B𝑖 before B′ in A(𝑢) ;
12 𝑐𝑢 (B𝑖) ← 𝑐𝑢 ; break;

13 B′ ← B′ .prev;
14 remove 𝑞 from B, and add 𝑞 to B𝑖 ; 𝑐𝑢 (𝑞) ← 𝑐𝑢 ;

15 if B becomes empty then
16 remove B from A(𝑢) ;

consider the moment when the counter increment happens, where
𝑐𝑢 = 162 and 𝑐𝑢 = 158. According to Algorithm 2, it scansA(𝑢) from
the head, i.e., B3. Since ⌊ 162

8
⌋ − ⌊ 156

8
⌋ = 1, all the queries 𝑞 in B3

report their counter increments 𝑐𝑢 −𝑐𝑢 (𝑞) to the coordinator and then
update their last communicated counter value 𝑐𝑢 (𝑞) ← 162. Also, the
last communicated counter is updated 𝑐𝑢 (B3) ← 162. Then, it scans
the next bucket ⌊ 162

16
⌋ − ⌊ 148

16
⌋ = 1. Similarly, the corresponding last

communicated counter values are updated, and 𝑞8 reports the counter
increment 𝑐𝑢 − 𝑐𝑢 (𝑞8) = 10. But at this time, 𝐷𝑇 (𝑞8) needs to start a
new round with a new slack 𝜆 = 2

2 = 4. Thus, 𝑞8 should be moved to
bucket B2 and Algorithm 3 is invoked. To find B2 in A(𝑢), it scans
A(𝑢) toward the head from B4 .prev which is B3. Since B3 is already
the head of A(𝑢) and 𝜆(B3) > 𝜆, a new bucket B2 is created and
inserted to A(𝑢) as a new head. (See Line 12 in Algorithm 3). After
moving 𝑞8 to B2, B4 becomes empty and hence, it is removed from
A(𝑢). This completes the processing for B4. Since the next bucket
B6 does not meet the reporting criteria, i.e., ⌊ 162

64
⌋ − ⌊ 156

64
⌋ = 0, the

procedure for the counter increment returns.
8

head

head

λ(B3) = 8

c̄u(q5) = 156

c̄u(q7) = 158

c̄u(B4) = 148
λ(B4) = 16 λ(B6) = 64

c̄u(B6) = 138

c̄u(q8) = 148 c̄u(q2) = 138

c̄u(B3) = 162
λ(B3) = 8

c̄u(B4) = 162
λ(B4) = 16 λ(B6) = 64

c̄u(B6) = 138
λ(B2) = 4

c̄u(q2) = 138

cu = 162

cu = 158
c̄u(B3) = 156

c̄u(q8) = 162

c̄u(B2) = 162

c̄u(q5) = 162

c̄u(q7) = 162

B3 B4 B6

B2 B3 B4 B6

tail

tail
after a counter increment w(e) = 4

Figure 4: A running example of the Bucketing Technique

5.3 Theoretical Analysis
We hereby analyse the time cost of each above individual procedure.

Running Time of Query Registrations. For query registrations, the

challenge lies in finding the successor non-empty bucket B inA(𝑢)
for a given power-of-two slack value 𝜆, where B is the first bucket
in A(𝑢) with 𝜆(B) ≥ 𝜆. Next, we prove the following lemma:

Lemma 5.4. There exists an implementation which can find the
successor bucket in A(𝑢) for any given power-of-two slack in 𝑂 (1)
amortized expected time with 𝑂 (|A(𝑢) |) space.

Proof. In our implementation, there are two main components:

(i) a dynamic universal hashing table on the slack-bucket pairs, each

of which corresponds to a bucket inA(𝑢), and (ii) a bit-array which
encodes the emptiness status of all the possible buckets, where the

(𝑖+1)st bit is 1 if and only if the bucket B𝑖 (of slack 2
𝑖
) is non-empty,

for all 𝑖 = {0, 1, 2, . . . , ⌊log
2
𝜏max⌋}.

The Hash Table.With the hash table, in 𝑂 (1) expected time, we

can find the pointer of the bucket (if exists) with respect to a given

slack value. Moreover, by standard dynamic universal hashing [7],

the hash table can achieve: (i)𝑂 (1) expected time for each searching,

(ii) 𝑂 (1) amortized time for each slack-bucket pair insertion and

(lazy) deletion, and (iii) 𝑂 (|A(𝑢) |) space consumption at all time.

The Bit-Array.Without loss of generality, we assume that 𝜏max

can be represented with one word, because it is fairly easy to extend
our technique to the case of 𝑂 (1)-word representable 𝜏max. As a

result, the bit-array encoding the emptiness status of all the possible

buckets fits in a one-word integer. Thus, the space consumption of

this bit-array is 𝑂 (1).
Suppose the integer value of the bit-array is 𝑥 ; given a target

power-of-two slack 𝜆 = 2
𝑖
, the corresponding slack value of the

successor non-empty bucket (if exists) in A(𝑢) of 𝜆 can be found

by the following steps:

• let 𝑦 ← 𝑥/2𝑖 , that is to shift all the lower 𝑖 bits out;

• if 𝑦 = 0, report the successor bucket of 𝜆 does not exist in A(𝑢);
• otherwise, compute 𝑧 ← 𝑦 & ¬(𝑦 − 1);
• return 𝑧 · 2𝑖 as the slack value of the successor non-empty bucket

of 𝜆 = 2
𝑖
in A(𝑢).

The correctness of the above calculations follows the fact that log
2
𝑧

is the position of the lowest bit of 1 in 𝑦. To see this, suppose the

lowest bit of 1 is at position 𝑗 (starting from 0); 𝑦 − 1 flips the

𝑗 th bit from 1 to 0 and all the bits at positions < 𝑗 from 0 to 1,

while all the bits at positions > 𝑗 remain unchanged. For example,

for 𝑦 = 10110100, the lowest bit of 1 is at position 𝑗 = 2, and

𝑦 − 1 = 10110011. As a result, ¬(𝑦 − 1) (e.g., ¬(𝑦 − 1) = 01001100)

flips all the lowest 𝑗 bits back to be the same as those of the original𝑦,

yet all those bits at positions > 𝑗 are flipped to opposite. Therefore,

taking the logic-and operation (&) between 𝑦 and ¬(𝑦 − 1) gives a
binary string 𝑧 (e.g., 𝑧 = 00000100) with 1 at position 𝑗 and all 0’s

elsewhere. In other words, log
2
𝑧 = 𝑗 , and the correctness of the

above calculations follows. Moreover, all the above calculations can

be performed in 𝑂 (1) time.

Finally, given the slack of the successor bucketB, one can find the
pointer ofB with the aforementioned hash table. Putting everything

together, the lemma thus follows. □

Thus, by Lemma 5.4, the DT instance for a new query can be

constructed in 𝑂 (|N (𝑞) |) amortized expected time, linear to the

number of participants in this instance.

Running Time of Query Terminations and Maturity. For each query

𝑞, by maintaining pointers properly to record the location of query

𝑞 itself in the bucketB in each of its canonical node𝑢 ∈ N (𝑞), locat-
ing and removing 𝑞 from each such bucket can be done in𝑂 (1) time.

When a bucket becomes empty, the corresponding slack-bucket

pair needs to be removed from the hash table, which causes 𝑂 (1)
amortized time. Thus, the running time of each query termination

or maturity can be handled in 𝑂 (|N (𝑞) |) amortized time.

Running Time of New Round Starting. Consider a query 𝑞; when

𝐷𝑇 (𝑞) needs to start a new round, 𝑞 needs to be moved from the

current bucket to a (possibly new) bucket in each 𝑢 ∈ N (𝑞). As
aforementioned, locating 𝑞 in B ∈ A(𝑢) can be done in 𝑂 (1)
via the pointers. To find the bucket B𝑖 corresponding to the new

slack 𝜆 = 2
𝑖
, the procedure scans A(𝑢) from the current bucket

B towards the head until a “proper position” is found, which is

essentially the position of B𝑖 in (or should be inserted to) the sorted

linked listA(𝑢). Therefore, this cost is bounded by𝑂 (𝑘 + 1), where
𝑘 is the number of buckets in A(𝑢) that are “visited” (with slack

≥ 𝜆 but < 𝜆(B)) and the𝑂 (1) term comes from the cost of checking

the bucket with slack < 𝜆 and locating 𝑞 in B.
Let 𝛾 be the total number of rounds of 𝐷𝑇 (𝑞). Summing over all

the 𝛾 rounds of 𝐷𝑇 (𝑞), the total cost of starting new rounds within

a node 𝑢 ∈ N (𝑞) is bounded by 𝑂

(
(∑𝛾

𝑟=1
𝑘𝑟) + 𝛾

)
, where 𝑘𝑟 is the

number of buckets visited during the scan of A(𝑢) when starting

the 𝑟 th round. We claim that 𝑂

(
(∑𝛾

𝑗=1
𝑘𝑟) + 𝛾

)
= 𝑂 (log

1

𝜀).

Proof of the Claim. By Theorem 5.3, we know that 𝛾 is bounded by

𝑂 (log
1

𝜀). Next, we bound
∑𝛾

𝑗=1
𝑘𝑟 . First, observe that the buckets

visited during the scan ofA(𝑢) must be the buckets corresponding

to the slacks falling in the range of [𝜆min, 𝜆max], where 𝜆min and

𝜆max are the minimum and maximum possible slacks in 𝐷𝑇 (𝑞),
respectively. Furthermore, according to the P2S-DT algorithm, at

the end of each round, the threshold value 𝜏 must be decreased by

at least a factor of 2, and thus, the slack value in the next round

must be at most half of the current slack value. In other words, the

bucket corresponding to the slack in a new round must be at least

“one-step forward” of the bucket B for the current round in A(𝑢).
As a result, the set of buckets visited during the scan ofA(𝑢) when
starting a new different round must be disjoint. Therefore, we have:

𝛾∑︁
𝑟=1

𝑘𝑟 ≤ log
2
𝜆max − log

2
𝜆min + 1 ≤ log

2
2
⌊log

2

𝜏
2ℎ
⌋ − log

2
2
⌊log

2

𝜀 ·𝜏
2ℎ
⌋ + 1

≤ log
2

𝜏/2ℎ
𝜀 · 𝜏/4ℎ + 1 = 𝑂 (log

1

𝜀
) .

9

Note that when a new bucket is created, a new slack-bucket pair

is inserted to the aforementioned universal hash table, whose cost

is bounded by 𝑂 (1) amortized. Therefore, by the above claim, the

overall maintenance cost of new round starting’s in 𝐷𝑇 (𝑞) is thus
bounded by 𝑂 (|N (𝑞) | · log

1

𝜀) amortized.

Running Time of Counter Increments. Next, we analyse the running
time bound for handling each counter increment. First, observe

that the cost of instructing the queries in the buckets to notify

their coordinators can be charged to the “communication cost” of

each of the corresponding DT instances. Second, as the costs of

handling new round starting’s and maturity have been bounded

separately, it suffices to bound the total cost of the scan of A(𝑢).
Clearly, the number of buckets that have been visited during the

scan ofA(𝑢) for handling a counter increment on 𝑐𝑢 is𝑘𝑢+1, where

𝑘𝑢 is the number of buckets that have at least one query to notify

the corresponding coordinator, and the “1” is for the first bucket

which does not satisfy the notification condition. As a result, the

cost of 𝑂 (𝑘𝑢) can be charged to the communication cost of those

DT instances in the buckets, and the 𝑂 (1) cost can be charged to

the counter increment, which in turn can be charged to the cost of

element processing.

According to Theorem 5.3, the communication cost of 𝐷𝑇 (𝑞)
is bounded by 𝑂 (|N (𝑞) | · log

1

𝜀). By Fact 4, we have |N (𝑞) | =
𝑂 (log

𝑑 𝑁) and the total processing cost for 𝑛 elements is bounded

by 𝑂 (𝑛 · log
𝑑 𝑁). Combining the costs of the procedures for query

maturity and new round starting, for𝑚 queries and 𝑛 elements, the

overall cost of the procedure for counter increments is bounded by

𝑂 (𝑚 · log
𝑑 𝑁 · log

1

𝜀 + 𝑛 · log
𝑑 𝑁).

Space Consumption. Recall that for each last-layer node 𝑢, the

data structures for the bucketing technique only take 𝑂 (|A(𝑢) |)
space. Summing over all such nodes gives the overall space con-

sumption of the DTManager module bounded by𝑂 (𝑚
alive
·log

𝑑 𝑁),
where𝑚

alive
is the number of the alive queries.

The Overall Cost of the DT Manager Module.We summarize

the key results of the DT Manager module in the theorem below:

Theorem 5.5. For𝑚 queries (along with their registrations and
terminations) and 𝑛 elements, the DT Manager module achieves:

• 𝑂 (𝑚 · log
𝑑 𝑁 · log

1

𝜀 + 𝑛 · log
𝑑 𝑁) time in expectation, and

• 𝑂 (𝑚alive · log
𝑑 𝑁) space consumption at all time.

Remark. Simultaneously running overlapped DT instances that

share participants has been found a useful trick in solving various

problems, such as in the QGT and FastRTS for the RT problem, and

in a very recent work [23] for the dynamic structural clustering on
graphs. Both QGT and the work [23] adopt binary heaps to organize

the DT instances resulting in a logarithmic factor overhead in the

DT running cost. Our bucketing technique can be directly applied

in these algorithms to substitute the heap-method. Hence, it can

immediately improve their overall DT running cost bound by a

logarithmic factor. In this sense, our bucketing technique will be

of independent interests to other DT-based algorithms for solving

other problems. In Section 7.4, we conduct an experiment to study

the general practical effects of our bucketing technique, and the

results show that it outperforms the heap-method by up to an order

of magnitude in terms of running time.

6 EFFECTIVE OPTIMIZATIONS
In this section, we introduce two powerful and effective optimiza-

tions for FastRTS , which substantially reduce our algorithm’s actual

running time and the peak memory usage over the entire process.

Meanwhile, all the theoretical bounds of FastRTS retain.

6.1 The Range Shrinking Technique
In this subsection, we introduce a technique, called Range Shrinking,
for reducing the number of participants in 𝐷𝑇 (𝑞) for query 𝑞.
The Technique. Consider a query 𝑞 with range 𝑅(𝑞) and threshold
𝜏 (𝑞). The basic idea is to first extend 𝑞 to a super query 𝑞 whose

range is a super range of of 𝑅(𝑞), namely, 𝑅(𝑞) ⊆ 𝑅(𝑞), and run the

DT instance with 𝑞. The rationale here is that 𝑞 is 𝜀-matured only
if the total weight of elements falling in 𝑅(𝑞) is at least (1 − 𝜀) ·
𝜏 (𝑞) since 𝑞 was registered. As a result, instead of running 𝐷𝑇 (𝑞)
directly, we can first run a DT instance for a super query 𝑞 with

N(𝑞) as participants and with threshold 𝜏 (𝑞) = 𝜏 (𝑞). Based on

this observation, indeed, we can run DT instances with respect to

a sequence of super queries of 𝑞 before actually running 𝐷𝑇 (𝑞).
Algorithm 4 shows the pseudo code of this procedure.

Algorithm 4: Procedure for Range Shrinking
Data: 𝑠 (𝑞) is the precise counter sum of all the nodes 𝑢 ∈ N(𝑞) in

the IncSegTree at the moment when 𝑞 is registered

1 initialize a super query �̃� of 𝑞 with range 𝑅 (�̃�) ⊇ 𝑅 (𝑞) and
threshold 𝜏 (�̃�) = 𝜏 (𝑞) ; 𝑖 ← 1;

2 while 𝑖 ≤ ⌊log
2

1

𝜀
⌋ do

3 𝜀′ ← 𝜀 · 𝜏 (𝑞)/𝜏 (�̃�) ;
4 run 𝐷𝑇 (�̃�) to capture an 𝜀′-maturity;

5 collect the precise counter sum 𝑠 (𝑞) of all nodes 𝑢 ∈ N(𝑞) ;
6 Δ(𝑞) = 𝑠 (𝑞) − 𝑠 (𝑞) ; // get actual counter increments

7 if 𝜏 (𝑞) − Δ(𝑞) ≤ 𝜀 · 𝜏 (𝑞) then
8 report the 𝜀-maturity of 𝑞 and return;

9 shrink 𝑅 (�̃�) to a smaller range 𝑅 such that 𝑅 (𝑞) ⊆ 𝑅 ⊆ 𝑅 (�̃�) ;
10 update �̃�: 𝑅 (�̃�) ← 𝑅 and 𝜏 (�̃�) ← 𝜏 (𝑞) − Δ(𝑞) ; 𝑖 ← 𝑖 + 1;

11 collect the precise counter sum 𝑠 of all nodes 𝑢 ∈ N(𝑞) ;
12 update �̃�: 𝑅 (�̃�) ← 𝑅 (𝑞) and 𝜏 (�̃�) ← 𝜏 (𝑞) − Δ(𝑞) ;
13 run 𝐷𝑇 (�̃�) to capture an 𝜀′-maturity with 𝜀′ = 𝜀 · 𝜏 (𝑞)/𝜏 (�̃�) ;
14 report the 𝜀-maturity of 𝑞.

Example 4. Figure 5 shows an example. Consider query 𝑞8 with
threshold 𝜏 (𝑞8) = 100 and 𝜀 = 0.1. Suppose 𝑞8 is registered imme-
diately after 𝑒2 arrived. As per Algorithm 4, 𝑠 (𝑞8) = 40 because 𝑒1

is the only point in 𝑅(𝑞8) when 𝑞8 was registered. We first run a DT
instance for a super query 𝑞81 with range 𝑅(𝑞81) = [0, 20) × [0, 16),
where 𝜏 (𝑞81) = 𝜏 (𝑞8) = 100 and 𝜀′ = 𝜀𝜏 (𝑞8)/𝜏 (𝑞81) = 0.1. When 𝑒6

arrives, 𝐷𝑇 (𝑞81) is 𝜀′-matured, because this is the first moment that
the total weight of the points (after 𝑞8’s registration) falling in 𝑞81 is
100 ≥ 𝜏 (𝑞81). However, at this moment, the precise counter sum for
𝑞8 is 𝑠 (𝑞8) = 75,which means the actual counter increment of 𝑅(𝑞8) is
Δ(𝑞8) = 𝑠 (𝑞8)−𝑠 (𝑞8) = 35. Thus, 𝜏 (𝑞8)−Δ(𝑞8) = 65 > 𝜀 ·𝜏 (𝑞8) = 10.
The algorithm shrinks 𝑞81 to 𝑞82 with range 𝑅(𝑞82) = [2, 18)× [6, 16),
threshold 𝜏 (𝑞82) = 65, and 𝜀′ = 10/65. When 𝑒13 arrives, 𝑞82

matures and the precise counter sum 𝑠 (for 𝑞8) is 130 and the ac-
tual counter increment of 𝑅(𝑞8) becomes Δ(𝑞8) = 90. As a result,

10

1 2 3 4 5 6 7 8 1011 1213141516 1718 19209

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20

9

0
0

w(e1) = 40

w(e2) = 35

w(e5) = 10

w(e4) = 25

w(e3) = 20
w(e6) = 45

w(e7) = 10

w(e8) = 5

w(e9) = 20

w(e10) = 15

w(e12) = 10

w(e11) = 30

w(e13) = 30

q8q̃81 q̃82

Figure 5: 𝑞8 and its super queries. The elements arrived in
the order of their ID’s, i.e., 𝑒1 arrives first and 𝑒13 the last. The
weights are shown beside the elements.

𝜏 (𝑞8) − Δ(𝑞8) = 10 ≤ 10. The algorithm hence reports an 𝜀-maturity
of 𝑞8, even without the need of running 𝐷𝑇 (𝑞8).

Correctness. The correctness of the Range Shrinking technique
follows from two facts. First, if 𝐷𝑇 (𝑞) is not 𝜀′-matured yet, 𝐷𝑇 (𝑞)
must not be 𝜀-matured. Second, in the for-loop of Algorithm 4, for

every 𝜀′-maturity of𝐷𝑇 (𝑞), a safety check onwhether 𝜏 (𝑞)−Δ(𝑞) ≤
𝜀 · 𝜏 (𝑞) is performed. This ensures that the 𝜀-maturity of 𝑞 can be

reported correctly. Moreover, the last 𝐷𝑇 (𝑞) outside the loop is

essentially 𝐷𝑇 (𝑞) but just tracks the remaining gap between 𝜏 (𝑞)
and the actual counter increment in 𝑅(𝑞) so far. Thus, an 𝜀-maturity

of 𝐷𝑇 (𝑞) must also be correctly captured in this case.

Running Time Analysis. Denote the super query in the 𝑖th loop

by 𝑞𝑖 , and the last super query outside the loop by 𝑞
last

. Observe

that the number of rounds in each 𝐷𝑇 (𝑞𝑖) is at most 𝑂 (log
1

𝜀),
because 𝜏 (𝑞𝑖) ≤ 𝜏 (𝑞) always holds, and thus, 𝜀′ ≥ 𝜀 holds. Like-

wise, 𝐷𝑇 (𝑞
last
) also has at most𝑂 (log

1

𝜀) rounds. In addition, since

𝑅(𝑞
last
) = 𝑅(𝑞), we have |N (𝑞

last
) | = |N (𝑞) |. Therefore, the total

running time cost of the DT instances of all these super queries is

bounded by 𝑂

(
(∑𝑖 |N (𝑞𝑖) | + |N (𝑞) |) · log

1

𝜀

)
. Furthermore, each

collection of the precise counter sum 𝑠 for the query 𝑞 takes

𝑂 (|N (𝑞) |) time, and there are at most 𝑂 (log
1

𝜀) such collections.

Adding up these two costs, the running time of the entire Range

Shrinking process is bounded by𝑂

(
(∑𝑖 |N (𝑞𝑖) | + |N (𝑞) |) · log

1

𝜀

)
.

Next, we show that, by a careful strategy for constructing the

super queries,

∑
𝑖 |N (𝑞𝑖) | can be bounded by𝑂 (log

𝑑 𝑁). Therefore,
the above overall cost remains 𝑂 (log

𝑑 𝑁 · log
1

𝜀) as before.
Constructing the Super Queries. To construct a super query 𝑞𝑖 , we

conceptually “truncate” all the base trees in IncSegTree at the level of
2
𝑖
for 𝑖 ∈ {1, 2, . . . , ⌊log

1

𝜀 ⌋}. Particularly, the root is at level-0. We

traverse this “truncated” IncSegTree as if we compute the canonical

node set for 𝑞. Specifically, consider a currently visited “leaf” node𝑢

(at level-2
𝑖
) in a base tree on dimension 𝑗 . If the associated range of

𝑢 intersects with 𝑅 𝑗 (𝑞), the projection of 𝑅(𝑞) on the 𝑗 th dimension,

then recurse into the base tree on next dimension if 𝑗 < 𝑑 or add 𝑢

to a temporary set K(𝑞𝑖) if this is the last layer, i.e., 𝑗 = 𝑑 . Finally,

we set 𝑅(𝑞𝑖) = ∪𝑢∈K (�̃�𝑖)𝑅(𝑢) and then compute the canonical node

set N(𝑞𝑖) of 𝑞𝑖 in the truncated IncSegTree.

Example 5. Figure 5 shows an example of the super queries and
their canonical sub-ranges. 𝑞81 and 𝑞82 are super queries of 𝑞8 when
the truncation level are 2 and 4. To construct the super query 𝑞81 of
𝑞8 at level 2, the traversal on the base tree on the first dimension in
Figure 2(a) stops at the three nodes with ranges [0, 8), [8, 16) and
[16, 20]. As for the second dimension, the traversal stops at two nodes
with ranges [0, 8) and [8, 16) in Figure 2(b). So the 𝑅(𝑞81) = [0, 20) ×
[0, 16). Likewise, the 𝑅(𝑞82) = [2, 18) × [6, 16). Moreover, as the next
shrinking would be at level 2

3 = 8 which is larger than the height
⌈log

2
𝑁 ⌉ = 5 of the entire IncSegTree, the truncated tree is the tree

itself. Thus, the DT instance of the next super query 𝑞83 degenerates
back to 𝐷𝑇 (𝑞8) (but with a smaller threshold).

As per the above construction, three properties hold for all 𝑞𝑖 :

(i) |N (𝑞𝑖) | = 𝑂

(
(2𝑖)𝑑

)
, (ii) |N (𝑞𝑖) | ≤ |N (𝑞) |, and (iii) 𝑅(𝑞𝑖) ⊇

𝑅(𝑞). As a result, by (iii), each 𝑞𝑖 is a valid super query of 𝑞. By

(i) and (ii), we have

∑
𝑖 |N (𝑞)𝑖 | = 𝑂 (∑𝑖 (2𝑖)𝑑) = 𝑂 (|N (𝑞) |) =

𝑂 (log
𝑑 𝑁). Therefore, the overall cost of running 𝐷𝑇 (𝑞) with the

Range Shrinking technique is still bounded by 𝑂 (log
𝑑 𝑁 · log

1

𝜀).
Space Consumption. Since the Range Shrinking process needs to

collect the precise counter sum for the query 𝑞, the IncSegTree still
has to materialize 𝑂 (|N (𝑞) |) nodes for 𝑞 to support this operation.

Also, the IncSegTree needs to materialize𝑂 (|N (𝑞𝑖) |) nodes for each
super query 𝑞𝑖 . Nonetheless, as per the analysis of the running time,

the total number of all these nodes is at most𝑂 (log
𝑑 𝑁). The overall

space consumption 𝑂 (𝑚
alive
· log

𝑑 𝑁) bound does not change.

Benefits. First, in terms of running time, most counter increments

out of 𝜏 (𝑞) are tracked with a considerably smaller DT instance

𝐷𝑇 (𝑞𝑖). It also provides a chance of “early termination”, in the

sense that an 𝜀-maturity of 𝑞 can be captured even without actually

running𝐷𝑇 (𝑞). Hence, the actual running time can be substantially

reduced. Second, in terms of space consumption, it consists of two

main parts: (i) the space of the base tree of IncSegTree, and (ii)

the space of all the DT instances. As for the base tree, while in

theory IncSegTree needs to materialize 𝑂 (𝑚 · log
𝑑 𝑁) nodes for𝑚

queries, in practice these nodes are largely shared such that the

actual number of the nodes materialized is often much smaller. In

contrast, the space bound on the total size of all the DT instances,

i.e., 𝑂 (𝑚 log
𝑑 𝑁), is pretty solid, as the sizes cannot be shared:

one has to store 𝑞 in each of the nodes in N(𝑞). Thus, the space
consumption is dominated by the total size of the DT instances.

Our Range Shrinking technique can keep each DT instance small

most of the time. More importantly, it makes the peak memory
usage of each DT instance asynchronous, in the sense that, the

DT instances seldom have their maximum sizes, i.e., running with

|N (𝑞) | participants at the same time. Our experimental results show

that, the Range Shrinking technique can effectively reduce both the
actual running time and space consumption of FastRTS .

6.2 The Range Counting Technique
As aforementioned, the Range Shrinking technique allows Fas-
tRTS to run DT with super queries and thus, reduce the actual

space consumption by asynchronizing the peak memory usage of

the DT instances. However, the IncSegTree still has to materialize

𝑂 (|N (𝑞) |) nodes for each query 𝑞 so as to support the collection of

precise counter increment for the range 𝑅(𝑞). In other words, even

though an 𝜀-maturity of 𝑞 can be captured by the DT instance of

11

some super query, the nodes of N(𝑞) still have to be materialized.

Therefore, the overall memory footprint (i.e., the peak memory us-

age) may not be desired, especially when the number𝑚 of queries is

large. Next, we propose an optimization, called the Range Counting
technique, to address this issue.

The basic idea is to make the IncSegTree “purely incremental”.
Instead of materializing those 𝑂 (|N (𝑞) |) nodes for 𝑞 when 𝑞 is

registered, it just materializes the nodes for the super query 𝑞𝑖
whose DT instance is currently running for 𝑞 and those nodes for

𝑞’s previous super queries 𝑞 𝑗 for all 𝑗 < 𝑖 . However, the challenge

is to support finding precise counter increments in the range 𝑅(𝑞).
Our solution to this challenge is to maintain a standard Range

Tree [13] on the stream elements to support range counting’s, which
are to report the total weight sum of all the points (in the tree)

falling into the given range. Roughly speaking, this Range Tree

T𝑟 is constructed from an empty tree. As each stream element 𝑒

arrives, insert the point 𝑣 (𝑒) with weight 𝑤 (𝑒) into T𝑟 . When T𝑟
has more than 𝑐 ·𝑚

alive
(for some constant 𝑐 > 0) points, destroy

T𝑟 (all the current points are discarded) and maintain T𝑟 from an

empty tree for the subsequent elements. The concrete algorithm

works as follows.

• For each query 𝑞, maintain two information:

– 𝑠 (𝑞): the weight sum of the points falling in 𝑅(𝑞) in the cur-

rent Range Tree at the moment when 𝑞 is registered; if the

current Range Tree is constructed (from an empty tree) after

𝑞’s registration, 𝑠 (𝑞) = 0;

– 𝑠prv (𝑞): the total counter increments for 𝑅(𝑞) in the previous
Range Trees which have been destroyed after 𝑞’s registration;

if there is no such Range Tree, 𝑠prv (𝑞) = 0.

Therefore, the total counter increments happened in 𝑅(𝑞) so far

can be calculated by 𝑠 (𝑞)−𝑠 (𝑞)+𝑠prv (𝑞), where 𝑠 (𝑞) is the weight
sum of the points in the current Range Tree T𝑟 falling in 𝑅(𝑞).
• When a query 𝑞 is registered,

– perform a range counting for 𝑅(𝑞) in T𝑟 to obtain 𝑠 (𝑞), and
initialize 𝑠prv (𝑞) ← 0;

– run 𝐷𝑇 (𝑞) with the Range Shrinking technique, yet the Inc-
SegTree is now purely incremental;

• When a stream element 𝑒 arrives, invoke Algorithm 5.

Example 6. Let us revisit Example 4. Suppose that the Range Tree
T𝑟 is rebuilt for every𝑚alive = 8 elements, i.e., 𝑐 = 1. Now we revisit
some special moments. When 𝑞8 is registered, we have 𝑠 (𝑞8) = 40

and 𝑠𝑝𝑟𝑣 (𝑞8) initialized as 0. When 𝑒6 arrives, the first super query
𝑞81 (of 𝑞8) matures. At this moment, we need to compute the actual
counter increment Δ(𝑞8) happened in 𝑅(𝑞8) for safety check (Line 8

in Algorithm 4). Thus, a range counting for 𝑅(𝑞8) is performed to
obtain the current counter sum 𝑠 (𝑞8) in T𝑟 and we have 𝑠 (𝑞8) = 75.
As a result, Δ(𝑞8) = 𝑠 (𝑞8) − 𝑠 (𝑞8) + 𝑠𝑝𝑟𝑣 (𝑞8) = 35. And then, the DT
instance of the next super query, 𝐷𝑇 (𝑞82), starts. When 𝑒8 arrives,
the Range Tree T𝑟 needs to be rebuilt. Specifically, for each alive query
𝑞, it performs a range counting for 𝑅(𝑞) in T𝑟 , and then updates
𝑠 (𝑞) and 𝑠𝑝𝑟𝑣 (𝑞) accordingly. As such, for 𝑞8, 𝑠 (𝑞8) = 85; and then
𝑠𝑝𝑟𝑣 (𝑞8) ← 𝑠 (𝑞8) − 𝑠 (𝑞8) + 𝑠prv = 45 and 𝑠 (𝑞8) ← 0. When 𝑒13

arrives, the second super query 𝑞82 matures; and at this time, in the
current Range Tree T , 𝑠 (𝑞8) = 45. So the actual counter increment is
Δ(𝑞8) = 90 ≥ (1 − 𝜀) · 𝜏 . Hence, 𝑞8 is 𝜀-matured.

Algorithm 5: Procedure for New Stream Element

Data: a stream element 𝑒 arrives

1 process 𝑒 with the IncSegTree as before;
2 for each 𝐷𝑇 (�̃�) that is 𝜀′-matured do
3 perform a range counting for 𝑅 (𝑞) to obtain 𝑠 (𝑞) in T;
4 calculate the actual counter increment in 𝑅 (𝑞) by

Δ(𝑞) = 𝑠 (𝑞) − 𝑠 (𝑞) + 𝑠prv (𝑞) ;
5 if 𝜏 (𝑞) − Δ(𝑞) ≤ 𝜀 · 𝜏 (𝑞) then
6 report the 𝜀-maturity of 𝑞;

7 else
8 shrink the super query �̃� following Algorithm 4;

9 insert 𝑣 (𝑒) with weight 𝑤 (𝑒) to the current Range Tree T;
10 if T contains more than 𝑐 ·𝑚alive points then
11 for each alive query 𝑞 do
12 perform a range counting for 𝑅 (𝑞) to obtain 𝑠 (𝑞) in T;
13 update 𝑠prv (𝑞) ← 𝑠 (𝑞) − 𝑠 (𝑞) + 𝑠prv (𝑞) ; 𝑠 (𝑞) ← 0;

14 destroy T and set T ← ∅;

Running Time Analysis. First, observe that when the current

Range Tree T𝑟 is destroyed, the cost of the𝑂 (𝑚alive
) range counting

operations for the alive queries can be charged to the cost of the

insertions of the Ω(𝑚
alive
) points in T𝑟 . By the standard results [13],

each range counting and each point insertion can be performed in

𝑂 (log
𝑑𝑚

alive
) time in a Range Tree with at most 𝑂 (𝑚

alive
) points.

As a result, each element can be processed in the Range Tree T𝑟
in 𝑂 (log

𝑑𝑚
alive
) = 𝑂 (log

𝑑 𝑁) amortized time. Moreover, by the

fact that the processing cost for each element in the IncSegTree is
bounded by 𝑂 (log

𝑑 𝑁), the maintenance of the Range Tree does

not affect the overall running time bound as before.

Space Consumption. By the standard results [13], it is known

that the space consumption of the Range Tree is bounded by

𝑂 (𝑚
alive
· log

𝑑−1𝑚
alive
). Furthermore, as the IncSegTree is now

purely incremental, the overall space consumption bound can be

written as𝑂 (∑
alive query 𝑞 |N (𝑞) |+𝑚alive

·log
𝑑−1𝑚

alive
). Theworst-

case bound 𝑂 (𝑚
alive
· log

𝑑 𝑁) still holds.
Benefits. By the above Range Counting technique, the space con-

sumption now is just the total size of all the DT instances for the

super queries which are run so far plus the space of the Range Tree.

Therefore, this space consumption can be substantially smaller than

the space of the previous IncSegTree. As shown in our ablation study
in Section 7.3, this technique can significantly improve the perfor-
mance of FastRTS by orders of magnitude in terms of both overall
running time and the memory footprint.

7 EXPERIMENTS
The performance evaluation of our FastRTS consists of four parts.
First, we conduct comprehensive experiments on synthetic datasets

with dimensionality 𝑑 = 1, 2, 3, 4. Second, we run experiments on

real stock trading data. Third, we perform an ablation study on our

proposed optimization techniques. And the last part is an effective-

ness study on our bucketing technique.

12

Competitors. We compare the following methods. All methods

are implemented in C++ and complied by gcc 9.3.0 with flag O3

turned on. The source code is at [1].

• FastRTS : Our FastRTS equipped with both the Range Shrinking

and Range Counting techniques.

• QGT : the state-of-the-art QGT algorithm.

• SegInv: a conventional stabbing-based approach with a Segment-

Interval tree [13] which is a Segment Tree with an Interval Tree

as the base tree on the last dimension.

• Rtree: another conventional stabbing-based approach with an

R-tree [5, 17].

Machine and OS. All of the experiments were conducted on a

machine equipped with an Intel Xeon(R) W-2145 CPU @ 3.70GHz

and 100GB RAM running Ubuntu 20.04.3.

Evaluation Metric. We evaluate the performance of an algorithm

by measuring the overall running time and the peak memory usage
(i.e., the memory footprint). A competitor algorithm may not have

experimental results in certain diagram with tasks under certain

parameter settings. This is because either the algorithm fails to

complete the task within 10 hours (i.e., 36000 seconds), or its peak

memory usage exceeds 100GB breaking down our machine.

Data Generation. In all the experiments, data are generated as

follows, unless specified otherwise in the experiment setup.

Element Generation. For each element 𝑒 , the value 𝑣 (𝑒) is a point
uniformly at random picked inU𝑑 , and the weight𝑤 (𝑒) = ⌊𝑥 +0.5⌋,
where 𝑥 is sampled from the Gaussian distribution with 𝜇 = 10 and

𝜎 = 1. If𝑤 (𝑒) ∉ U, generate𝑤 (𝑒) again.
Query Generation. All queries have a same threshold 𝜏 = 𝑚. The

range 𝑅(𝑞) of each query 𝑞 is a hypercube (rsp., an interval when

𝑑 = 1 and a square when 𝑑 = 2) in U𝑑 , whose volume is 1% of the

entire data space. That is, the side length of 𝑅(𝑞) is ℓ = 0.01

1

𝑑 𝑁 .

Given a 𝑑-dimensional point ®𝑧 as a seed, the center of the range
𝑅(𝑞) is generated by a 𝑑-dimensional Gaussian distribution with

mean ®𝜇 = ®𝑧, where all the dimensions are independent and each of

them has a same standard variance 𝜎 = 0.15ℓ√
𝑑
. In the experiments

for synthetic datasets and ablation study, we set ®𝑧 to be the center

of the entire space, that is ®𝑧 has coordinates all equal to 𝑁 /2. Note
that we will have different setting for the seed ®𝑧 in the experiments

on real data. If a generated range 𝑅(𝑞) is not fully contained in U𝑑 ,
then re-generate 𝑅(𝑞) by the same process.

Query Registrations and Terminations. As per the above query gen-

eration process, each query 𝑞 is stabbed by an element 𝑒 with

probability of 1%, and the expectation of𝑤 (𝑒) is 10. As a result, in

expectation, 𝑞 will be matured after
𝜏

1%·10
= 10𝜏 elements since its

registration. However, at each of these 10𝜏 time stamps, we set 𝑞 to

have probability 𝑝 to be terminated before its maturity. This proba-

bility 𝑝 is set properly such that the probability that 𝑞 remains alive

for 10𝜏 time stamps without being terminated is 20%. As for query

registrations, all the experiments are with a hot-start setup, that
is, there are𝑚 queries registered at time stamp 0 at the beginning.

Since then, another𝑚 queries will be registered within the first 10𝜏

time stamps. To achieve this, we register these𝑚 queries following

a Poisson Process with an intensity of
𝑚
10𝜏 . As a result, in total 2𝑚

queries are registered. To ensure the later registered queries have

enough chance to get matured, we set the stream length as 𝑛 = 20𝜏 .

7.1 Evaluation on Synthetic Data
Parameter Settings. We conduct experiments on synthetic

datasets with the following parameter settings, where K= 10
3
and

M= 10
6
. The default value of each parameter is highlighted in bold.

When varying a parameter, all the others are set to their default

values.

• 𝑁 = |U| = 10M, 𝜏 =𝑚, 𝑛 = 20𝜏 , 𝑑 ∈ {1, 2, 3, 4}
• for 𝑑 = 1 or 2,𝑚 ∈ {500K, 1M, 2M, 5M, 10M}
• for 𝑑 = 3,𝑚 ∈ {200K, 500K, 1M, 2M, 5M}
• for 𝑑 = 4,𝑚 ∈ {100K, 200K, 500K, 1M, 2M}
• 𝜀 ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
Comparisons on Overall Running Time. Figures 6 (a) - (d) show
the overall running time of all methods when varying𝑚 on different

dimensionality 𝑑 , and we have the following observations. First, our

FastRTS is the only one that can complete all the experiment tasks.

Second, over all the four dimensionalities, FastRTS consistently

outperforms QGT by around an order of magnitude. Third, Fas-
tRTS outperforms the two conventional stabbing-based approaches

by up to three (for 𝑑 = 1) and two (for 𝑑 = 2) orders of magnitude.

In particular, while FastRTS can complete the running tasks with

the default𝑚 within 100 seconds for 𝑑 = 1 (rsp., 1000 seconds for

𝑑 = 2), these two competitors require about 10 hours for SegInv
and even more for Rtree. This nicely verifies the superiority of our

theoretical running time bound. Furthermore, QGT is also up to 10

times faster than these two methods. However, when 𝑑 ≥ 3, Rtree
and SegInv start becoming competitive to FastRTS . In particular,

FastRTS even slightly loses to SegInv when 𝑑 = 4, for two possible

reasons: the dataset sizes are considerably small when 𝑑 ≥ 3, as we

hope to have more competitors completing the running tasks; with

𝑑 increasing, the poly-logarithmic gets worse exponentially, which

severely impacts the performance of both FastRTS and QGT .

Furthermore, Figures 6(e) - (h) show the running time when

varying 𝜀. From these figures, FastRTS clearly outperforms all the

other competitors who completed the running tasks when 𝑑 ≤ 3.

But FastRTS is inferior to SegInvwhen 𝑑 = 4. Moreover, as expected,

all the four competitors run faster when 𝜀 increases.

Comparisons on Peak Memory Usage. As shown in Figure 7,

Rtree is the most space-efficient because the space complexity of

Rtree is just 𝑂 (𝑚). However, as aforementioned, Rtree is also the

slowest among the four. On the other hand, the peakmemory usages

of both SegInv and QGT increase quickly with the dimensionality 𝑑

increasing; both quickly use up the 100GB memory on relatively

small datasets: 𝑑 = 3 with 𝑚 = 2M and 𝑑 = 4 with 𝑚 = 0.5M

for QGT and 𝑚 = 1M for SegInv. In contrast, the peak memory

usages of our FastRTS on these settings are much more friendly;

they are: 5.77GB, 9.11GB and 20GB, respectively. Thememory usage

trend of FastRTS increases much slower than these two algorithms.

From Figure 7, on some settings, FastRTS outperforms these two

algorithms by up to two orders of magnitude.

In summary, in these synthetic experiments, FastRTS is much

more scalable and stable over all various settings than the others

competitors, in terms of both running time and space consumption.

7.2 Evaluations on Real Stock Trading Data
Data Description. We run experiments on the real trading his-

tory of two Stocks, A and B. These data [1] are the transactions of

13

FastRTS QGT SegInvRtree

10
1

10
2

10
3

10
4

10
5

0.5 1 2 5 10

m (×10
6
)

time (sec)

10
2

10
3

10
4

10
5

0.5 1 2 5 10

m (×10
6
)

time (sec)

10
2

10
3

10
4

10
5

0.2 0.5 1 2 5

m (×10
6
)

time (sec)

10
2

10
3

10
4

10
5

0.1 0.2 0.5 1 2

m (×10
6
)

time (sec)

10
2

10
3

10
4

10
5

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

10
3

10
4

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

10
3

10
4

10
5

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

10
3

10
4

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

(a) 𝑑 = 1 (b) 𝑑 = 2 (c) 𝑑 = 3 (d) 𝑑 = 4 (e) 𝑑 = 1 (f) 𝑑 = 2 (g) 𝑑 = 3 (h) 𝑑 = 4

Figure 6: Overall running time v.s.𝑚 [(a) - (d)] and v.s. 𝜀 [(e) - (h)] on synthetic datasets

 0

 2

 4

 6

 8

 10

0.5 1 2 5 10
m (×10

6
)

space (GB)

 0

 20

 40

 60

 80

 100

0.5 1 2 5 10
m (×10

6
)

space (GB)

 0

 20

 40

 60

 80

 100

0.2 0.5 1 2 5
m (×10

6
)

space (GB)

 0

 20

 40

 60

 80

 100

0.1 0.2 0.5 1 2
m (×10

6
)

space (GB)

(a) 𝑑 = 1 (b) 𝑑 = 2 (c) 𝑑 = 3 (d) 𝑑 = 4

Figure 7: Peak memory usage v.s.𝑚 on synthetic datasets

10
1

10
2

10
3

10
4

10
5

0.5 1 2 5 10

m (×10
6
)

time (sec)

10
1

10
2

10
3

10
4

10
5

0.5 1 2 5 10

m (×10
6
)

time (sec)

10
1

10
2

10
3

10
4

10
5

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

10
2

10
3

10
4

10
5

0.01 0.02 0.05 0.1 0.2
ε

time (sec)

(a) 𝑑 = 1 (b) 𝑑 = 2 (c) 𝑑 = 1 (d) 𝑑 = 2

Figure 8: Running time v.s.𝑚 and v.s. 𝜀 on real datasets

 0

 1

 2

 3

 4

 5

0.5 1 2 5 10
m (×10

6
)

space (GB)

 0

 10

 20

 30

 40

 50

 60

0.5 1 2 5 10
m (×10

6
)

space (GB)

 0.5

 1

 1.5

 2

 2.5

0.01 0.02 0.05 0.1 0.2

ε

space (GB)

 0

 5

 10

 15

 20

 25

0.01 0.02 0.05 0.1 0.2

ε

space (GB)

(a) 𝑑 = 1 (b) 𝑑 = 2 (c) 𝑑 = 1 (d) 𝑑 = 2

Figure 9: Peak memory usage v.s.𝑚 and v.s. 𝜀 on real datasets

Stock A (rsp. Stock B) in 2015-2021. For each transaction of A, we

extract a stream element 𝑒 with 𝑣 (𝑒) equal to the price and 𝑤 (𝑒)
equal to the volume (i.e., number of shares). Thus, a 1-dimensional

stream w.r.t. the transaction history of A is generated. To generate

a 2-dimensional stream, for each element 𝑒 generated for the trans-

action of A, we search the predecessor transaction of B in terms of

time stamp, and extract the price 𝑡 in this transaction of B as the

second dimension value of 𝑒 . Thus, a 2-dimensional element 𝑒′ with
value 𝑣 (𝑒′) = (𝑣 (𝑒), 𝑡) and weight𝑤 (𝑒′) = 𝑤 (𝑒) is generated.
Query Generation. The queries in this set of experiments are

generated in the same way as before. Here, the seed ®𝑧 is set as the
average of all the element points for the first𝑚 queries which will

be registered at the beginning; ®𝑧 is set as the 𝑖th element point if a

query is generated to be registered at time stamp 𝑖 .

Parameter Settings (on the real stock trading data).

• 𝑁 = |U| = 100K, 𝜏 =𝑚, 𝑛 = 20𝜏

• 𝑑 ∈ {1, 2}
• 𝑚 ∈ {500K, 1M, 2M, 5M, 10M}
• 𝜀 ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
Overall Running Time. Figures 8 (a) and (b) show the results of

the overall running time v.s.𝑚, the number of queries on the real

datasets. As expected, FastRTS is consistently the fastest on both𝑑 =

1 and 𝑑 = 2. Interestingly, while QGT is the second best performer

on 𝑑 = 1, it is outperformed by SegInv on 𝑑 = 2. At first glance, this

looks inconsistent with the comparisons on the synthetic datasets.

We find this is caused by the element weights. Although the query

thresholds 𝜏 ’s in both experiments have similar values, the average

weight of the elements are quite different. Specifically, the average

element weight of the real data is about 400; the expected weight

of the elements in synthetic datasets is 10. As a result, although

the two 𝜏 have the same value, the effective threshold in the real

data is much smaller. Recall that the time complexity of SegInv is
often dominated by 𝑂 (𝑚 · 𝜏), so with an effectively much smaller

𝜏 , SegInv’s performance gets better. Furthermore, from Figures 8 (c)

and (d), all the algorithms run faster with larger 𝜀 as expected.

Peak Memory Usage. As shown in Figure 9, the peak memory

usage comparisons on the real datasets are consistent with those

on the synthetic ones on 𝑑 = 1 and 𝑑 = 2 (shown in Figure 7 (a)

and (b)). Specifically, the space consumption of the QGT algorithm

is consistently the largest with a clear gap from those of the other

three competitors. Observe that the space consumption of SegInv
is smaller than that of Rtree on 𝑑 = 1, since both the space con-

sumptions of them are linear to 𝑚 in this case. However, when

𝑑 = 2, this ranking reverses, as the space consumption bound of

Rtree is not affected by 𝑑 but that of SegInv grows exponentially

fast with 𝑑 . Interestingly, despite of the theoretical space bound

which also grows exponentially with 𝑑 , the peak memory usage

of our FastRTS is consistently between those of SegInv and Rtree,
and very close to the winner between the two in both the cases of

𝑑 = 1 and 𝑑 = 2. This is because our optimization techniques enable

FastRTS to avoid the worst case, and hence, perform much better in

practice than as the theoretical bound suggests. This clearly shows

the effectiveness of our optimization techniques.

7.3 Ablation Study
The third set of experiments is an ablation study on the effectiveness

of our optimization techniques. The competitors in these experi-

ments are the variants of FastRTS only. In addition to the “fully-

geared” FastRTS , we also consider (i) FastRTS-RS that is equipped
with the Range Shrinking technique only, and (ii) FastRTS-Vanilla
that is the raw version of the algorithm.

Moreover, it is worth mentioning that in these experiments,

we intended to use small𝑚 to minimize its impact to the actual

performance so as to we could have a clearer view on the impact

of the universe size 𝑁 . The parameter setting is as follows:

• 𝜏 =𝑚, 𝑛 = 20𝜏 , 𝜀 = 0.05

• 𝑁 ∈ {1K, 10K, 100K, 1M, 10M, 100M, 1000M}
• for 𝑑 = 2,𝑚 ∈ {10K, 20K, 50K, 100K, 200K, 500K}
• for 𝑑 = 3,𝑚 ∈ {2K, 5K, 10K, 20K, 50K, 100K}
Overall Running Time. From Figures 10(a) - (d), with no surprise,

the fully-geared FastRTS consistently outperforms the other two

versions by up to two orders of magnitude, in terms of efficiency.

14

FastRTS FastRTS-RSFastRTS-Vanilla

10
-1

10
0

10
1

10
2

10
3

10 20 50 100 200 500

m (×10
3
)

time (sec)

10
-1

10
0

10
1

10
2

10
3

2 5 10 20 50

m (×10
3
)

time (sec)

10
2

10
3

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

time (sec)

10
1

10
2

10
3

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

time (sec)

 0

 2

 4

 6

 8

 10

 12

 14

10 20 50 100 200 500

m (×10
3
)

space (GB)

 0

 20

 40

 60

 80

 100

2 5 10 20 50

m (×10
3
)

space (GB)

 0

 20

 40

 60

 80

 100

10
3
 10

4
10

5
10

6
10

7
10

8
10

9

N

space (GB)

 0

 20

 40

 60

 80

 100

10
3
 10

4
10

5
10

6
10

7
10

8
10

9

N

space (GB)

(a) 𝑑 = 2 (b) 𝑑 = 3 (c) 𝑑 = 2 (d) 𝑑 = 3 (e) 𝑑 = 2 (f) 𝑑 = 3 (g) 𝑑 = 2 (h) 𝑑 = 3

Figure 10: Ablation Study on running time v.s.𝑚 and 𝑁 [(a) - (d)], and on space v.s.𝑚 and 𝑁 [(e) - (h)]

This clearly shows the significance of the two optimization tech-

niques on improving the efficiency. Moreover, FastRTS-RS is faster
than the raw FastRTS-Vanilla on all settings. However, the gap is

just not as significant. A possible explanation is that although the

Range Shrinking technique allows FastRTS-RS to track a consid-

erable portion of counter increments out of 𝜏 (𝑞) with relatively

smaller DT instances, materializing all the nodes in N(𝑞) is still
a considerable burden on the overall running time. On the other

hand, this is actually a strong evidence of the effectiveness of Range

Counting technique. Apart from this, from Figures 10(c) and (d), we

can see that the running time of FastRTS is not affected by the uni-

verse size 𝑁 as much as suggested by the theoretical bound. Once

again, another evidence of the effectiveness of our optimizations.

Peak Memory Usage. As shown in Figures 10(e) - (h), the fully-

geared one is always far at the bottom with a dramatic gap from

the other two versions. The capability of avoiding materializing the

nodes in N(𝑞) of our Range Counting technique is just powerful.
While FastRTS-RS is also largely better than the vanilla version on

space consumption, for 𝑁 = 100M, it still has to run out of the

100GB memory even just on𝑚 = 50K when 𝑑 = 3.

From all the above comparisons in the ablation study, the fully-

geared FastRTS is way better than the other, showing that our

optimizations are extremely effective.

7.4 Effectiveness of the Bucketing Technique
Last, we conduct an experiment to study the general practical ef-

fectiveness of our bucketing technique on running overlapped DT

instances simultaneously.

Experiment Setup. In this experiment, we first generate𝑚 DT

instances, where𝑚 is varied in {1K, 10K, 100K, 1M, 10M}. Each DT

instance has 100 participants randomly chosen from the total 1000

participants, and the threshold 𝜏 is uniformly at random chosen

from the integer range [100K, 1M]. The goal is to capture their exact
maturity. Furthermore, at each time stamp, we randomly select

one of the 1000 participants to increase its counter by a random

increment𝑤 uniformly chosen from {1, 2, . . . , 31}. Whenever a DT

instance matures, we generate a new instance in the same way until

in total another𝑚 DT instances have been generated. We measure

the overall running time when all these 2𝑚 DT instances mature for

both our bucketing technique (called Bucket) and the heap-method

(called Heap), respectively.
Figure 11 shows the overall running time of Bucket and Heap v.s.

𝑚. When𝑚 = 1000, the overall running time of the two methods

are almost the same, while with𝑚 increasing, the performance gap

becomes larger and larger. Especially, when𝑚 = 10
7
, Bucket outper-

forms Heap by up to an order of magnitude. This is because, with

a larger𝑚, the average number of DT instances that a participant

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

m

time (sec)

Bucket

Heap

Figure 11: Effectiveness Study on Bucket and Heap

involves becomes larger. Hence, the average length 𝐿 of the heaps in

Heap is larger, making each heap operation become more expensive.

Recall that the overall cost of Heap is bounded by 𝑂 (𝑐𝑜𝑠𝑡
dt
· log𝐿),

while the overall cost of Bucket is𝑂 (𝑐𝑜𝑠𝑡
dt
), where 𝑐𝑜𝑠𝑡

dt
is the total

“communication cost” of all the DT instances. Therefore, it clearly

shows the superiority of our bucketing technique over Heap in run-

ning overlapped DT instances simultaneously. On the other hand, as

aforementioned, running overlapped DT instances simultaneously

has been found useful for solving various problems. The general

applicability of our bucketing technique is just as significant.

8 CONCLUSION
In this paper, we propose a new algorithm, called FastRTS , for solv-
ing the approximate Range Thresholding (RT) problem. In theory,

FastRTS improves the state of the art by reducing the exponential

dependence on the data dimensionality 𝑑 for the logarithmic factor,

yet with a sacrifice of slightly increasing the logarithmic term. The

crucial idea to make this improvement is our bucketing technique,
which helps remove the logarithmic overhead caused by the use

of heaps. Our bucketing technique is also applicable to eliminate a

logarithmic overhead for all those algorithms in similar scenarios.

We further propose two extremely effective optimizations to signifi-

cantly boost the performance of FastRTS . Experimental results show

that FastRTS outperforms the competitors by orders or magnitude

in terms of both overall running time and space consumption.

ACKNOWLEDGEMENT
In this work, JunhaoGan is supported in part byAustralian Research

Council (ARC) Discovery Early Career Researcher Award (DECRA)

DE190101118; Zhifeng Bao is supported in part by ARC Discovery

Project (DP) DP220101434 and DP200102611; and Guangyong Chen

is supported in part by the National Natural Science Foundation of

China (Project No. 62006219).

15

REFERENCES
[1] [n.d.]. FastRTS source code and experiment dataset. https://github.com/

zhuozhang-cn/FastRTS.

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.

2003. Aurora: a new model and architecture for data stream management. The
VLDB Journal 12, 2 (2003), 120–139.

[3] Arvind Arasu and Jennifer Widom. 2004. A Denotational Semantics for Continu-

ous Queries over Streams and Relations. SIGMOD Record 33, 3 (2004), 6–12.

[4] Lars Arge and Jan Vahrenhold. 2004. I/O-efficient dynamic planar point location.

Comput. Geom. 29, 2 (2004), 147–162. https://doi.org/10.1016/j.comgeo.2003.04.

001

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rectan-

gles. In Proceedings of the 1990 ACM SIGMOD International Conference on Manage-
ment of Data, Atlantic City, NJ, USA, May 23-25, 1990, Hector Garcia-Molina and

H. V. Jagadish (Eds.). ACM Press, 322–331. https://doi.org/10.1145/93597.98741

[6] Jon Louis Bentley and James B. Saxe. 1980. Decomposable Searching Problems

I: Static-to-Dynamic Transformation. J. Algorithms 1, 4 (1980), 301–358. https:

//doi.org/10.1016/0196-6774(80)90015-2

[7] Larry Carter and Mark N. Wegman. 1979. Universal Classes of Hash Functions.

J. Comput. Syst. Sci. 18, 2 (1979), 143–154. https://doi.org/10.1016/0022-0000(79)

90044-8

[8] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ:

A Scalable Continuous Query System for Internet Databases. In Proceedings of
ACM Management of Data (SIGMOD). 379–390.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, 3rd Edition. MIT Press. http://mitpress.mit.

edu/books/introduction-algorithms

[10] Graham Cormode, S. Muthukrishnan, and Ke Yi. 2011. Algorithms for distributed

functional monitoring. ACM Trans. Algorithms 7, 2 (2011), 21:1–21:20. https:

//doi.org/10.1145/1921659.1921667

[11] Graham Cormode, S. Muthukrishnan, and Ke Yi. 2011. Algorithms for Distributed

Functional Monitoring. ACM Trans. Algorithms 7, 2, Article 21 (March 2011),

21:1–21:20 pages.

[12] Gianpaolo Cugola andAlessandroMargara. 2012. Processing flows of information:

From data stream to complex event processing. Comput. Surveys 44, 3 (2012), 15.
[13] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.

2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
https://www.worldcat.org/oclc/227584184

[14] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun

Sharma, and Walker M. White. 2007. Cayuga: A General Purpose Event Moni-

toring System. In Proceedings of Biennial Conference on Innovative Data Systems
Research (CIDR). 412–422.

[15] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. 2004. Towards an Internet-

Scale XML Dissemination Service. In Proceedings of Very Large Data Bases (VLDB).
612–623.

[16] Françoise Fabret, Hans-Arno Jacobsen, François Llirbat, João L. M. Pereira, Ken-

neth A. Ross, and Dennis Shasha. 2001. Filtering Algorithms and Implementation

for Very Fast Publish/Subscribe. In Proceedings of ACM Management of Data
(SIGMOD). 115–126.

[17] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA,
June 18-21, 1984, Beatrice Yormark (Ed.). ACM Press, 47–57. https://doi.org/10.

1145/602259.602266

[18] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan. 2015. Real time person-

alized search on social networks. In ICDE. 639–650.
[19] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Raman.

2002. Continuously adaptive continuous queries over streams. In Proceedings of
ACM Management of Data (SIGMOD). 49–60.

[20] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. 2001.

Monitoring XML Data on the Web. In Proceedings of ACM Management of Data
(SIGMOD). 437–448.

[21] Norman W. Paton and Oscar Díaz. 1999. Active Database Systems. Comput.
Surveys 31, 1 (1999), 63–103.

[22] Miao Qiao, Junhao Gan, and Yufei Tao. 2016. Range Thresholding on Streams. In

Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan,

Georgia Koutrika, and Sam Madden (Eds.). ACM, 571–582. https://doi.org/10.

1145/2882903.2915965

[23] Boyu Ruan, Junhao Gan, Hao Wu, and Anthony Wirth. 2021. Dynamic Structural

Clustering on Graphs. In SIGMOD ’21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos

Idreos, and Divesh Srivastava (Eds.). ACM, 1491–1503. https://doi.org/10.1145/

3448016.3452828

[24] EugeneWu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex event

processing over streams. In Proceedings of ACM Management of Data (SIGMOD).
407–418.

[25] Albert Yu, Pankaj K. Agarwal, and Jun Yang. 2012. Processing a large number of

continuous preference top-k queries. In Proceedings of ACM Management of Data
(SIGMOD). 397–408.

16

https://github.com/zhuozhang-cn/FastRTS
https://github.com/zhuozhang-cn/FastRTS
https://doi.org/10.1016/j.comgeo.2003.04.001
https://doi.org/10.1016/j.comgeo.2003.04.001
https://doi.org/10.1145/93597.98741
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/1921659.1921667
https://doi.org/10.1145/1921659.1921667
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/2882903.2915965
https://doi.org/10.1145/2882903.2915965
https://doi.org/10.1145/3448016.3452828
https://doi.org/10.1145/3448016.3452828

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The RT Problem Formulation
	2.2 Loosely Related Work
	2.3 Distributed Tracking
	2.4 The Segment Tree
	2.5 The State-of-the-Art RT Algorithm

	3 An Overview of Our Algorithm
	4 The QEP Module
	5 The DT Manager Module
	5.1 A New DT Algorithm
	5.2 The Bucketing Technique
	5.3 Theoretical Analysis

	6 Effective Optimizations
	6.1 The Range Shrinking Technique
	6.2 The Range Counting Technique

	7 Experiments
	7.1 Evaluation on Synthetic Data
	7.2 Evaluations on Real Stock Trading Data
	7.3 Ablation Study
	7.4 Effectiveness of the Bucketing Technique

	8 Conclusion
	References

