
Effective Travel Time Estimation: When Historical
Trajectories over Road Networks Matter

Haitao Yuan† Guoliang Li†,* Zhifeng Bao‡ Ling Feng†
†Department of Computer Science, Tsinghua University, China ‡RMIT University, Australia

†{yht16@mails.,liguoliang@,fengling@}tsinghua.edu.cn ‡zhifeng.bao@rmit.edu.au

ABSTRACT
In this paper, we study the problem of origin-destination (OD)
travel time estimation where the OD input consists of an OD
pair and a departure time. We propose a novel neural net-
work based prediction model that fully exploits an important
fact neglected by the literature – for a past OD trip its travel
time is usually affiliated with the trajectory it travels along,
whereas it does not exist during prediction. At the training
phase, our goal is to design novel representations for the OD
input and its affiliated trajectory, such that they are close to
each other in the latent space. First, we match the OD pairs
and their affiliated (historical) trajectories to road networks,
and utilize road segment embeddings to represent their spa-
tial properties. Later, we match the timestamps associated
with trajectories to time slots and utilize time slot embed-
dings to represent the temporal properties. Next, we build a
temporal graph to capture the weekly and daily periodicity of
time slot embeddings. Last, we design an effective encoding
to represent the spatial and temporal properties of trajecto-
ries. To bind each OD input to its affiliated trajectory, we
also encode the OD input into a hidden representation, and
make the hidden representation close to the spatio-temporal
representation of the trajectory. At the prediction phase, we
only use the OD input, get the hidden representation of the
OD input, and use it to generate the travel time. Extensive
experiments on real datasets show that our method achieves
high effectiveness and outperforms existing methods.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389771

KEYWORDS
OD travel time estimation; trajectory; road networks

ACM Reference Format:
Haitao Yuan† Guoliang Li†,* Zhifeng Bao‡ Ling Feng†. 2020.
Effective Travel Time Estimation:WhenHistorical Trajectories over
Road Networks Matter. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3318464.3389771

1 INTRODUCTION
With the advent of ride-hailing services (e.g., 30 million and
18 million ride orders per day in Didi [2] and Uber [6] re-
spectively), one of the most important operators is: given an
OD input that consists of an origin point, a destination point
and a departure time, how to estimate its travel time.
Hence, how to provide an effective OD travel time esti-

mation has drawn extensive attentions. Essentially, methods
used to solve this problem include non-learningmethods [39]
and learning-based methods [23, 27]. We review the follow-
ing phylogeny of existing techniques on OD travel time
prediction. At first, the experiments of [39] show that the
non-learning method TEMP is better than the basic learn-
ing method (linear regression LR) and other non-learning
methods. Later, the experiments in [23] show that the deep
learning method STNN beats basic learning methods (LR and
the gradient boosting decision tree based regression GBM)
and the non-learning method TEMP. Most recently, the au-
thors of [27] also propose a deep learning method MURAT
and demonstrate that deep learning methods are better than
other methods. Thus, we decide to employ deep learning
to solve this problem and our experiments also confirm the
superiority of deep learning methods.
We observe that for a given OD input of a past trip, its

travel time is actually affiliated with the trajectory it trav-
elled along, which is fairly useful in travel time estimation, as
shown in Example 1. Unfortunately, to our best knowledge,
trajectories of historical trip records have not been fully ex-
ploited by any existing deep learning work. However, it is
not trivial to design a prediction model that can fully utilize

∗Guoliang Li is the corresponding author.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2135

https://doi.org/10.1145/3318464.3389771
https://doi.org/10.1145/3318464.3389771

B

A

8:00 a.m

C

D

T4:100s

T3:150s

T1:600s

T2:600s

11:00 a.m
Figure 1: Different Trajectories for the Same OD Pair

such trajectories, due to two reasons. First, given a histor-
ical trip record, it remains a key challenge to design novel
representations for the OD input and its affiliated trajectory
respectively, such that they can be close to each other in the
latent space. Second, such trajectories are only available in
the model training phase (for past trips), while it does not
exist in the prediction phase (for a future trip request).

Example 1. As shown in Figure 1, for the same OD pair
(𝐴, 𝐵) at two departure timestamps (8:00 am and 11:00 am),
there are two different historical trajectories 𝑇1 and 𝑇2, which
have the same travel time. Existing methods [23, 27] would
learn similar representations for these two trips, because they do
not consider the difference of the trajectories and thus cannot
distinguish these two trips. Therefore, for another OD pair
(𝐶, 𝐷), they would predict that the travel time is the same for
both cases (𝑇3 and 𝑇4), which is not true in real cases.

To address the above challenges, we design a novel neu-
ral network based method DeepOD, aiming to harness the
power of historical trajectories and road networks to achieve
effective OD travel time estimation.
As for the representation of the OD input, its spatial in-

formation mainly includes GPS points (e.g., origin points,
destination points). Since vehicles can only travel on road
networks, we match the GPS points onto road segments and
then use road segment embeddings to represent the points.
Its temporal information consists of timestamps (e.g. the
departure time), where different timestamps indicate differ-
ent traffic conditions and thereby influence the travel time.
Considering the neighboring smoothness and weekly peri-
odicity of traffic conditions, we split one-week period into
disjoint time slots. Then, we build a temporal graph where
each node denotes a time slot and each edge denotes either
a neighboring time slot or a neighboring day, and initialize
the embeddings for time slots. For each timestamp, we first
map it into a time slot and then use the embedding of the
time slot to represent that timestamp. Later, we concatenate
the representations of the spatial and temporal information,
and convert them into a final representation of the OD in-
put. In addition, it is worth mentioning that our model can

incorporate more external features (if available) associated
with the OD input, such as weather and traffic condition.

As for the representation of the trajectory associated with
the OD input, we define a concept called spatio-temporal
path, to jointly represent the spatial and temporal properties.
The spatio-temporal path is a sequence, in which each ele-
ment contains a road segment and a time interval. We use
the road segment embeddings to represent the road segment,
and design an encoding model to convert the time interval
into a hidden representation based on the time slot embed-
dings. Finally, we concatenate the representations of the road
segment and the time interval, and apply a sequence model
to get the final representation.
As for applying the trained model, when given an OD

input, we first generate its representation and then use it
to generate the travel time. The process of generating this
representation is analogous to generating a proper trajectory
and thus the estimation would be more accurate.

In summary, we make the following contributions:
(1)We design a comprehensive neural networkmodel, DeepOD,
that can fully exploit historical trajectories, road networks
and external data (e.g., weather and traffic condition) for
travel time estimation (Section 3).
(2) We propose effective methods to generate hidden repre-
sentations for spatial and temporal features in an OD input
by exploiting the road network structure and the daily and
weekly periodicity (Section 4.1-Section 4.3).
(3) We propose spatio-temporal paths to jointly represent
the spatial and temporal features of a trajectory, and design
an effective encoding model to generate the representation
for the trajectory, which can be close to the representation of
its corresponding OD input in the latent space (Section 4.4).
(4) We present an algorithm to illustrate the offline training
process and the online estimation process (Section 5).
(5)We conduct a comprehensive evaluation on two real world
datasets. The results show that our method outperforms
existing approaches significantly (Section 6).

2 PROBLEM FORMULATION
Road Network. A road network is modeled as a directed,
weighted graph 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 is a vertex set and 𝐸
is an edge set. Each edge 𝑒𝑘 ∈ 𝐸 represents a road segment
while each vertex 𝑣𝑖 ∈ 𝑉 denotes an end point of a road
segment. Then, 𝑒𝑘 can be represented as ⟨𝑣1

𝑘
→ 𝑣−1

𝑘
,𝑤𝑘⟩,

where 𝑣1
𝑘
∈ 𝑉 is the first end point, 𝑣−1

𝑘
∈ 𝑉 is the last end

point and 𝑤𝑘 represents the weight (e.g. road length). For
simplicity, we denote 𝑒𝑘 as ⟨𝑣1

𝑘
, 𝑣−1

𝑘
⟩.

Trajectory. A raw trajectory is a sequence of GPS points,
and each point is denoted as ⟨[𝑥𝑖 , 𝑦𝑖], 𝑡𝑖⟩, where𝑔[𝑖] = [𝑥𝑖 , 𝑦𝑖]
denotes the spatial position and 𝑡𝑖 denotes the timestamp.
Since trajectory points should be on a road network, we align
trajectories to road segments using existing map-matching

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2136

v1

1 4.5

4

2.5

Start Point

End Point

T1

v2
v3

v4

v5

v6 v7 v8

v9

v10

v14

v11

v12 v13

T2

T3

Road Vertex

Road Segment

2

3

31.5 2 1.5

1.5 1.5

Figure 2: Example of Trajectories on a Road Network
algorithms [9, 43] that are widely adopted in trajectory ana-
lytics [40, 45]. Also, there is a time interval when a trajectory
𝑇 passes through a road segment 𝑒𝑖 . We denote the time
interval as [𝑡𝑖 [1], 𝑡𝑖 [−1]], where 𝑡𝑖 [1] and 𝑡𝑖 [−1] represent
the start and end timestamp, respectively. Specifically, we
use the linear interpolation technique to calculate 𝑡𝑖 [1] and
𝑡𝑖 [−1]. To this end, we use ⟨𝑒𝑖 , [𝑡𝑖 [1], 𝑡𝑖 [−1]]⟩ to represent
the road segment 𝑒𝑖 of a trajectory. For a trajectory, since its
origin point 𝑔[1] and destination point 𝑔[−1] may occur in
the middle of edges, we use two ratios 𝑟 [1] = |𝑣11→𝑔 [1] |

|𝑣11→𝑣−11 |
and

𝑟 [−1] = |𝑔 [−1]→𝑣−1−1 |
|𝑣1−1→𝑣−1−1 |

to capture the exact positions of𝑔[1] and
𝑔[−1] in road segments ⟨𝑣11, 𝑣−11 ⟩ and ⟨𝑣1−1, 𝑣−1−1⟩ respectively.
|· → ·| denotes the distance between two points.

Definition 1 (Trajectory). A trajectory on a road net-
work contains two parts: a spatio-temporal path and two posi-
tion ratios. The spatio-temporal path is a sequence of tuples.
Each tuple is composed of a road segment and a time interval.
We denote the spatio-temporal path by 𝑆𝑃 = ⟨⟨𝑒1, [𝑡1 [1], 𝑡1 [−1]]⟩,
· · · , ⟨𝑒𝑛, [𝑡𝑛 [1], 𝑡𝑛 [−1]]⟩⟩, and denote the two position ratios
by 𝑃𝑅 = ⟨𝑟 [1], 𝑟 [−1]⟩. Then, a trajectory is denoted as ⟨𝑆𝑃, 𝑃𝑅⟩.

Example 2. Figure 2 contains three trajectories {𝑇1,𝑇2,𝑇3}.𝑇1’s
spatio-temporal path is 𝑆𝑃𝑇1 = ⟨⟨⟨𝑣12, 𝑣13⟩, [𝑡11 [1], 𝑡11 [−1]]⟩,
· · · , ⟨𝑣10, 𝑣14⟩, [𝑡14 [1], 𝑡14 [−1]]⟩⟩; its spatial position ratio is
𝑃𝑅𝑇1 = ⟨ 1

5.5 ,
2.5
6.5 ⟩. For 𝑇2, 𝑆𝑃𝑇2 = ⟨⟨⟨𝑣12, 𝑣5⟩, [𝑡21 [1], 𝑡21 [−1]]⟩,

· · · , ⟨𝑣2, 𝑣1⟩, [𝑡26 [1], 𝑡26 [−1]]⟩⟩ and 𝑃𝑅𝑇2 = ⟨ 25 ,
3
4.5 ⟩.

Definition 2 (OD Input). Essentially, an OD input consists
of three parts: an origin point (𝑔[1]), a destination point (𝑔[−1])
and a departure time (𝑡). Optionally, we use 𝑓 to denote the
external features (if available) that may influence the travel
time, which is the fourth part.

Definition 3 (OD Travel Time Estimation). Given a
road network 𝐺 = ⟨𝑉 , 𝐸⟩ and historical trajectories T on the
road network, the problem of estimating the travel time for a
given OD input is called the OD travel time estimation problem.

An intuitive solution is to fit a function to predict the
travel time based on the given input. However, the actual tra-
jectories associated with a certain OD input is only available

MLP1

Trajectory
Encoder

main
loss

actual
time

MLP2

estimated
time

nerual network

trajectory

code

stcode

loss

auxiliary
loss

input

t

road
segment

embedding

time slot
embedding

f
External
Features
Encoder

concat

g[1]
g[-1]

ocode

U>�@��U>��@
e1, ene1, en

tptp

trtr

MOMO MEME

MTMT

Figure 3: The Model Architecture of DeepOD

Table 1: Notations
Notation Description

M𝑂 ,M𝑇 ,M𝐸 three modules in DeepOD
𝑔[1], 𝑔[−1] spatial positions of GPS points
𝑟 [1], 𝑟 [−1] position ratios of GPS points on roads

𝑡, 𝑡𝑖 , 𝑡𝑖 [1], 𝑡𝑖 [−1] timestamps
[𝑡𝑖 [1], 𝑡𝑖 [−1]] time intervals
𝑡𝑝 , 𝑡𝑝 [1], 𝑡𝑝 [−1] time slots

Δ𝑡 the size of each time slot
𝑡𝑟 , 𝑡𝑟 [1], 𝑡𝑟 [−1] time remainders

𝑂𝑠
𝑖 ,𝑂

𝑡
𝑖 one-hot encodings of roads and time slots

𝐷𝑠
𝑖 , 𝐷

𝑡
𝑖 , 𝐷

𝑠𝑡
𝑖 dense encodings of roads and time slots

Ws,Wt embedding matrices
Wi

m, 𝑏
𝑖
𝑚 matrix and bias vector parameters of MLPs

Wf ,Wi,Wo,Wc matrix parameters of the LSTM model
ℎ 𝑗 , 𝑐 𝑗 state vectors of the LSTM model

𝑏 𝑓 , 𝑏𝑖 , 𝑏𝑜 , 𝑏𝑐 bias vector parameters of the LSTM model
𝐾1, 𝐾2, 𝐾3 kernel parameters of the CNN model

Zi hidden tensor, matrix or vector representations
𝑑𝑠 , 𝑑𝑡 the second dimensional size ofWs,Wt
𝑑𝑖𝑚 the first dimensional size ofWi

m and 𝑏𝑖𝑚
𝑑ℎ the dimensional size of ℎ 𝑗 and 𝑐 𝑗

in the model training stage, while we have no actual routes in
the estimation stage. To bridge this gap, we propose a novel
neural network DeepOD that can be trained with trajectories
and used to predict travel time without trajectories.

3 AN OVERVIEW OF OUR MODEL
Figure 3 presents the architecture of our proposed model
DeepOD, which contains three modules:
(1) The first part, denoted asM𝑂 , represents the OD encod-
ing model, aiming to extract the hidden representation 𝑐𝑜𝑑𝑒
from the OD input. Here, an OD input consists of the ori-
gin point 𝑔[1], the destination point 𝑔[−1], the departure
time 𝑡 and external features 𝑓 capturing the traffic condition.
In particular, for 𝑔[1] and 𝑔[−1] that are two end points
matched on road segments, we use the corresponding road
segments (𝑒1, 𝑒𝑛) and position ratios (𝑟 [1], 𝑟 [−1]) to repre-
sent them. Then we use the road segment embedding (in

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2137

Section 4.1) to convert 𝑒1 and 𝑒𝑛 into two fixed-length vec-
tors. For the timestamp 𝑡 , we represent it by a time slot
𝑡𝑝 and a time remainder 𝑡𝑟 to better extract temporal fea-
tures, as defined in Section 4.2. Then we use the model time
slot embedding (in Section 4.2) to encode the time slot into
a fixed-length vector. Later, we design an encoding model
External Features Encoder (in Section 4.5) to encode the
external info 𝑓 (if available) into a fixed-length vector. Lastly,
we concatenate the above vectors and float values into a
vector and then use a Multilayer Perceptron model (MLP1) to
encode the vector into a hidden representation 𝑐𝑜𝑑𝑒 .
(2) The second part, denoted asM𝑇 , represents the trajec-
tory encoding model, aiming to extract the spatio-temporal
representation for a given trajectory. Specifically, we design
an encoding model Trajectory Encoder (in Section 4.4) to
learn the spatio-temporal representation 𝑠𝑡𝑐𝑜𝑑𝑒 .
(3) The third part, denoted asM𝐸 , represents the travel time
estimation model, aiming to generate the estimated travel
time based on 𝑐𝑜𝑑𝑒 . We utilize a Multilayer Perceptron model
(MLP2) to encode the vector into an estimated travel time.
Afterwards, we use some loss functions to evaluate the dif-
ference between the estimated travel time and the actual
travel time, and we denote the difference as𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 .

Here, we would like to emphasize the following challenge:
during the training stage, each training data (i.e., each his-
torical trip record) consists of an OD input and an associated
trajectory; however, in the test phase, only the OD input is
available for prediction. To tackle this challenge, we design
an auxiliary task, aiming to bimd each OD input to its corre-
sponding trajectory when training the model. In particular,
for each training input, we useM𝑂 andM𝑇 to encode the
OD input and the trajectory into 𝑐𝑜𝑑𝑒 and 𝑠𝑡𝑐𝑜𝑑𝑒 respec-
tively, and then bind 𝑐𝑜𝑑𝑒 and 𝑠𝑡𝑐𝑜𝑑𝑒 by minimizing their
distance, which is denoted as 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 . In contrast, we
only useM𝑂 to encode the OD input and then useM𝐸 to
estimate the travel time when applying the trained model.
That is, we jointly train M𝑂 , M𝑇 and M𝐸 and only use
M𝑂 andM𝐸 for estimating OD travel time. To this end, we
summarize the notations in Table 1.

4 MODEL REPRESENTATION
Recall Section 3, road segment embedding aims to con-
vert each road segment into a fixed-length vector, time
slot embedding aims to convert each timestamp into a
fixed-length vector, External Features Encoder aims to
convert external features 𝑓 into a fixed-length vector, and
Trajectory Encoder aims to encode trajectory into a fixed-
length vector. Here we will elaborate these four modules.

4.1 Road Segment Embedding
Embedding Matrix. Each road segment is identified by a
unique id, while the input of any machine learning method

v1
v2

v3

v6

v4 v5

v7

v12

v25

v57

v54

v46

v63

v31 v32

historical
trajectories

1
1

20

0

2

11

1

Figure 4:An example of converting a directed graph. In par-
ticular, if there are two edges ⟨𝑣𝑖 , 𝑣𝑘 ⟩ and ⟨𝑣𝑘 , 𝑣 𝑗 ⟩ in the left
graph, we would have an edge ⟨𝑣𝑖𝑘 , 𝑣𝑘 𝑗 ⟩ in the right graph,
where 𝑣𝑖𝑘 and 𝑣𝑘 𝑗 respectively represent ⟨𝑣𝑖 , 𝑣𝑘 ⟩ and ⟨𝑣𝑘 , 𝑣 𝑗 ⟩.
is usually a vector. One possible solution is to use a one-
hot encoding to transform each road segment id into a |𝐸 |-
dimensional vector, where the value of one particular dimen-
sion is 1 while the rest are 0. For example, if there are three
road segments in 𝐸, their one-hot codes would be [1, 0, 0],
[0, 1, 0] and [0, 0, 1] respectively. However, one-hot repre-
sentation is too sparse and the distance between any two
one-hot codes is the same, so the distance between different
road segments cannot be distinguished. To address this is-
sue, we design a fully connected neural network to embed
one-hot codes into dense vectors. Formally, the process is
represented by the formula:

[𝐷𝑠
1, 𝐷

𝑠
2, · · · , 𝐷𝑠

|𝐸 |]
T = [𝑂𝑠

1,𝑂
𝑠
2, · · · ,𝑂𝑠

|𝐸 |]
TWs (1)

where 𝑂𝑠
𝑖 ∈ {0, 1}

|𝐸 | represents the one-hot code of the 𝑖-th
road segment, 𝐷𝑠

𝑖 ∈ R𝑑𝑠 denotes the corresponding dense
vector and Ws is the weight matrix of the fully connected
neural network. In particular, the size ofWs is |𝐸 | ×𝑑𝑠 , where
𝑑𝑠 ≪ |𝐸 |. Therefore, we can learn the dense representation
of each road network by learningWs with training data.
Initialization of the Embedding. Considering that each
road segment has influences on its linked road segments,
adjacent road segments should have similar representations.
However, the dense vector cannot capture the information
of road network structure. Inspired by [27], we try to use
some popular unsupervised graph embedding techniques
(e.g., DeepWalk [30], Line [36], node2vec [16]) to generate
the initial representation for each road segment. However,
authors in [27] regard the road network as an undirected
graph and they have not elaborated how to adopt these meth-
ods to embed road segments. In contrast, we find two issues
are raised when using these graph embedding techniques.
The first one is that these methods are designed to embed
nodes while we need to embed edges. To address this issue,
as illustrated in Figure 4, we convert the road network into
a new graph, where each node represents a road segment.
The second issue is how to measure link weights for the
new graph, because link weights would influence the prob-
ability of randomly walking when using the above graph
embedding methods. Intuitively, the probability is implicit in
historical trajectories. Therefore, we count the co-occurrence
frequency of two linked road segments on the same historical

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2138

05/11 12/11 19/11 26/11
datetime(day/month)

20k

30k

40k

50k

#
 t

ra
ff

ic
 f

lo
w

road1

road2

road3

road4

(a) Weekly Periodicity

������������������

 Mon� Tue. Wed. Thu. Fri. Sat. Sun.

0

1

286

287

…

time slot
edge of

neighboring slots
edge of

neighboring day

(b) Temporal Graph

Figure 5: We select four roads from the city Chengdu of
China. Figure (a) shows the weekly periodicity on the num-
ber of traffic flows on these four roads. Figure (b) shows the
temporal graph for aweek (five-minute period for each time
slot). Each red directed line links two adjacent time slots
while each black directed line links the same time slot in
two adjacent days.

trajectories as link weights. Taking the new graph in Fig-
ure 4 as an example, the weight of ⟨𝑣46, 𝑣63⟩ is set as 2 because
both ⟨𝑣4, 𝑣6⟩ and ⟨𝑣6, 𝑣3⟩ are co-passed by two historical tra-
jectories. Afterwards, we can use the aforementioned graph
embedding methods to get the embeddings for all nodes in
the new graph. Let𝑊 0

𝑖 be the embedding of the 𝑖-th road seg-
ment, we can thereby use the matrixWs

0 = [𝑊 0
1 , · · · ,𝑊 0

|𝐸 |]
T

to initialize the value ofWs.
To summarize, we first use an unsupervised graph em-

bedding method to initialize or pre-train the road segment
embedding matrix and then fine-tune it by updating the
weights based on supervised learning.

4.2 Time Slot Embedding
As aforementioned, the departure time 𝑡 is a timestamp, and
a temporal interval [𝑡𝑖 [1], 𝑡𝑖 [−1]] contains two end times-
tamps 𝑡𝑖 [1] and 𝑡𝑖 [−1]. Therefore, we need to extract the
temporal features from 𝑡 . An intuitive approach is to regard
each timestamp as a float value and then design a Multilayer
Perceptronmodel to convert the value into a fixed-length vec-
tor. However, this approach has two drawbacks. First, each
timestamp is usually a large integer number, so the direct use
of timestamp would dominate other features. Second, there
are weekly and daily periodicity between different times-
tamps, which cannot be captured by the timestamp alone.
For example, the traffic conditions at the rush hour for dif-
ferent weekdays may be similar. To address this issue, we
propose a new method to represent timestamps.
Time Slot. First, we normalize the timestamps by converting
them into discrete time slots as defined below.

Definition 4 (Time Slot). Given a base timestamp 𝑡0 (to
keep 𝑡 − 𝑡0 ≥ 0, 𝑡0 must be no larger than any timestamp in
both training and test data) and a unit time Δ𝑡 , we can get time

intervals [𝑡0, 𝑡0 + Δ𝑡), [𝑡0 + Δ𝑡, 𝑡0 + 2Δ𝑡), · · · . These intervals
are called time slots and the size of each slot is Δ𝑡 .

For simplicity, each slot is denoted as its corresponding se-
rial number. For example, [𝑡0, 𝑡0 + Δ𝑡) is denoted as 0. By
Definition 4, a timestamp 𝑡 can be projected into a particular
time slot 𝑡𝑝 , where 𝑡 ≥ 𝑡0 and 𝑡𝑝 is calculated as below.

𝑡𝑝 = ⌊ 𝑡 − 𝑡0
Δ𝑡
⌋ (2)

To represent each timestamp in a more fine-grained way, we
record the time remainder 𝑡𝑟 for the uniqueness of 𝑡 , where
0 ≤ 𝑡𝑟 < Δ𝑡 and it is calculated as below.

𝑡𝑟 = 𝑡 − 𝑡0 − 𝑡𝑝Δ𝑡 (3)

In summary, each timestamp 𝑡 can be represented as ⟨𝑡𝑝 , 𝑡𝑟 ⟩.
Building the Temporal Graph.Next, we study how to cap-
ture temporal features by embedding time slots. However,
the number of time slots is unlimited and we cannot embed
all time slots. Considering that there are weekly periodicity
among traffic conditions (Figure 5(a) shows an example of
weekly periodicity), we can only need to focus on all time
slots of a week for simplicity. Inspired by [27], we try to
build a temporal graph for time slots and then apply graph
embedding methods to initialize the time slot embeddings.
However, the authors in [27] build an undirected graph for
time slots, which cannot capture the sequential relationship
between time slots. In addition, they neglect the link between
neighboring days, and thereby cannot capture daily period-
icity. Therefore, we design a new temporal graph, denoted
as 𝐺 ′ = ⟨𝑉 ′, 𝐸 ′⟩. For the graph, each node 𝑣 ′ ∈ 𝑉 ′ repre-
sents a time slot and edges in 𝐸 ′ can be categorized into two
groups: (1) edges for neighboring time slots, indicating that
the representations of adjacent time slots should be smooth;
(2) edges for neighboring days, meaning that the same time
slot at adjacent weekdays should be similar. Take Figure 5(b)
as an example, we first set Δ𝑡 as 5 minutes and thus each
day is split into 288 time slots. Later, we consider seven days
for a week and build the directed temporal graph (the size is
288 × 7 = 2016). At last, 𝑡𝑝 can be projected into one node
𝑣 ′ ∈ 𝑉 ′, and the serial number of 𝑣 ′ is calculated as 𝑡𝑝%2016,
where % is the remainder operator.
Embedding of Time Slots in the Temporal Graph. Sim-
ilar to road segment embedding in Section 4.1, we first lever-
age one-hot encoding to represent each time slot 𝑂𝑡

𝑖 ∈ R |𝑉
′ | ,

where |𝑉 ′ | is the number of all nodes in the temporal graph
𝐺 ′. Then we design a fully connected neural network (the
weights matrix is W𝑡 ∈ R |𝑉

′ |×𝑑𝑡) to convert each one-hot
code 𝑂𝑡

𝑖 into a fixed-length dense vector 𝐷𝑡
𝑖 = Wt

T𝑂𝑡
𝑖 . Later,

we use graph embedding methods (e.g., node2vec) to embed
all nodes of the temporal graph in Figure 5(b) and use the
embedding codes as the initial value ofWt.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2139

4.3 Time Interval Encoder
According to Definition 1, the temporal feature of each road
segment is composed of a time interval. Thus, we need to
encode the time interval into a temporal representation. As
shown in Figure 6, the encoding module can be split into two
parts, which are called time slot embedding and merging.
Time Slot Embedding. Given a time interval [𝑡 [1], 𝑡 [−1]],
we first normalize the two end timestamps 𝑡 [1] and 𝑡 [−1]
into ⟨𝑡𝑝 [1], 𝑡𝑟 [1]⟩ and ⟨𝑡𝑝 [−1], 𝑡𝑟 [−1]⟩ according to Formula 2
and Formula 3. As a result, the time interval includes Δ𝑑 time
slots, where Δ𝑑 is calculated as below.

Δ𝑑 = 𝑡𝑝 [−1] − 𝑡𝑝 [1] + 1 (4)
TheΔ𝑑 time slots are denoted as 𝑡𝑝 [1], 𝑡𝑝 [1]+1, · · · , 𝑡𝑝 [−1]−
1, 𝑡𝑝 [−1]. After matching them to different nodes in the tem-
poral graph, their corresponding one-hot codes are 𝑂𝑡

𝑡𝑝 [1] ,
𝑂𝑡
𝑡𝑝 [1]+1, · · · , 𝑂

𝑡
𝑡𝑝 [−1] . Then, according to the procedure of

time slot embedding (Section 4.2), these one-hot codes are
converted into fixed-length dense vectors𝐷𝑡

𝑡𝑝 [1] = Wt
T𝑂𝑡

𝑡𝑝 [1] ,
𝐷𝑡
𝑡𝑝 [1]+1 = Wt

T𝑂𝑡
𝑡𝑝 [1]+1, · · · , 𝐷

𝑡
𝑡𝑝 [−1] = Wt

T𝑂𝑡
𝑡𝑝 [−1] .

Merging. After getting these fixed-length dense vectors
𝐷𝑡
𝑡𝑝 [1], 𝐷

𝑡
𝑡𝑝 [1]+1, · · · , 𝐷

𝑡
𝑡𝑝 [−1] , we merge them into one ma-

trix Dt = [𝐷𝑡
𝑡𝑝 [1], 𝐷

𝑡
𝑡𝑝 [1]+1, · · · , 𝐷

𝑡
𝑡𝑝 [−1]]

T ∈ RΔ𝑑×𝑑𝑡 . Then,
we regard the matrix as a 1 × Δ𝑑 × 𝑑𝑡 tensor, whose chan-
nel has 1-dimension. We apply a deep Residual Network
(ResNet [17]) block, which is efficient in many real-world
applications [19, 35], to encode the tensor. In this model, the
residual part of the ResNet block is implemented with the
Convolutional Neural Network (CNN) model. The reason of
using CNN is twofold. First, CNN is able to extract differ-
ent local features. For example, if a time interval includes
five time slots [1, 2, 3, 4, 5], we can capture the local features
of [1, 2, 3], [2, 3, 4], [3, 4, 5] when we set the kernel size of
one convolutional layer as 3. Second, CNN can guarantee
translation invariance. For example, if we have two time
intervals, where the respective time slots being included
are [1, 2, 3, 4] and [2, 3, 4, 5]; we can capture the features of
[2, 3, 4] for both time intervals when we set the kernel size
as 3. In our settings, the CNN model contains three convo-
lutional layers, two BatchNorm layers and two activation
layers. In particular, the size of the output channels for these
three convolutional layers are 4, 8 and 1 respectively, and
the corresponding formulations are listed as below.

Z1
𝑖, 𝑗,𝑘 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝑠𝑢𝑚(𝐾1

𝑖 ⊗ Dt
1, 𝑗−1:𝑗+1,𝑘))) (5)

Z2
𝑖, 𝑗,𝑘 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝑠𝑢𝑚(𝐾2

𝑖 ⊗ Z1
1:4, 𝑗−1:𝑗+1,𝑘))) (6)

Z3
𝑖, 𝑗,𝑘 = 𝑠𝑢𝑚(𝐾3

𝑖 ⊗ Z2
1:8, 𝑗,𝑘) (7)

Z4 = Dt ⊕ Z3
1,:,: (8)

where 𝐾1
𝑖 ∈ R1×3×1, 𝐾2

𝑖 ∈ R4×3×1 and 𝐾3
𝑖 ∈ R8×1×1 rep-

resent kernel tensors, Z1 ∈ R4×Δ𝑑×𝑑𝑡 , Z2 ∈ R8×Δ𝑑×𝑑𝑡 and
Z3 ∈ R1×Δ𝑑×𝑑𝑡 respectively denote the output of the three

Temporal
Graph

Graph
Embedding

Model

initialize

3x1 conv, 4

3x1 conv, 8

1x1 conv, 1

+

Average
Pooling

only for
forward

propagation
ResNet
block

one-hot
encodings

dense
vectors

tcode

time slot
embedding

merging

time
interval …… ……

……
stack

concat

batchNorm, relu

tp[1]tp[1]

tp[1]tp[1]

tp[�1]tp[�1]

tr[1], rr[�1]tr[1], rr[�1]

WtWt

W 0
tW 0
t

+1

Ot
tp[1]Ot
tp[1]

Ot
tp[�1]Ot
tp[�1]

DtDt

Dt
tp[1]Dt
tp[1]

Dt
tp[�1]Dt
tp[�1]

batchNorm, relu

K2K2

K1K1

Z3Z3

K3K3

Z1Z1

Z2Z2

Z5Z5

Z4Z4

W 2
mW 2
m,b2

mb
2
m

W 1
mW 1
m, b1

mb
1
m

Z6Z6

Figure 6: An Overview of Time Interval Encoder

convolutional layers and Z4 ∈ RΔ𝑑×𝑑𝑡 is the final output of
the ResNet block. The operators ⊗ and ⊕ denote the element-
wise product and addition respectively. The function 𝑠𝑢𝑚(·)
is used to compute the sum of all elements and the function
𝐵𝑁 (·) represents the BatchNorm layer, which is effective
for converging the neural network [21]. In particular, we
select ReLU (Rectified Linear Unit) as the activation function,
which is calculated as below.

𝑅𝑒𝐿𝑈 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (9)
As reported in [15], ReLU can alleviate the vanishing gra-

dient problem and thus get better gradient propagation. Con-
sidering that the size ofZ4 is a variable, we utilize the pooling
technique to compress Z4 into a fixed-length vector. Specifi-
cally, we regard Z4 as a matrix with the size of Δ𝑑 × 𝑑𝑡 , and
then we compute the average value for each column (Δ𝑑
elements) of the matrix and thus get a 𝑑𝑡 -dimensional vector.
The formulation is listed as below.

Z5
𝑖 = 𝑎𝑣𝑔(Z4

1:Δ𝑑,𝑖) (10)
where Z5 ∈ R𝑑𝑡 is the pooling vector and 𝑎𝑣𝑔(·) is used to
compute the average value of all elements.

Lastly, the final temporal representation 𝑡𝑐𝑜𝑑𝑒 is obtained
in two steps. We first concatenate the vector Z5 and the two
time remainders 𝑡𝑟 [1], 𝑡𝑟 [−1]. Then, we use a Multilayer
Perceptron (MLP) model to encode the concatenated vector
Z6 = 𝑐𝑜𝑛𝑐𝑎𝑡 (Z5, 𝑡𝑟 [1], 𝑡𝑟 [−1]) ∈ R𝑑𝑡+2 into the representa-
tion 𝑡𝑐𝑜𝑑𝑒 . As shown in Figure 6, we implement the MLP
model based on the Pytorch tutorial [5], which consists of
three layers of nodes and two layers of edges. In particular,
edges in each layer correspond to the parameters of a weight
matrix and a bias vector. Hence we focus on the edges and
denote the model as a two-layer MLP model for simplicity.
Specifically, 𝑡𝑐𝑜𝑑𝑒 is computed as below.

𝑡𝑐𝑜𝑑𝑒 = W2
m𝑅𝑒𝐿𝑈 (W1

mZ
6 + 𝑏1𝑚) + 𝑏2𝑚 (11)

whereW1
m ∈ R𝑑

1
𝑚×(𝑑𝑡+2) and 𝑏1𝑚 ∈ R𝑑

1
𝑚 respectively denote

the weight matrix and bias vector parameters of the first
layer, and W2

m ∈ R𝑑
2
𝑚×𝑑1

𝑚 , 𝑏2𝑚 ∈ R𝑑
2
𝑚 indicate the parameters

in the second layer.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2140

……

Time
Interval
Encoder ……

tcode1

tcode2

tcoden

…… ……

initialize
Graph

Embedding
Model

road
network

……

+tanh ⇥

tanh⇥

……

h1

Spatio-
Temporal

Path

[tn[1], tn[�1]][tn[1], tn[�1]]

hn cn

only for
forward

 propagation
LSTM

unitconcat

stcode

he1, · · · , enihe1, · · · , eni
U>�@��U>��@

[t1[1], t1[�1]][t1[1], t1[�1]]

[t2[1], t2[�1]][t2[1], t2[�1]]

road
segment

embedding

Os
1Os
1

W 0
sW 0
s

WsWs

⇥

…………

��

��

��

c0h0

h2

hn
Ds

nDs
n

Os
2Os
2

Os
nOs
n

Ds
2Ds
2

Ds
1Ds
1

Dst
1Dst
1

Dst
2Dst
2

Dst
nDst
n

W 4
m, b4

mW 4
m, b4

m

W 3
m, b3

mW 3
m, b3

m

f1f1

i1i1

o1o1

Z7Z7

Figure 7: An Overview of Trajectory Encoder

4.4 Trajectory Encoder
In this section, we try to encode each trajectory𝑇 = ⟨𝑆𝑃, 𝑃𝑅⟩
into a fixed-length vector in two steps, as shown in Fig-
ure 7. The first step is to encode the spatio-temporal path
𝑆𝑃 = ⟨⟨𝑒1, [𝑡1 [1], 𝑡1 [−1]]⟩, · · · , ⟨𝑒𝑛, [𝑡𝑛 [1], 𝑡𝑛 [−1]]⟩⟩. Specif-
ically, for each element ⟨𝑒𝑖 , [𝑡𝑖 [1], 𝑡𝑖 [−1]]⟩, we use the Time
Interval Encoder to encode the time interval [𝑡𝑖 [1], 𝑡𝑖 [−1]]
into a fixed-length vector 𝑡𝑐𝑜𝑑𝑒𝑖 , and then use road segment
embedding to embed the road segment 𝑒𝑖 . Next, we concate-
nate 𝑡𝑐𝑜𝑑𝑒𝑖 and the embedding of 𝑒𝑖 into a dense vector, and
thus get a sequence of concatenated representations. For the
sequence, we use an RNN model (e.g., LSTM [18]) to embed
it into a fixed-length vector, which is the representation of
𝑆𝑃 . The second step is to concatenate the representation of
𝑆𝑃 with the two position ratios 𝑟 [1] and 𝑟 [−1], and use a
Multilayer Perceptron model to further encode the concate-
nated result into the final representation 𝑠𝑡𝑐𝑜𝑑𝑒 . Details are
illustrated as follows.
Time Interval Encoding. We first extract the sequence
of time intervals from 𝑆𝑃 and then use Time Interval
Encoder to encode each time interval [𝑡𝑖 [1], 𝑡𝑖 [−1]] into the
temporal representation 𝑡𝑐𝑜𝑑𝑒𝑖 . The detail of Time Interval
Encoder has been described in Section 4.3.
Road Segment Embedding. Recall Section 4.1, we use a
fully connected neural network to represent the embedding
matrix and use the matrix to embed each road segment 𝑒𝑖
in the spatial path into a dense vector 𝐷𝑠

𝑖 . In addition, we
initialize the embedding matrix with the road network data.
Sequence Encoding. For each road segment 𝑒𝑖 , we regard
𝑡𝑐𝑜𝑑𝑒𝑖 as the temporal representation and regard 𝐷𝑠

𝑖 as the
spatial representation, and then we concatenate 𝑡𝑐𝑜𝑑𝑒𝑖 and
𝐷𝑠
𝑖 as its spatio-temporal representation, denoted by 𝐷𝑠𝑡

𝑖 =

𝑐𝑜𝑛𝑐𝑎𝑡 (𝑡𝑐𝑜𝑑𝑒𝑖 , 𝐷𝑠
𝑖) ∈ R𝑑

2
𝑚+𝑑𝑠 . After that, we get a sequence of

spatio-temporal representations ([𝐷𝑠𝑡
1 , · · · , 𝐷𝑠𝑡

𝑛]). The next

step is to encode this sequence into a fixed-length vector
using the sequence model LSTM (Long Short-Term Memory).
Given a sequence, LSTM would successively take each ele-
ment in the sequence as an input vector of the LSTM unit,
where different units share common weights. Specifically,
the architecture of an LSTM unit is composed of a cell (the
memory part of the LSTM unit) and three gates – an input
gate, an output gate and a forget gate, as defined below:

𝑓𝑗 = 𝜎 (W𝑓 [𝐷𝑠𝑡
𝑗 , ℎ 𝑗−1] + 𝑏 𝑓) (12)

𝑖 𝑗 = 𝜎 (W𝑖 [𝐷𝑠𝑡
𝑗 , ℎ 𝑗−1] + 𝑏𝑖) (13)

𝑜 𝑗 = 𝜎 (W𝑜 [𝐷𝑠𝑡
𝑗 , ℎ 𝑗−1] + 𝑏𝑜) (14)

𝑐 𝑗 = 𝑓𝑗 ⊗ 𝑐 𝑗−1 + 𝑖 𝑗 ⊗ 𝑡𝑎𝑛ℎ(W𝑐 [𝐷𝑠𝑡
𝑗 , ℎ 𝑗−1] + 𝑏𝑐) (15)

ℎ 𝑗 = 𝑜 𝑗 ⊗ 𝑡𝑎𝑛ℎ(𝑐 𝑗) (16)
The initial values of 𝑐 𝑗 and ℎ 𝑗 are 𝑐0 = 0 and ℎ0 = 0. For each
time step 𝑗 , 𝐷𝑠𝑡

𝑗 ∈ R𝑑
2
𝑚+𝑑𝑠 means the input vector, 𝑓𝑗 , 𝑖 𝑗 , 𝑜 𝑗 ∈

R𝑑ℎ represent activation vectors of forget gate, input gate
and output gate, respectively; ℎ 𝑗 ∈ R𝑑ℎ is the hidden state
vector, also known as the output vector of the LSTM unit;
𝑐 𝑗 ∈ R𝑑ℎ denotes the cell state vector. In addition, 𝜎 (·) and
𝑡𝑎𝑛ℎ(·) represent two kinds of activation functions, i.e., sig-
moid function 𝜎 (𝑥) = 1

1+𝑒−𝑥 and hyperbolic tangent function
𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 . Importantly, we need to learn the weight
matrix parameters (Wf ,Wi,Wo,Wc ∈ R𝑑ℎ×(𝑑

2
𝑚+𝑑𝑠+𝑑ℎ)) and

the bias vector parameters (𝑏 𝑓 , 𝑏𝑖 , 𝑏𝑜 , 𝑏𝑐 ∈ R𝑑ℎ) in the train-
ing stage. As a result, we can get the final output vector
ℎ𝑛 ∈ R𝑑ℎ for any given road segment sequence.
Final Representation. The final step is to merge the final
vector ℎ𝑛 with the remaining information 𝑟 [1] and 𝑟 [−1],
as shown in the following formula. First, we concatenate ℎ𝑛
with 𝑟 [1], 𝑟 [−1] resulting in a (𝑑ℎ + 2)-dimensional merged
vector Z7 = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑛 [:], 𝑟 [1], 𝑟 [−1]). Then, we use a two-
layer Multilayer Perceptron to encode the merged vector
into the final representation 𝑠𝑡𝑐𝑜𝑑𝑒 .

𝑠𝑡𝑐𝑜𝑑𝑒 = W4
m𝑅𝑒𝐿𝑈 (W3

mZ
7 + 𝑏3𝑚) + 𝑏4𝑚 (17)

W3
m ∈ R𝑑

3
𝑚×(𝑑ℎ+2) and 𝑏3𝑚 ∈ R𝑑

3
𝑚 respectively denote the

weight matrix and bias vector parameters of the first layer
network; W4

m ∈ R𝑑
4
𝑚×𝑑3

𝑚 and 𝑏4𝑚 ∈ R𝑑
4
𝑚 respectively repre-

sent the weight matrix and bias vector parameters of the
second layer network. ReLU (Rectified Linear Unit) is se-
lected as the activation function of the first neural network.

4.5 External Features Encoder
As shown in Figure 3, there can be external features 𝑓 (if
available) that may also influence the travel time. Hence, we
design the External Features Encoder model to encode
those external features. For this work’s experimental study,
𝑓 is composed of weather and current traffic condition.
The weather belongs to discrete feature, so we use the

one-hot code to represent it. For example, we categorize the

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2141

weather into 𝑁𝑤𝑒𝑎 types (e.g., sunny, rainy), so each type
can be denoted as an 𝑁𝑤𝑒𝑎-dimensional one-hot code 𝑂𝑤𝑒𝑎 .
Inspired by [26, 37], we use the average speed in a local
area to represent the traffic condition of the local area. In
particular, we split the whole area into different grids with
the same size (e.g., 200𝑚 × 200𝑚), and compute the average
speed every Δ𝑡 minutes for each grid. Thus, we get a speed
matrix (average speeds of all grids) every Δ𝑡 minutes. We
select the nearest speed matrix 𝐶 ∈ R ⌈𝐿𝑙𝑎𝑡 /𝑙 ⌉×⌈𝐿𝑙𝑜𝑛/𝑙 ⌉ before
the departure time as the current traffic condition feature,
where 𝐿𝑙𝑎𝑡 and 𝐿𝑙𝑜𝑛𝑔 denote the latitude length and the longi-
tude length of the whole area, and 𝑙 denotes the grid length.
Similar to [26], we use a CNN model to convert the speed
matrix into a fixed-length vector 𝐷𝑡𝑟𝑎𝑓 ∈ R𝑑𝑡𝑟𝑎𝑓 . The CNN
model comprises of three connected convolution blocks and
an average pooling layer. Each convolution block consists of
three layers: 𝐶𝑜𝑛𝑣2𝑑 → 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚2𝑑 → 𝑅𝑒𝐿𝑈 .
To get the final representation of 𝑓 , we first concatenate

𝑂𝑤𝑒𝑎 and𝐷𝑡𝑟𝑎𝑓 into a fixed-length vector Z8 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑂𝑤𝑒𝑎,

𝐷𝑡𝑟𝑎𝑓) ∈ R𝑁𝑤𝑒𝑎+𝑑𝑡𝑟𝑎𝑓 , and then use a two-layer Multilayer
Perceptron to encode the vector into the final representation
𝑜𝑐𝑜𝑑𝑒 as below.

𝑜𝑐𝑜𝑑𝑒 = W6
m𝑅𝑒𝐿𝑈 (W5

mZ
8 + 𝑏5𝑚) + 𝑏6𝑚 (18)

whereW5
m ∈ R𝑑

5
𝑚×(𝑁𝑤𝑒𝑎+𝑑𝑡𝑟𝑎𝑓) and 𝑏5𝑚 ∈ R𝑑

5
𝑚 are parameters

of the first layer while W6
m ∈ R𝑑

6
𝑚×𝑑5

𝑚 and 𝑏6𝑚 ∈ R𝑑
6
𝑚 are

parameters of the second layer.

4.6 Travel Time Estimation
As described in Section 3, we concatenate the vectors 𝐷𝑠

1,
𝐷𝑠
𝑛 , 𝐷𝑡 , 𝑜𝑐𝑜𝑑𝑒 and the float values 𝑟 [1], 𝑟 [−1], 𝑡𝑟 into a fixed-

length vectorZ9 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐷𝑠
1, 𝐷

𝑠
𝑛, 𝐷

𝑡 , 𝑜𝑐𝑜𝑑𝑒, 𝑟 [1], 𝑟 [−1], 𝑡𝑟) ∈
R(𝑑𝑠×2+𝑑𝑡+𝑑

6
𝑚+3) , and then use the model MLP1, which is a two-

layer Multilayer Perceptron, to convert the vector into 𝑐𝑜𝑑𝑒 .
The whole process is formalized as below.

𝑐𝑜𝑑𝑒 = W8
m𝑅𝑒𝐿𝑈 (W7

mZ
9 + 𝑏7𝑚) + 𝑏8𝑚 (19)

where W7
m ∈ R𝑑

7
𝑚×(𝑑𝑠×2+𝑑𝑡+𝑑6

𝑚+3) and 𝑏7𝑚 ∈ R𝑑
7
𝑚 correspond

to the first layer parameters of MLP1 while W8
m ∈ R𝑑

8
𝑚×𝑑7

𝑚

and 𝑏8𝑚 ∈ R𝑑
8
𝑚 correspond to the second layer parameters

of MLP1. Considering that the dimensions of 𝑐𝑜𝑑𝑒 and 𝑠𝑡𝑐𝑜𝑑𝑒
should be equal, we set 𝑑8𝑚 equal to 𝑑4𝑚 .

To generate the travel time, we use the model MLP2, which
is also a two-layer Multilayer Perceptron, to convert 𝑐𝑜𝑑𝑒
into a float value, which is represented as followings:

𝑦 = W10
m𝑅𝑒𝐿𝑈 (W9

m𝑐𝑜𝑑𝑒 + 𝑏9𝑚) + 𝑏10𝑚 (20)

where W9
m ∈ R𝑑

9
𝑚×𝑑8

𝑚 and 𝑏9𝑚 ∈ R𝑑
9
𝑚 denote the first layer

parameters of MLP2 while W10
m ∈ R1×𝑑

9
𝑚 and 𝑏10𝑚 ∈ R1 denote

the second layer parameters of MLP2.

Algorithm 1: Model Learning for DeepOD
Input: Road network graph 𝐺 = ⟨𝑉 , 𝐸⟩, the base timestamp 𝑡0,

the time slot size Δ𝑡 , training inputs 𝑋 , training labels
𝑌 , test inputs 𝑋 ′, trajectory encoding modelM𝑇 , OD
input encoding modelM𝑂 , travel time estimation
modelM𝐸 , learning rate 𝑙𝑟 , training epochs 𝐼 , batch
size 𝑏𝑠 , 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 weight𝑤 .

Output: embedding matrices Ws,Wt, other parameters
𝜃𝑇 , 𝜃𝑂 , 𝜃𝐸 for the three modelsM𝑇 ,M𝑂 andM𝐸 ,
prediction results 𝑌 ′

initialize road segment embeddings Ws
0 ← 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐 (𝐺);1

build temporal graph 𝐺 ′ = ⟨𝑉 ′, 𝐸 ′⟩ with 𝑡0,Δ𝑡 ;2

initialize time slot embeddings Wt
0 ← 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐 (𝐺 ′);3

initialize embedding matrices in Ws,Wt with Ws
0,Wt

0;4

initialize other parameters 𝜃𝑇 , 𝜃𝑂 , 𝜃𝐸 inM𝑇 ,M𝑂 ,M𝐸 with5

normal distribution;
for 𝑖 ← 1 · · · 𝐼 do6

𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑎𝑖𝑛(𝑋,𝑌,M𝑇 ,M𝑂 ,M𝐸 , 𝑙𝑟 , 𝑏𝑠,𝑤);7

𝑌 ′ ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑋 ′,M𝑂 ,M𝐸) ;8

return Ws,Wt, 𝜃𝑇 , 𝜃𝑂 , 𝜃𝐸 , 𝑌
′;9

Function ModelTrain-offline
Input: 𝑋,𝑌,M𝑇 ,M𝑂 ,M𝐸 , 𝑙𝑟 , 𝑏𝑠,𝑤

training iterations 𝐼 ′ = ⌊ |𝑋 |
𝑏𝑠
⌋;1

𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑋,𝑌);2

for 𝑖 ← 1 · · · 𝐼 ′ do3

collect 𝑋 (𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 , 𝑌(𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 ;4

[(𝑔[1], 𝑔[−1], 𝑡, 𝑓 ,𝑇)] ← 𝑋 (𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 ;5

[𝑦] ← 𝑌(𝑖−1)𝑏𝑠+1:𝑖×𝑏𝑠 ;6

[𝑐𝑜𝑑𝑒] ← M𝑂 ([(𝑔[1], 𝑔[−1], 𝑡, 𝑓)]);7

[𝑠𝑡𝑐𝑜𝑑𝑒] ← M𝑇 ([𝑇]);8

[𝑦] ← M𝐸 ([𝑐𝑜𝑑𝑒]);9

𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 ←
√∑

𝑗 (𝑐𝑜𝑑𝑒 [𝑗] − 𝑠𝑡𝑐𝑜𝑑𝑒 [𝑗])2;10

𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 ← 𝑀𝐴𝐸 ([𝑦], [𝑦]);11

𝑙𝑜𝑠𝑠 ← 𝑤 × 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 + (1 −𝑤) ×𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 ;12

Δ𝜃 ← 𝐴𝑑𝑎𝑚𝑂𝑝𝑡 ([Ws,Wt, 𝜃𝑇 , 𝜃𝑂 , 𝜃𝐸], 𝑙𝑜𝑠𝑠, 𝑙𝑟);13

updateM𝐸 ,M𝑊 ,M𝐷 with Δ𝜃 ;14

Function Estimation-online
Input: 𝑋 ′,M𝑂 ,M𝐸

Output: 𝑌 ′
[(𝑔[1], 𝑔[−1], 𝑡, 𝑓)] ← 𝑋 ′;1

[𝑐𝑜𝑑𝑒 ′] ← M𝑂 ([(𝑔[1], 𝑔[−1], 𝑡, 𝑓)]);2

𝑌 ′ ←M𝐸 ([𝑐𝑜𝑑𝑒 ′]);3

return 𝑌 ′;4

5 MODEL LEARNING
Algorithm 1 presents the whole learning process which con-
sists of two steps. The first step is to offline train the whole
model using the training data and the second step is to online
estimate the travel time for test data using the trained model.
Offline Training. First of all, we initialize the road seg-
ment embedding matrixWs based on the graph embedding
method 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐 [16]. Meanwhile, given the size of time
slot Δ𝑡 , we can build a temporal graph 𝐺 ′ and initialize the

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2142

Table 2: Taxi Order Datasets
Chengdu Xi’an Beijing

of orders 5.8M 3.4M 56.7M
Avg # of points 180 205 23

Avg travel time(s) 500.65 757.07 1,180.87
Time interval 10/1-11/30,2016 3/1-3/31,2009

Avg # of road segments 17 25 48
Avg length(meter) 3,477.85 4,143.17 5,580.32

time slot embedding matrix Wt based on 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐 . Note
that we tried three graph embedding methods (i.g., Deep-
Walk [30], Line [36], node2vec [16]) to get initial embeddings,
and node2vec achieves the best result. As for other param-
eters of the whole model, we use normal distribution to
initialize them (lines 1-5). Afterwards, we iteratively train
the whole model with the given epochs 𝐼 (lines 6-7). Specifi-
cally, the function ModelTrain explains the training process
for each epoch. We first compute the training iterations 𝐼 ′
based on given batch size 𝑏𝑠 , then shuffle all training data
𝑋,𝑌 (lines 1-2). In each iteration, we extract 𝑏𝑠 training data
from 𝑋,𝑌 . Each element of training input 𝑋 is composed
of 𝑔[1], 𝑔[−1], 𝑡, 𝑓 and 𝑇 . In particular, we use the input
𝑔[1], 𝑔[−1], 𝑡, 𝑓 and the model M𝑂 to generate 𝑐𝑜𝑑𝑒 . We
use the input𝑇 and the modelM𝑇 to generate 𝑠𝑡𝑐𝑜𝑑𝑒 . After-
wards, we use the hidden representation 𝑐𝑜𝑑𝑒 and the model
M𝐸 to predict the travel time. Notably, we use the Euclidean
metric 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 =

√∑
𝑗 (𝑐𝑜𝑑𝑒 [𝑗] − 𝑠𝑡𝑐𝑜𝑑𝑒 [𝑗])2 to eval-

uate the distance between 𝑐𝑜𝑑𝑒 and 𝑠𝑡𝑐𝑜𝑑𝑒 . Meanwhile, we
use MAE (Mean Absolute Error) to compute the loss of the
estimated travel time, which is denoted as𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 . Finally,
we utilize Adam Optimizer [24] to optimize all parameters by
minimizing the weighted sum of 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 and𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 .
Formally, the loss is computed as 𝑙𝑜𝑠𝑠 = 𝑤 × 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 +
(1 −𝑤) ×𝑚𝑎𝑖𝑛𝑙𝑜𝑠𝑠 , where 𝑤 is a tuning parameter that is
fine-tuned by validation data as elaborated in Section 6.3.
Online Estimation. As mentioned before, each element of
test inputs 𝑋 ′ is composed of 𝑔[1], 𝑔[−1], 𝑡 and 𝑓 , so we
only need to consider the two partsM𝑂 andM𝐸 . As listed
in the function Estimation, we use M𝑂 to generate the
hidden representation 𝑐𝑜𝑑𝑒 ′ (line 2). In the end, we generate
the estimated travel time 𝑌 ′ with the model M𝐸 and the
representation 𝑐𝑜𝑑𝑒 ′ (line 3).

6 EXPERIMENTS
6.1 Experimental Setup
Datasets.We used three real datasets.
(1)Road Networks.We used three road networks: Chengdu
Road Network (CRN), Xi’an Road Network (XRN), and Bei-
jing Road Network (BRN). All of them were extracted from
OpenStreetMap [4]. CRN includes 3, 191 vertices and 9, 468
edges, XRN contains 4, 576 vertices and 12, 668 edges, and
BRN contains 82, 576 vertices and 241, 105 edges.

(2) Taxi Orders. We used taxi orders in Chengdu, Xi’an [3],
and Beijing [45], and each order corresponds to a trip record,
which consists of an OD input and a trajectory. Specifically,
we aligned the GPS points in OD inputs and trajectories
with road networks via a map-matching tool Valhalla [7].
Table 2 shows the statistics of these two datasets, where Avg
of points is the average number of GPS points per trajec-
tory (the average time gap between two consecutive GPS
points is 3 seconds for Chengdu and Xi’an, and 1 minute for
Beijing), Avg # of road segments is the average number of
road segments per trajectory after map-matching, and Avg
length represents the average length of trajectories. Note
that Beijing has similar size with the BJS-Pickup dataset used
in [27], but Beijing has longer travel time than BJS-Pickup.
In particular, the average travel time for Beijing is around 20
minutes while it’s only 3 minutes for BJS-Pickup.
(3)Data For External Features. Two types of external data
were included, the weather and the current traffic condition.
The weather records were collected from the website [1].
Similar to the literature [47], the number of the weather type
is𝑁𝑤𝑒𝑎 = 16. As for the current traffic condition, we first split
the area of each road network into disjoint grids with the
same size 200𝑚 × 200𝑚. The size of CRN is 8,166m× 8,330m,
so CRN is split into 41 × 42 grids. Similarly, XRN is split
into 41 × 40 grids as its size is 8,056m× 7,942m; while BRN
is split into 354 × 311 grids as its size is 70,737m×62,180m.
Afterwards, we calculated different speed matrices every 5
minutes for CRN, XRN and BRN respectively. Therefore, we
denoted the speed matrix closest to the departure time as
the traffic condition for each taxi order.
(4) Training & Validation & Test Data. The date of taxi
orders for Chengdu and Xi’an are both from 10/01/2016 to
11/30/2016. We split each dataset into training data, valida-
tion data and test data with the ratio 42:7:12. That is, the taxi
orders (with historical trajectories) during the time interval
[10/01/2016, 11/11/2016] were used to train our proposed
models, the taxi orders during [11/12/2016, 11/18/2016] were
used to fine-tune parameters to get the best performance,
and the taxi orders (without historical trajectories) during
[11/19/2016, 11/30/2016] were used to test the models.
Baselinemethods.We compared our models with five base-
line methods for OD travel time estimation:
• Temporally weighted neighbors (TEMP) [39]: a nearest
neighbor based approach which estimates the OD travel
time by averaging the travel time of all historical trajec-
tories falling in the same time slot with a similar origin
and destination.
• Linear Regression (LR): a machine learning approach us-
ing a linear function to model travel time and computing
the loss between the estimated travel time and the actual
travel time with Euclidean distance.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2143

32 64 128 256
19

23

27

Evaluating ds (%)

32 64 128 256
19

23

27

Evaluating dt (%)

32 64 128 256
19

23

27
Evaluating d1

m (%)

32 64 128 256
19

23

27
Evaluating d2

m (%)

32 64 128 256
19

23

27
Evaluating d3

m (%)

32 64 128 256
19

23

27
Evaluating d4

m, d
8
m (%)

32 64 128 256
19

23

27
Evaluating d5

m (%)

32 64 128 256
19

23

27
Evaluating d6

m (%)

32 64 128 256
19

23

27

Evaluating d7
m (%)

32 64 128 256
19

23

27
Evaluating d9

m (%)

32 64 128 256
19

23

27
Evaluating dh (%)

32 64 128 256
19

23

27
Evaluating dtrf (%)

Chengdu-MAPE Xi'an-MAPE Chengdu-MARE Xi'an-MARE

Figure 8: MAPE & MARE Loss vs. Hyper-parameters

1 2 3 4 5 6 7 8 9

w(10−1)

20

22

24

M
A

P
E

 e
rr

or
(%

)

(a) Chengdu

1 2 3 4 5 6 7 8 9

w(10−1)

20.5

21.0

21.5

22.0

M
A

P
E

 e
rr

or
(%

)

(b) Xi’an

1 2 3 4 5 6 7 8 9

w(10−1)

20.0

22.5

25.0

27.5

30.0

M
A

P
E

 e
rr

or
(%

)

(c) Beijing
Figure 9: MAPE Loss vs. Loss Weight𝑤

• Gradient Boosted Machine (GBM): a gradient boosting
decision tree based regression method which is imple-
mented using XGBoost [10].
• Spatial Temporal deep Neural Network (STNN) [23]: a
deep neural network based approach which first predicts
the travel distance given an OD pair, and then combines
this prediction with the departure time to estimate the
travel time.
• Multi-task Representation Learning (MURAT) [27]: a deep
neural network based approach which jointly predicts
the travel distance and the travel time for taxi orders by
learning representations of road segments and the origin-
destination information. It is proposed from the largest
ride-hailing company (Didi) in China. We implemented
this model following the parameters suggested in [27].

Environment settings. All methods were implemented
with PyTorch 1.0 and Python 3.6, and trained with a Tesla
K40 GPU. The platform ran on Ubuntu 16.04 OS.
Evaluation metrics.We evaluated our proposed methods
and baseline methods based on three popular metrics: MAE
(Mean Absolute Error), MAPE (Mean Absolute Percent Er-
ror) and MARE (Mean Absolute Relative Error). Specifically,
suppose that the ground truth is represented as y = {𝑦𝑖 }
and the predicted result is denoted as ŷ = {𝑦𝑖 }, where 1 ≤
𝑖 ≤ 𝑁 , these metrics are computed as follows:𝑀𝐴𝐸 (y, ŷ) =
1
𝑁

∑𝑁
𝑖=1 |𝑦𝑖−𝑦𝑖 |,𝑀𝐴𝑃𝐸 (y, ŷ) = 1

𝑁

∑𝑁
𝑖=1 |

𝑦𝑖−�̂�𝑖
𝑦𝑖
|,𝑀𝐴𝑅𝐸 (y, ŷ) =∑𝑁

𝑖=1 |𝑦𝑖−�̂�𝑖 |∑𝑁
𝑖=1 |𝑦𝑖 |

. According to Algorithm 1, we utilized the metric

MAE as the loss function when training our DeepOD model.
In particular, we used Adam [24] as the optimization method
with the mini-batch size of 1, 024. The initial learning rate
was 0.01, and reduced by 1

5 every 2 epochs.

6.2 Setting of DeepOD’s Hyper-parameters
Wemainly considered three hyper-parameters: (1) the embed-
ding size (𝑑𝑠) of road segments; (2) the embedding size (𝑑𝑡) of
time slots; (3) the sizes (𝑑1𝑚, 𝑑2𝑚, 𝑑3𝑚, 𝑑4𝑚, 𝑑5𝑚, 𝑑6𝑚, 𝑑7𝑚, 𝑑8𝑚, 𝑑9𝑚, 𝑑𝑡𝑟𝑎𝑓)
of different layer’s neural networks. In particular, we respec-
tively set each parameter’s value as 32, 64, 128 and 256, and
then evaluated DeepOD’s performance on the validation data
of Chengdu and Xi’an. In addition, as stated in Section 4.6,
𝑑4𝑚 and 𝑑8𝑚 should be set as the same value. As shown in
Figure 8, we plotted the MAPE and MARE loss for different
hyper-parameters. In summary, we set each hyper-parameter
with the value corresponding to the optimal performance
as follows: 𝑑𝑠 = 64, 𝑑𝑡 = 64, 𝑑1𝑚 = 128, 𝑑2𝑚 = 64, 𝑑ℎ = 128,
𝑑3𝑚 = 128, 𝑑8𝑚 = 𝑑4𝑚 = 64, 𝑑5𝑚 = 128, 𝑑6𝑚 = 64, 𝑑7𝑚 = 128,
𝑑9𝑚 = 128, 𝑑𝑡𝑟𝑎𝑓 = 128.

6.3 Effectiveness of Loss Weight
To fine-tune the 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑙𝑜𝑠𝑠 weight𝑤 , we varied the value
of𝑤 to train the model DeepOD. Specifically, the value range
was changed from 0.1 to 0.9 with a step of 0.1. Once the
DeepOD model was trained, we computed the MAPE loss for
each mini-batch of validation data, where the mini-batch
size was 1, 024. Then, we collected all mini-batches and drew
the corresponding Box-plots for both datasets in Figure 9.
From this figure, we can deduce twomajor findings: (1) In the
beginning, the performance of DeepOD improves with the in-
creasing of𝑤 . However, the performance is worsened when
the value of𝑤 exceeded a certain threshold. For instance, the
best value is 0.7, 0.3 and 0.5 for Chengdu, Xi’an and Beijing
respectively. (2) The effectiveness of the weight𝑤 is differ-
ent for different datasets. For example, the performance on
Chengdu is more stable than Xi’an and Beijing when 𝑤 is
close to its threshold. In summary, we set the default value of
𝑤 as 0.7, 0.3, 0.5 for Chengdu, Xi’an and Beijing respectively.

6.4 Comparison with Baselines
6.4.1 Training Comparison with Deep Learning Models. As
aforementioned, STNN, MURAT and DeepOD are implemented
based on deep learning technology. To visualize the process
of training neural networks, we computed the MAE loss for
validation data once a step of training was finished. Each
step of training consists of one forward propagation and
one backward propagation for a mini-batch of training data.
Figure 10 shows the MAE loss for Chengdu and Xi’an. In par-
ticular, we considered 60, 000 steps for Chengdu and 40, 000
steps for Xi’an. From Figure 10, we can observe that:

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2144

0 25000 50000
steps

100

200

300

er
ro
rs
/s
ec
o
n
d STNN

MURAT

DeepOD

(a) MAE Loss on Chengdu

0 20000 40000
steps

200

300

400

er
ro
rs
/s
ec
o
n
d STNN

MURAT

DeepOD

(b) MAE Loss on Xi’an
Figure 10: Validation Errors vs. Training Steps

Table 3: Convergence Steps and Convergence Time
Chengdu/Xi’an STNN MURAT DeepOD

steps 32K/14.1K 24.2K/12.4K 25.7K/9.1K
time (hours) 1.01/0.67 3.17/2.17 3.01/1.58
Table 4: Experimental Results on Test Errors

Datasets Chengdu/Xi’an/Beijing
Metric MAE(second) MAPE(%) MARE(%)
TEMP 179.98/339.28/674.65 34.07/41.67/57.38 36.07/44.8/57.08
LR 210.60/369.22/531.86 50.77/55.63/47.00 42.20/48.76/46.58
GBM 168.25/287.51/387.37 44.14/43.61/33.90 33.72/37.97/32.81
STNN 136.84/289.52/395.99 29.03/35.13/29.94 27.41/38.00/33.41
MURAT 127.63/281.65/384.11 27.31/33.25/27.05 25.57/36.95/32.41
N-st 118.36/230.47/375.44 24.69/25.58/27.24 23.61/30.73/31.68
N-sp 110.31/217.02/368.21 23.61/23.44/25.78 22.01/28.30/31.06
N-tp 109.38/216.43/366.98 22.28/23.41/25.91 21.22/28.24/30.96

N-other 99.01/209.11/345.02 20.22/21.05/24.02 19.74/27.28/29.10
DeepOD 94.67/205.37/335.78 19.07/20.72/23.48 19.27/26.06/28.32

(1) Our DeepOD outperforms other methods. This is because:
we considered actual trajectories when training our model,
but existing methods cannot make full use of historical info;
DeepOD contains the Trajectory Encodermodule, bywhich
we can more effectively represent the spatio-temporal fea-
tures of trajectories.
(2) The performance of STNN is the worst. The reason is
that STNN neglects the information of road networks, whose
structure is important for travel time estimation.

In addition, we collected the number of steps and the time
required to converge the models. As shown in Table 3, we
can observe that:
(1) The convergence speed of all models on Xi’an is faster
than Chengdu. Considering that the data size of Chengdu is
greater than that of Xi’an, we needed more steps to traverse
training data of Chengdu, and thus we needed more steps to
get convergence values for Chengdu.
(2) STNN needs more convergence steps than other methods,
but requires less convergence time than others. This is be-
cause the STNN model’s simplicity causes it to require more
steps to stabilize, but each step is quicker than other models.
(3) The convergence time of DeepOD is less than MURAT. DeepOD
and MURAT spend a similar amount of time to converge for
each step, but MURAT needs more steps to stabilize.

6.4.2 Effectiveness Comparison with All Baselines. Except
for the comparison experiment of DeepOD with the five base-
line methods, we replaced our model DeepOD by four varia-
tions, namely N-tp, N-sp, N-st and N-other, to evaluate the
effectiveness of different parts of encodings in DeepOD (see
Figure 3). In N-tp, we removed the temporal encoding of time
intervals. In N-sp, we removed the spatial encoding of road
segments. In N-st, we removed the trajectory encoding. In
N-other, we removed the external feature encoding. Table 4
reports three metrics of all methods, from which we have
the following observations:
(1) Compared with non-linear methods, the linear method
LR is not a suitable solution. The reason is that the OD travel
time and spatio-temporal features are not linearly related.
(2) The performance of all methods on Chengdu is better than
that on Xi’an and Beijing. The causes are twofold. First, the
size of Chengdu is larger than that of Xi’an, and more data
often means better training for neural networks. Second, the
average travel time of Chengdu is shorter than that of Xi’an
and Beijing, and intuitively it is more difficult to accurately
estimate longer travel time.
(3) Neural network based methods outperform other meth-
ods. It is well known that deep neural networks can approx-
imately fit any function, so it is reasonable to get better
performance using deep learning technology.
(4) TEMP is the secondworst (only outperforms LR) inChengdu
and Xi’an, and is the worst in Beijing, probably because of the
sparsity of trip records. First, there are not enough historical
trips at some time slots due to the small size of time slots.
Second, for some OD pairs, there may not be enough histori-
cal trip records whose origin and destination are similar to
these pairs.
(5) According to results of N-st, N-sp, N-st, N-other and
DeepOD, we find that the trajectory encoding is the most
critical part of DeepOD, followed by the spatial encoding, the
temporal encoding and the external features encoding. That
is, the trajectory encoding is the main reason that DeepOD
outperforms state-of-the-art methods.
(6) When comparing the MAPE loss with the MARE loss for
each method, we can find that some methods have better
performance on MAPE while others are better on MARE.
According to the definitions of MAPE and MARE, the follow-
ing inequality would be true if MAPE is greater than MARE:∑𝑁

𝑖=1 |𝑦𝑖 −𝑦𝑖 | (1𝑦𝑖 −
𝑁∑𝑁
𝑗=1 𝑦

𝑗
) > 0, which means that |𝑦𝑖 −𝑦𝑖 | is

larger when 𝑦𝑖 <
∑𝑁

𝑗=1 𝑦
𝑗/𝑁 . That is, the difference between

the ground truth time and the prediction time is larger when
the ground truth time is shorter.
(7) DeepOD performs the best on all metrics. For example,
DeepOD outperforms existing best method MURAT by more
than 12% on MAPE loss for the test data of Xi’an.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2145

(a) Chengdu (b) Xi’an
Figure 11: MAPE Loss Distribution on Test Data

Table 5: Efficiency of Test Result
Datasets Chengdu/Xi’an/Beijing

model training estimation
size(Byte) time(hours) time(seconds/K)

TEMP 94.78M/31.17M/805.68M -/-/- 13.17/6.97/50.08
LR 28K/28K/28K 0.20/0.12/0.53 0.20/0.25/0.28
GBM 0.42K/0.47K/0.59K 0.84/0.61/9.42 0.19/0.41/1.49
STNN 0.30M/0.30M/0.30M 1.01/0.67/2.72 0.31/0.33/0.41
MURAT 7.85M/8.62M/65M 3.17/2.17/10.32 1.56/2.46/4.93
DeepOD 6.24M/7.06M/63M 3.01/1.58/8.36 1.51/1.86/3.28

(8) The performance gap between DeepOD and others is smaller
on Beijing than that on other datasets. The reason is that
Beijing provides more training data and then other methods
can also capture better representations. That also indicates
that DeepOD would be more stable than other methods when
training data is insufficient.
In addition, we collected the MAPE loss of test data for

all methods and demonstrated their probability distribution
curves, as shown in Figure 11. The horizontal axis represents
theMAPE loss and the vertical axis represents the probability
density function (PDF). We can find that the distribution of
our method DeepOD has smaller mean value and smaller
variance value than other methods.

6.4.3 Efficiency Comparison. To compare the efficiency of
different methods, we respectively collected the model size,
training time and estimation time for each method. First, the
model size represents the size of required memory for ap-
plying the corresponding model, so we use it to evaluate the
efficiency of memory usage, with bytes as the unit. Second,
the training time can evaluate the offline learning efficiency
of different methods. Third, the estimation time can evaluate
the online execution efficiency of different methods. Specifi-
cally, we use different trained models to estimate the results
for 1,000 OD pairs and recorded the latency respectively. As
reported in Table 5, we find that:
(1) TEMP requires more memory than others. The reason is
two-fold. On the one hand, TEMP needs to load historical trip
info, whose size is proportional to the size of historical trajec-
tories. On the other hand, other methods belong to machine
learning methods and only need to load model parameters,
whose size is constant.
(2) LR, as well as STNN, has the samemodel size for all datasets,
but the remaining methods are different. The number of

Table 6: Scalability of Test Result (Beijing)
MAPE loss on Test Data(%)

scale TEMP LR GBM STNN MURAT DeepOD
20% 88.68 112.92 49.27 39.29 36.56 28.15
40% 78.28 81.37 43.85 35.51 33.37 26.91
60% 72.10 64.45 39.39 32.41 30.27 25.15
80% 64.90 50.81 36.96 31.74 28.73 23.91
100% 57.38 47.00 33.9 29.94 27.05 23.48

model parameters for LR and STNN is constant on different
datasets. In contrast, GBM needs to fine-tune some hyper-
parameters, such as the number and depth of decision trees,
whose values vary from one dataset to another. Since the
model size of TEMP is proportional to the size of historical
trajectories, it also varies with the dataset. As for MURAT and
DeepOD, their parameters include road segment embeddings
whose size is different for different cities. In particular, BRN
includes more road segments than CRN and XRN, so its
model size on Beijing is bigger than that on Chengdu and
Xi’an for MURAT and DeepOD.
(3) The training time of deep learning models (STNN, MURAT
and DeepOD) is greater than other models (LR and GBM) since
deep learning models contain more parameters than other
models. In addition, TEMP is not a learning method, so we
ignore its training time.
(4) All models incur more training time on Beijing than the
other two. Beijing is larger than Chengdu and Xi’an and the
associated models contain more parameters, so more steps
are needed to traverse the training data of Beijing than that
of Chengdu and Xi’an, which takes more time.
(5) The deep learning models incur more estimation time
than other models. However, TEMP needs to look for similar
trajectories, which increases the online estimation time, so
its estimation time is far greater than other methods.
(6) LR and STNN take similar estimation time in both datasets,
because they keep the same model size for different datasets.
In contrast, the estimation time increases with the increasing
of the model size for GBM, MURAT and DeepOD.
(7) Comparedwith the state-of-the-artmethod MURAT, DeepOD
is more efficient since we need less offline training time, less
memory usage and less online estimation time.

6.4.4 Scalability Comparison. To compare the scalability,
we trained different models by varying the training data size
of Beijing. In particular, we sampled 20%, 40%, 60%, 80% and
100% from the training data of Beijing to train these models,
and then collected the associated MAPE loss of online esti-
mation on the test data of Beijing. From Table 6, we have the
following observations.
(1) All methods would perform better if we use more train-
ing data, because more data covers more situations and thus
better models can be learned.
(2) Our method DeepOD is more stable and more effective
than other methods. For example, the MAPE loss of DeepOD

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2146

0 500 1000 1500

actual time(second)

0

500

1000

1500

es
ti

m
a
te

d
 t

im
e(

se
co

n
d

) TEMP

LR

GBM

STNN

MURAT

DeepOD

(a) Chengdu

0 500 1000 1500

actual time(second)

0

500

1000

1500

2000

es
ti

m
a

te
d

 t
im

e(
se

co
n

d
)

TEMP

LR

GBM

STNN

MURAT

DeepOD

(b) Xi’an
Figure 12: Estimated time vs. actual time

0 500 1000

actual time(second)

0

500

1000

es
ti

m
a
te

d
 t

im
e(

se
co

n
d

)

TEMP

LR

GBM

STNN

MURAT

DeepOD

(a) Chengdu

0 500 1000 1500 2000

actual time(second)

0

500

1000

1500

2000

es
ti

m
a
te

d
 t

im
e(

se
co

n
d

)

TEMP

LR

GBM

STNN

MURAT

DeepOD

(b) Xi’an
Figure 13: Estimated time vs. actual time on MAPE

is increased by 28.15−23.48
23.48 × 100% = 19.89% when we only use

20% training data. In contrast, the linear regression model
LR increases the loss by 112.92−47.00

47.00 × 100% = 140.26%.

6.4.5 Case Study. We first randomly sampled 50 test data
(travel time is less than 1 hour) from Chengdu and Xi’an
respectively, and then used different methods to generate the
estimated travel time. After that, we got 50 pairs of the actual
time and the estimated time for each method. We illustrated
all pairs with scatter points, as plotted in Figure 12. In each
figure, we drew an auxiliary line 𝑦 = 𝑥 as reference. We can
find: (1) most of our DeepOD model’s points are closer to the
reference line than other methods; (2) the estimated time by
LR almost forms a line, mainly because LR is a linear method;
(3) with the increase of actual time duration, the errors of
estimated time also increase for all methods, but DeepOD has
the smallest degree of increase.

To study the performance of eachmethod in theworst case,
we selected 50worst-performing cases for each method. Sim-
ilarly, we drew them in Figure 13. Specifically, we compared
them based on the MAPE loss. According to the definition of
MAPE, shorter actual travel time and longer estimated travel
time would cause a bigger MAPE loss. Therefore, almost
all selected cases were located in the up-left corner of the
corresponding figures. We can find that: (1) In most cases,
our method DeepOD is closer to the reference line than other
methods. (2) There are many extreme worst cases in TEMP,
where the MAPE loss could be 200% − 300%. TEMP utilizes
the average travel time of similar historical taxi orders to
estimate the travel time, and it is difficult to define the simi-
larity between different taxi orders. (3) The worst cases in
Chengdu are better than those in Xi’an for all methods.
In summary, we can conclude that our method is more

effective than others in most cases.

Table 7: MAPE Errors(%) of Embeddings in DeepOD

City T-one T-day T-stamp R-one
Chengdu 20.58(+7.9%) 20.33(+6.6%) 41.89(+119.7%) 21.16(+11.0%)
Xi’an 21.49(+3.7%) 21.59(+4.2%) 50.09(+141.7%) 21.92(+5.8%)
Beijing 24.27(+3.4%) 24.62(+4.9%) 34.19(+45.6%) 23.93(+1.9%)

1 5 10 30 60

the size of time slot(minute)

19.5

20.0

20.5

21.0

M
A

P
E

(%
)

DeepOD

(a) MAPE vs. time slot size
Mon.Tue.Wed.Thu. Fri. Sat. Sun.

2
4
6
8
10
12
14
16
18
20
22
24

−10

−5

0

5

10

(b) Heatmap of time slots

Figure 14: The Effectiveness of Time Slot on Chengdu
6.5 Effectiveness of Embeddings in DeepOD
We evaluated the respective effectiveness of road segment
embedding and time slot embedding in DeepOD. As for
the time slot embedding, we tried three variations, which
were called as T-one, T-day and T-stamp, respectively. T-one
used one-hot vectors to initialize the time slot embedding
rather than the graph embedding, T-day considered the daily
periodicity and built temporal graph using time slots in one
day, and T-stamp directly used timestamps. As for the road
segment embedding, we used one-hot vectors to initialize it
and denoted the method as R-one. We used the MAPE loss to
compare their performance. The result is shown in Table 7
(the percentage below the MAPE value shows the MAPE
loss’s increase percentage w.r.t. DeepOD.), from which the
following observations are made.
(1) The effectiveness of DeepOD would deteriorate if we ini-
tialized the two embeddings with one-hot vectors, but such
deterioration is notably small. This is because we only re-
placed the initial embeddings and would learn the final em-
beddings by the same training data anyway.
(2) For Chengdu and Xi’an, the road segment embedding
plays a more important role than the time slot embedding
in influencing the effectiveness of DeepOD, which can be de-
duced from the fact that T-one outperforms R-one. However,
the time slot embedding is more important for Beijing.
(3) The decreasing degree of Beijing is greater than that of
Chengdu and Xi’an. One possible reason is that the training
data of Beijing is much larger, and the better representations
can be generated over Beijing even without better initial
embeddings.
(4) T-stamp has the worst performance. The main reason is
that T-stamp ignores the weekly or daily periodicity of trav-
eling conditions. In addition, the temporal feature of T-stamp
has large values and dominates other features.
Furthermore, we utilized Chengdu to evaluate the effec-

tiveness of the time slot size. First, we varied the size of time
slot from 1 minute to 60 minutes, and then computed the
MAPE loss for DeepOD. As shown in Figure 14(a), we got the

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2147

best performance when we set the size as 5 minutes. The
reasons are twofold. On the one hand, the smaller the time
slot size, the finer the embedding, which would improve the
performance. One the other hand, the smaller the time slot
size, the sparser the timestamps, which would deteriorate the
performance. Second, we collected all time slot embeddings
(the time slot size was 5minutes) and converted each embed-
ding into a 1-dimensional value using t-SNE [29]. After that,
we computed the average value of every 12 neighboring time
slots and drew the corresponding heat map in Figure 14(b).
The heat map demonstrates the smoothness of neighboring
time slots and the daily and weekly periodicity.

7 RELATEDWORK
7.1 Travel Time Estimation
There are two broad categories of work – travel time estima-
tion for paths and travel time estimation for OD inputs.
Travel time estimation for paths. The method of estimat-
ing travel time for paths can be divided into two groups
depending on the availability of the data source: one is called
loop-detector-data approach [8, 14, 22, 31], and the other is
called floating-car-data approach [11, 20, 41, 49]. The first
group infers the travel time for a road segment through col-
lecting vehicles data from loop detector sensors, which are
installed on both endpoints of the road segment. In contrast,
the second group directly uses GPS trajectories collected
from floating cars. However, neither of them considers the
interaction between road segments and thus, accuracy is
limited. To address this issue, some methods [28, 33, 42] use
sub-paths instead of single segments when computing the
travel time for the whole path. For example, Wang et al. [42]
propose a dynamic programming method to find the optimal
concatenation of sub-paths for estimating travel time.

However, the performance of these methods depend heav-
ily on the historical data on road networks, which may not al-
ways be available in each road segment. Moreover, they may
lead to inaccurate estimation because such approaches can-
not accurately consider road intersections. To address these
problems, Wang et al. [38] propose an end-to-end framework
to predict the travel time with intermediate GPS points based
on the deep learning technique. Zhang et al. [46] also use
deep learning method to solve the problem, but it can make
full use of temporal information of trajectory data.
Travel time estimation for OD inputs. The problem of
travel time estimation for OD inputs [23, 27, 39] is moti-
vated by the fact that many real-world applications cannot
get the actual routes when estimating the arrival time for a
given origin and destination points, and the only available
data are the two points and the departure time. In particular,
in [39], for a query origin and destination, they first utilize

the nearest neighbor method to select trajectories with a rela-
tively similar origin and destination, and then estimate travel
time by averaging the travel time of the selected trajectories.
The authors in [23] propose a multi-layer neural network
called STNN. They first predict the travel distance based on a
given origin and a given destination, and then they combine
the predicted distance with the given temporal information
to predict the travel time. However, they neglect the infor-
mation about road network. To make full use of the road
network, Li et al. [27] leverage road topological structure
and spatio-temporal information of road network to predict
travel time. However, they directly embed the longitude and
latitude of the origin and the destination, which cannot ac-
curately capture the spatial features on the road network. In
addition, they ignore historical trajectories, which are useful
for travel time estimation.
7.2 Deep Learning in Spatio-Temporal Data
With the development of AI, there is an increasing growth
of deep learning applications in spatio-temporal data. First,
Recurrent Neural Network (RNN) is recently applied to tra-
jectory modeling. For example, Wu et al. [44] predicts next
movement through modeling trajectory with RNN and out-
performs existing shallow models. The authors in [13] repre-
sent and identify the semantics of user mobility patterns by
embedding trajectories with RNNmodel. In addition, Dong et
al. [12] design a stacked RNN model to characterize the driv-
ing style of different drivers. Second, many studies focus on
other deep learning models (e.g. Convolutional Neural Net-
work). Song et al. [34] propose an intelligent transportation
system to simulate the human mobility and transportation
mode. The authors in [25, 32, 48] regard the crowd density
on road network as pictures and then propose a deep spatio-
temporal residual network to predict the crowd flows.
8 CONCLUSIONS
In this paper, we studied the problem of OD travel time es-
timation, where the input consists of an origin-destination
pair and a departure time. We proposed a comprehensive
and novel neural network based approach that is able to
fully exploit historical trajectories associated with the OD
input. We mapped points into road segments to represent
their spatial features. We built the temporal graph to initial-
ize time slot embeddings to capture the weekly and daily
periodicity. We design novel representations for the OD pair
and its corresponding trajectory. We proposed an effective
encoding model to encode the spatio-temporal properties of
trajectories. Extensive experiments on real datasets verified
the effectiveness of our proposed model.
Acknowledgement. This paper is supported by NSF of
China (61925205, 61632016, 91646204), ARC DP200102611,
DP180102050, Huawei, TAL, and a Google Faculty Award.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2148

REFERENCES
[1] https://www.tianqi5.cn/lishitianqi/.
[2] Didi chuxing. https://www.didiglobal.com/.
[3] Gaya. https://outreach.didichuxing.com/research/opendata/.
[4] Openstreetmap. https://www.openstreetmap.org.
[5] Pytorch tutorial. https://pytorch.org/tutorials/beginner/examples_nn/

two_layer_net_nn.html.
[6] Uber. https://www.uber.com/.
[7] Valhalla. https://github.com/valhalla/valhalla.
[8] M. Asghari, T. Emrich, U. Demiryurek, and C. Shahabi. Probabilistic es-

timation of link travel times in dynamic road networks. In SIGSPATIAL,
pages 47:1–47:10, 2015.

[9] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching
vehicle tracking data. In VLDB, pages 853–864, 2005.

[10] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In
SIGKDD, pages 785–794, 2016.

[11] Z. Ding, B. Yang, R. H. Güting, and Y. Li. Network-matched
trajectory-based moving-object database: Models and applications.
TITS, 16(4):1918–1928, 2015.

[12] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang. Characterizing
driving styles with deep learning. CoRR, 2016.

[13] Q. Gao, F. Zhou, K. Zhang, G. Trajcevski, X. Luo, and F. Zhang. Iden-
tifying human mobility via trajectory embeddings. In IJCAI, pages
1689–1695, 2017.

[14] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning
for user interest and response prediction in online display advertising.
Data Science and Engineering, 5(1):12–26, 2020.

[15] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural
networks. In AISTATS, pages 315–323, 2011.

[16] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In SIGKDD, pages 855–864, 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In ECCV, pages 630–645, 2016.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[19] F. Huang, J. T. Ash, J. Langford, and R. E. Schapire. Learning deep
resnet blocks sequentially using boosting theory. In ICML, pages
2063–2072, 2018.

[20] T. Hunter, R. Herring, P. Abbeel, and A. Bayen. Path and travel time
inference from gps probe vehicle data. NIPS, 12(1):2, 2009.

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In ICML, pages
448–456, 2015.

[22] Z. Jia, C. Chen, B. Coifman, and P. Varaiya. The pems algorithms for
accurate, real-time estimates of g-factors and speeds from single-loop
detectors. In ITSC, pages 536–541, 2001.

[23] I. Jindal, X. Chen, M. Nokleby, J. Ye, et al. A unified neural network
approach for estimating travel time and distance for a taxi trip. CoRR,
2017.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, 2014.

[25] M. Li, H. Wang, and J. Li. Mining conditional functional dependency
rules on big data. Big Data Mining and Analytics, 03(01):68, 2020.

[26] X. Li, G. Cong, A. Sun, and Y. Cheng. Learning travel time distributions
with deep generative model. In WWW, pages 1017–1027, 2019.

[27] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu. Multi-task rep-
resentation learning for travel time estimation. In SIGKDD, pages

1695–1704, 2018.
[28] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based most

frequent path in big trajectory data. In SIGMOD, pages 713–724, 2013.
[29] L. V. D. Maaten and H. Geoffrey. Visualizing data using t-sne. JMLR,

9:2579–2605, 2008.
[30] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: online learning of

social representations. In SIGKDD, pages 701–710, 2014.
[31] K. F. Petty, P. Bickel, and et.al. Accurate estimation of travel times

from single-loop detectors. Transportation Research Part A, 32(1):1–17,
1998.

[32] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: An automatic big data
visualization framework. Big Data Mining and Analytics, 1(1):75, 2018.

[33] M. Rahmani, E. Jenelius, and H. N. Koutsopoulos. Route travel time
estimation using low-frequency floating car data. In ITSC, pages 2292–
2297, 2013.

[34] X. Song, H. Kanasugi, and R. Shibasaki. Deeptransport: Prediction and
simulation of human mobility and transportation mode at a citywide
level. In IJCAI, pages 2618–2624, 2016.

[35] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
In AAAI, pages 4278–4284, 2017.

[36] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: large-
scale information network embedding. In WWW, pages 1067–1077,
2015.

[37] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, and W. Lv.
The simpler the better: A unified approach to predicting original taxi
demands based on large-scale online platforms. In SIGKDD, pages
1653–1662, 2017.

[38] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng. When will you arrive?
estimating travel time based on deep neural networks. In AAAI, pages
2500–2507, 2018.

[39] H. Wang, Y. Kuo, D. Kifer, and Z. Li. A simple baseline for travel time
estimation using large-scale trip data. In SIGSPATIAL, pages 61:1–61:4,
2016.

[40] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin. Torch: A
Search Engine for Trajectory Data. In SIGIR, pages 535–544, 2018.

[41] Y. Wang, Y. Yuan, Y. Ma, and G. Wang. Time-dependent graphs: Defi-
nitions, applications, and algorithms. Data Science and Engineering,
4(4):352–366, 2019.

[42] Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path using
sparse trajectories. In SIGKDD, pages 25–34. ACM, 2014.

[43] C.Wenk, R. Salas, andD. Pfoser. Addressing the need formap-matching
speed: Localizing globalb curve-matching algorithms. In SSDBM, pages
379–388, 2006.

[44] H. Wu, Z. Chen, W. Sun, B. Zheng, andW.Wang. Modeling trajectories
with recurrent neural networks. In IJCAI, pages 3083–3090, 2017.

[45] H. Yuan and G. Li. Distributed in-memory trajectory similarity search
and join on road network. In ICDE, pages 1262–1273, 2019.

[46] H. Zhang, H. Wu, W. Sun, and B. Zheng. Deeptravel: a neural network
based travel time estimation model with auxiliary supervision. In
IJCAI, pages 3655–3661, 2018.

[47] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual networks
for citywide crowd flows prediction. In AAAI, pages 1655–1661, 2017.

[48] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi. Dnn-based prediction model
for spatio-temporal data. In SIGSPATIAL, 2016.

[49] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong. G-tree: An efficient and
scalable index for spatial search on road networks. IEEE Trans. Knowl.
Data Eng., 27(8):2175–2189, 2015.

Research 24: Spatial, Temporal, and Multimedia Data II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2149

	Abstract
	1 Introduction
	2 Problem Formulation
	3 An Overview of Our Model
	4 Model Representation
	4.1 Road Segment Embedding
	4.2 Time Slot Embedding
	4.3 Time Interval Encoder
	4.4 Trajectory Encoder
	4.5 External Features Encoder
	4.6 Travel Time Estimation

	5 Model Learning
	6 Experiments
	6.1 Experimental Setup
	6.2 Setting of DeepOD's Hyper-parameters
	6.3 Effectiveness of Loss Weight
	6.4 Comparison with Baselines
	6.5 Effectiveness of Embeddings in DeepOD

	7 Related Work
	7.1 Travel Time Estimation
	7.2 Deep Learning in Spatio-Temporal Data

	8 Conclusions
	References

