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ABSTRACT
In this work, we propose a robust road network representation
learning framework called Toast, which comes to be a cornerstone
to boost the performance of numerous demanding transport plan-
ning tasks. Specifically, we first propose a traffic context aware
skip-gram module to incorporate auxiliary tasks of predicting the
traffic context of a target road segment. Furthermore, we propose
a trajectory-enhanced Transformer module that utilizes trajectory
data to extract traveling semantics on road networks. Apart from
obtaining effective road segment representations, this module also
enables us to obtain the route representations. With these two mod-
ules, we can learn representations which can capture multi-faceted
characteristics of road networks to be applied in both road segment
based applications and trajectory based applications. Last, we de-
sign a benchmark containing four typical transport planning tasks
to evaluate the usefulness of Toast and comprehensive experiments
verify that Toast consistently outperforms the state-of-the-art base-
lines across all tasks.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies → Neural networks.
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Figure 1: Road network example. Blue line denotes primary
roads and green lines denote secondary roads.

1 INTRODUCTION
Road network, as a fundamental yet indispensable component in
transportation systems, is closely related to numerous downstream
transport planning tasks, including trajectory based tasks such as
route inference [10, 19], and road segment based tasks such as traffic
forecasting [5, 11, 13]. Therefore, deriving effective representations
that can capture intrinsic characteristics of the road network can di-
rectly boost the effectiveness of all these tasks. Since a road network
is essentially a graph, a natural question to ask is whether we can
apply graph representation learning models to address our problem.
Unfortunately, it is not trivial due to two challenging issues.

The first is the discrepancies with regard to specified assump-
tions between common graphs and road networks. Most previ-
ous studies focus on citation or social network graphs and de-
sign methods based on some well-explored assumptions on these
graphs [9, 26, 29], which may not hold in road networks. For ex-
ample, a citation graph usually exhibits network homophily [26],
which means interconnected nodes are more similar than distant
nodes. However, spatially-neighboring road segments might not
necessarily show similar traffic patterns on road networks. In Fig-
ure 1, road segments 𝑑ℎ, 𝑔ℎ, ℎ𝑖 , ℎ𝑘 are connected to each other
but primary roads usually have different traffic patterns, e.g., traffic
volume, to secondary roads since primary roads are travelled more
frequently.

The second is the feature uniformity issue. Features on a road
network, such as road type and lane number, are often shared across
spatially-close nodes. More precisely, since a city manifests different
functionalities for different sub-regions, such as commercial area
and residential area, it is often the case that some fractions of a
road network have the same features. This unique property in
road networks would dampen the performance of standard graph
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representation learning methods, especially graph neural networks
(GNN) [42]. We illustrate this with an example in Figure 1, where
all the connected road segments to the target road segment 𝑑𝑒
share the same features (road type). The same cases happen for
road segments 𝑐𝑑 , 𝑎𝑑 , 𝑎𝑏, etc. The aggregation operation, which
is the core part in GNN, reduces to an identity transformation for
these road segments so it would lead to the issue similar to over-
smoothing [18] in GNN. Notably, the two issues, discrepancies and
feature uniformity, are two different perspectives of potential issues
that can co-exist on road networks. For example, road segment 𝑑𝑒
shares the same features with neighboring road segments, while
it also has more traffic volume compared to 𝑐𝑑 , 𝑎𝑑 , 𝑎𝑏 since path
[𝑐, 𝑑, 𝑒, 𝑓 ] is a straight route but [𝑐, 𝑑, 𝑎, 𝑏, 𝑒, 𝑓 ] is a detour.

Instead of serving a specific task such as traffic inference, our
target is the same as that in [9, 26] for general graph representation
learning that can be utilized in various applications. In other words,
we expect the learned representations to be robust and generic when
serving various types of road network applications, as highlighted
at the beginning of this section.

Among all recent efforts in road network representation learn-
ing [14, 33, 34, 41], the models in [33, 34] aim to learn road inter-
section representations for road networks. It considers to capture
road network structure and meanwhile integrate extra information
if available, such as whether two intersections have the same tag
(e.g., stop sign tag). However, this model follows the homophily
assumption, so it cannot fully address the first issue. The models in
[14, 41] adapt GNN to road networks in order to learn road segment
representations, and hence it suffers from the second issue. Even
worse, these models only focus on capturing partial characteris-
tics such as road network structure, thus failing to learn effective
representations that contain multi-faced knowledge about road
networks. In summary, existing representation learning methods
for both standard graphs and road networks suffer from the above
two issues, and in this work we aim to address both of them.

We argue that in order to achieve robust and generic representa-
tions for road networks, two types of characteristics, namely traffic
patterns and traveling semantics, need to be captured to handle
the previously discussed two issues. In particular, traffic patterns
(such as traffic volumes) could be regarded as a signal to overcome
the limitations of assumptions made for common graphs (discrepan-
cies). Meanwhile, traveling semantics (such as transition patterns)
could be incorporated to identify differences for road segments that
share the same features (feature uniformity). Taking Figure 1 as an
example, transition patterns would tell that the path [𝑐, 𝑑, 𝑒, 𝑓 ] is
more frequently traveled than the detour path [𝑐, 𝑑, 𝑎, 𝑏, 𝑒, 𝑓 ] be-
tween 𝑐 and 𝑓 , which demonstrates the dependencies among road
segments. Furthermore, these two types of characteristics, which
serve as the most generic features on road networks, should be
properly encoded and integrated so that they can precisely enrich
the desired multi-faced knowledge about road networks.

To this end, we propose a new framework called Toast (Traffic
context aware skip-gram with trajectory-enhanced transformer),
to learn robust representations that can capture both traffic pat-
terns and traveling semantics on road networks. Different from the
previous frameworks [14, 41], we propose to extend the skip-gram
model [24] to enable the model awareness of traffic patterns by
incorporating an auxiliary traffic context prediction objective. By

doing this, the model is able to not only encode the graph struc-
ture of a road network with the original skip-gram objective, but
also distinguish road segments in terms of traffic patterns, thus
addressing the first issue discrepancies. To address the second issue
feature uniformity, we propose to utilize trajectory data to extract
traveling semantics for indistinguishable road network fractions
caused by feature uniformity. As has been shown in previous stud-
ies [7, 40], trajectory data contains rich traveling semantics that can
be modeled to enhance the effectiveness of road network represen-
tations. To achieve this goal, inspired by recent advances of stacked
bidirectional Transformer model (i.e., BERT) [6] on text modeling,
we propose to employ such an architecture to capture transition
patterns embodied in trajectory data into the representations. Due
to the inadequacy of the training tasks in BERT on road network
settings, we further design two novel training tasks, route recovery
and trajectory discrimination, to effectively encode the traveling
semantics for road networks. Finally, we organize the aforemen-
tioned two modules in a unified way so that they focus on encoding
complementary aspects of road network characteristics. These two
modules are both based on self-supervised training paradigms in
which traffic patterns and travelling semantics are directly treated
as the training objective without further task-specific labeling in-
formation. It ensures that these characteristics are well encoded
into representations, thus achieving robust performance in various
applications.

Moreover, in addition to learning representations of road seg-
ments, a side benefit is that we can get a representation of a tra-
jectory and consider it as a route representation. Such capability
further enhances the utility for trajectory based tasks, such as tra-
jectory similarity search.

To summarize, our contributions are as follows:
• We propose a novel road network representation learning
method called Toast, which is featured with two new mod-
ules, a traffic context aware skip-grammodule and a trajectory-
enhanced Transformer module. Toast is able to capture both
traffic patterns and traveling semantics on road networks. To
the best of our knowledge, this is the first work that models
trajectory sequences for learning road network represen-
tations and is able to address the two aforementioned two
issues.

• The carefully designed framework allows us to learn robust
and generic representations for road networks to benefit
both road segment based applications and trajectory based
applications. We consider four downstream applications and
design the corresponding experimental settings. These tasks
and experimental settings could serve as a benchmark for
evaluating the representations of road networks.

• We conduct extensive experiments on four downstream ap-
plications and the results demonstrate that Toast consistently
outperforms the state-of-the-art road network representa-
tion methods and representative graph representation meth-
ods across all these applications.

2 RELATEDWORK

Representation learning on graphs. Representation learning on
graphs [8] has received extensive attention for representing each
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node as a low dimensional vector. Existing studies can be catego-
rized based on various criteria. Some methods focus on capturing
different graph properties, such as proximity and homophily. In
particular, Deepwalk [26] and node2vec [9] employ random walk
on the graph to get node sequences which are treated as sentences,
and then skip-gram model, originally proposed to learn word em-
beddings [24], is applied to learn node representations. LINE [29]
is proposed to preserve first and second-order proximity by ex-
plicitly optimizing the corresponding objectives. Moreover, when
other data sources are available on graphs, such as text content [45]
on nodes and community structure [39], specialized methods are
proposed to incorporate such extra information to enhance rep-
resentations. More recently, graph neural networks (GNN) [42],
which aim to extend deep neural networks to deal with arbitrary
graph-structured data, have been introduced for graph represen-
tation learning. GNN based models generate node representations
by exchanging and aggregating features from neighborhoods, and
different methods are proposed to explore different effective aggre-
gation operations [12, 16, 31]. However, the superior performance
usually requires the graph nodes to contain rich features which are
diverse in neighborhoods, which is not the case for road networks.
As discussed in Section 1, these graph representation learning meth-
ods are not designed for road networks and fail to capture unique
characteristics in road networks such as traffic patterns.
Road network modeling. Road network representation can fa-
cilitate applications of intelligent transportation system, such as
traffic inference and forecasting [5, 11, 13], spatial query process-
ing [25, 38], and region functionality discovery [47], to name a
few. Recently, some methods have been proposed to extend graph
representation learning techniques to road networks [14, 33, 34, 41].
However, none of these methods propose to learn from trajectory
data, which contains rich traveling semantics about road networks.
Moreover, they fail to thoroughly address the two issues discussed
in Section 1.
Trajectory mining. Trajectory data contains rich information
about the behaviors of moving objects, and has been exploited
for real-world applications [35]. Several trajectory management
systems are built to optimize data indexing and storage [37], to
support different operations, such as trajectory similarity compu-
tation [7, 21] and clustering [36]. On the other hand, the patterns
encoded in trajectories enable us to build effective models in down-
stream applications, such as travel time estimation [20, 46], route re-
covery and inference [10, 19], and anomaly trajectory detection [22].
In these applications, road network explicitly provides structural
constraints for trajectory data, while trajectory data in some sense
implicitly reflects latent traveling semantics for road networks. This
motivates us to leverage trajectory data in learning representations
for road networks.

3 PROBLEM FORMULATION
We start with our problem statement and then describe an overview
of our proposed framework.

3.1 Problem Definitions
Definition 3.1. Road Network. A road network is represented

as a directed graph 𝐺 = (V, E, CV ), where V is a set of vertices,

each vertex 𝑣 representing a road segment, E is a set of edges, each
𝑒 = (𝑢, 𝑣) representing the intersection between road segments 𝑢
and 𝑣 , and CV is a set of features on road networks.

Definition 3.2. Trajectory. A trajectory 𝑇 is a sequence of sam-
pled points [𝑝𝑖 ] |𝑇 |

𝑖=1 from the underlying route of a moving object,
where each point 𝑝𝑖 corresponds to a coordinate of latitude and
longitude.

Definition 3.3. Route. A route r = [𝑟𝑖 ]𝑛𝑖=1 is a sequence of adja-
cent road segments, where 𝑟𝑖 ∈ V represents the 𝑖-th road segment.

In our study, given a road network 𝐺 , a trajectory 𝑇 is first
mapped onto the road network to get the underlying route r by a
map matching algorithm [44]; we represent the road segment set
as V to be consistent with the notation usage in graph learning.
Problem Statement. Given a road network 𝐺 = (V, E, CV ) and
a trajectory database D = {𝑇 (𝑖) } |D |

𝑖=1 , we aim to 1) learn a low-
dimensional vector representation {u𝑣}𝑣∈V for road segments,
and 2) derive the representation ur of any given route r on the road
network.

It is worth noting that our target is to learn robust and generic
representations for a road network, such that the derived road
segment representations and route representations could be utilized
in various road segment based applications and trajectory based
applications, respectively.

3.2 Framework Overview
In this section we will illustrate how our Toast framework is able to
address the two issues outlined in Section 1 (i.e., discrepancies and
feature uniformity), towards robust road network representations.
An overview of Toast is shown in Figure 2.

First, apart from following the assumptions of common graphs
(e.g., homophily, structural equivalence), we propose to distinguish
discrepancies among road segments. To achieve this, we extend the
skip-gram model [24], which is flexible in producing node repre-
sentations based on various structural assumptions for graph data,
to capture traffic patterns (e.g., traffic volume). In addition to the
original skip-gram objective which is to predict the context neigh-
bors of the target road segment, we introduce auxiliary tasks of
predicting traffic-related context features (e.g., speed limit) in a self-
supervised manner. Such a multi-task learning paradigm enables
the representations to not only encode graph structures, but also
discriminate between various traffic patterns which are indicated
by context features.

Second, a unique property of road network is that it usually
has many sub-regions with uniform features; unfortunately, the
performance of standard graph representation learning methods,
especially GNN, suffer from such feature uniformity. Furthermore,
road segments within such a sub-region (e.g., residential area) of
a road network also tend to be similar in terms of traffic patterns,
making the situation even worse. To address this issue, we pro-
pose to learn from trajectory data to extract travelling semantics
on road networks, including transition patterns and high-order
dependencies between distant regions. To achieve this goal, we
adopt a stacked bidirectional Transformer architecture [6] to model
trajectory data. In particular, we design two novel and effective self-
supervised training tasks for road network settings, route recovery
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Figure 2: Framework overview

and trajectory discrimination, to further tune the representations.
Specifically, in the route recovery task, we randomly mask a partial
sequence of road segments in a route, and then recover the masked
sequence based on the remaining part of the route. In the trajectory
discrimination task, given a valid route on a road network, we aim
to discriminate whether it is a trajectory or a random walk on road
network.

With the proposed techniques, Toast can encode multi-faceted
yet mutually enhanced characteristics about road networks into
the final representations. Moreover, Toast is able to produce the
representation of a sequence, which allows us to obtain a route
representation for any trajectory. In this way, our framework pro-
duces generic representations that 1) could be applied in both road
segment based and trajectory based downstream applications, and
2) achieve effective performance across different applications.

4 TOAST FRAMEWORK
We present our Toast framework. We start with preliminaries of
the skip-gram model and then discuss the extended skip-gram
model with an auxiliary traffic context prediction objective. Next
we describe the trajectory-enhanced Transformer module. Last, we
present our proposed training tasks and illustrate how they capture
information encoded in trajectory data into representations.

4.1 Preliminary: Skip-gram Model
The skip-gram model was first proposed in word2vec [24] to learn
embeddings for words1. It is widely adopted in node representation
learning methods later by viewing nodes in a graph as words in
a document. These methods employ a set of random walks S on
a graph and treat each random walk as a sentence. The model is
trained to maximize the likelihood of observing the neighborhood
nodes within a context window given the target node, which equals

1We use embeddings and representations interchangeably in this paper.

to minimizing the following loss function:

L𝑆𝐺 = −
∑
𝑣𝑖 ∈s

∑
𝑣𝑗 ∈N(𝑣𝑖 )

log𝑝
(
𝑣 𝑗 |𝑣𝑖

)
= −

∑
𝑣𝑖 ∈s

∑
𝑣𝑗 ∈N(𝑣𝑖 )

log
exp

(
u𝑇
𝑖
w𝑗

)
∑
𝑣′
𝑗
∈V exp

(
u𝑇
𝑖
w′
𝑗

) , (1)

where u𝑖 is the target embedding for node 𝑣𝑖 , w𝑗 is the context
embedding for node 𝑣 𝑗 ,N(𝑣𝑖 ) are the context neighbors of node 𝑣𝑖 ,
and s is a random walk sequence from the random walk set S. By
optimizing this objective, the final node representations could cap-
ture the structural properties (e.g., homophily) via various random
walk sampling strategies [9, 27].

4.2 Auxiliary Traffic Context Prediction
Objective

As discussed in Section 3.2, Toast aims to not only capture the
structural assumptions of common graphs, but also incorporate
traffic patterns in the representations. To achieve this, we propose
to extend the skip-gram model by introducing auxiliary traffic con-
text prediction tasks. For instance, there are some traffic context
features available for road segments, such as speed limit and road
type. We regard them as auxiliary context information that indi-
cates the traffic patterns of the corresponding road segments. Based
on this, given a target node (road segment) and its context neigh-
bors, our key idea is to first determine the traffic context of the
target node, and then predict the context neighbors. Specifically,
to perform traffic context prediction for a target road segment, we
first apply binarization to the selected features that infer traffic pat-
terns. For example, assuming we choose road type 𝑐𝑛 from traffic
context feature set {𝑐𝑛}𝑛=1,2,...𝑁 as a particular feature which has
|𝑐𝑛 | possible options, it is processed into a |𝑐𝑛 |-dimensional label
vector where each dimension is 0 or 1, representing the existence
of one particular option of a target road segment. Formally, given a
target road segment 𝑣𝑖 and its corresponding 𝑁 types of binarized
traffic context features 𝝅 (𝑣𝑖 )

def .
= {𝑐𝑖𝑛}𝑛=1,2,...𝑁 , then for any con-

text feature 𝑐𝑛 we aim to minimize the binary cross entropy loss
function:

L𝑐𝑛 = −
∑
𝑣𝑖 ∈s

|𝑐𝑛 |∑
𝑗=1

𝑐𝑖𝑛 𝑗 log 𝑝
(
𝑐𝑖𝑛 𝑗 |𝑣𝑖

)
+

(
1 − 𝑐𝑖𝑛 𝑗

)
· log

(
1 − 𝑝

(
𝑐𝑖𝑛 𝑗 |𝑣𝑖

))
= −

∑
𝑣𝑖 ∈s

|𝑐𝑛 |∑
𝑗=1

𝑐𝑖𝑛 𝑗 log𝜎 (u
𝑇
𝑖 c𝑛𝑗 ) + (1 − 𝑐𝑖𝑛 𝑗 ) · log(1 − 𝜎 (u𝑇𝑖 c𝑛𝑗 ))

(2)
where 𝑐𝑖

𝑛 𝑗
is the 𝑗-th entry of the 𝑛-th binarized feature 𝑐𝑛 for node

𝑣𝑖 , u𝑖 is the target embedding for node 𝑣𝑖 , c𝑛𝑗 is the feature embed-
ding for 𝑐𝑛𝑗 that is shared across road segments, and 𝜎 denotes the
sigmoid function.

Here, node embeddings are optimized to produce accurate pre-
dictions on both traffic context and context neighbors, which are
more adequate in road network setting than considering context
neighbors only in normal graph embedding. Moreover, these pre-
diction tasks are organized in an ordered way such that we are able
to utilize traffic context to further enhance the prediction of context
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neighbors. In other words, when predicting the context neighbors,
instead of being conditioned only on the target road segment 𝑣𝑖 via
the original skip-gram objective, we modify this objective to be

L𝑆𝐺′ = −
∑
𝑣𝑖 ∈s

∑
𝑣𝑗 ∈N(𝑣𝑖 )

log𝑝
(
𝑣 𝑗 |𝑣𝑖 , �̃� (𝑣𝑖 )

)
= −

∑
𝑣𝑖 ∈s

∑
𝑣𝑗 ∈N(𝑣𝑖 )

log
exp

(
ũ𝑇
𝑖
w̃𝑗

)
∑
𝑣′
𝑗
∈V exp

(
ũ𝑇
𝑖
w̃′
𝑗

) (3)

Here, �̃� (𝑣𝑖 )
def .
= {𝑐𝑖𝑛}𝑛=1,2,...,𝑁 with 𝑐𝑖𝑛

def .
= [𝜎 (u𝑇

𝑖
c𝑛𝑗 )] |𝑐𝑛 |𝑗=1 is the

𝑛-th predicted traffic context of road segment 𝑣𝑖 ; ũ𝑖 is the traffic-
enhanced target embedding for 𝑣𝑖 , which is a concatenation of the
original target embedding u𝑖 and all the predicted traffic context
�̃� (𝑣𝑖 ); w̃𝑗 is the corresponding context embedding for node 𝑣 𝑗 .

The final objective function is a weighted sum of the modified
skip-gram loss and the loss of all auxiliary traffic context prediction
tasks. Formally, it is defined as

L = L𝑆𝐺′ +
𝑁∑
𝑛=1

𝛼𝑛L𝑐𝑛 (4)

where 𝛼𝑛 are the hyperparameters to control the weight of auxiliary
tasks. Compared to the original skip-gram model, we encode more
semantic information (i.e., traffic patterns) into the representations
with the help of our proposed auxiliary tasks. At the same time, the
context neighbor prediction would also benefit from the knowledge
of traffic context. As a result, this multi-task learning paradigm
would produce more effective representations for a road network.

4.3 Bidirectional Self-attention Network
4.3.1 Network Architecture. To handle the feature uniformity issue
faced by existing representation learning methods, we propose a
novel trajectory-enhanced Transformermodule to extract transition
patterns and high-order dependencies on road networks. It has
been proved that a stacked bidirectional self-attention network
(i.e., stacked Transformer) is powerful in modeling text sequences
to learn semantically useful word representations for numerous
downstream tasks [6]. Inspired by the observation that trajectory is
a type of sequence data, we propose to adopt such an architecture
to learn representations for road networks. Next we describe the
modeling process in a bottom-up fashion.
Input Embedding Layer. The road segment representations ob-
tained from the first module serves as the input embeddings of our
stacked bidirectional self-attention network. In contrast to recur-
rent neural networks (RNN) that process the inputs sequentially,
self-attention network operates on the input tokens in parallel us-
ing the self-attention mechanism, and thus they are agnostic to
the order of the input tokens. Hence, to preserve the sequential
information of trajectory, we inject learnable positional embeddings
into the input representations. Specifically, we construct the input
representations as

x𝑖 = u𝑖 + p𝑖 (5)
where u𝑖 and p𝑖 are road segment embedding and positional em-
bedding for the 𝑖-th road segment in a trajectory, respectively.

In this manner, the injected positional embeddings can help the
self-attention network to be aware of the input order rather than

treating them as a set of unordered road segments. Also, they enable
the model to learn high-level semantics in the sense that one road
segment might play a different role when it appears at different
locations of a trajectory.
Multi-head Self-attention. Attention mechanism has been suc-
cessfully applied in a wide variety of tasks ranging from machine
translation to image captioning [3, 43]. In particular, self-attention
enables the transformation of a sequence without relying on the
external information. We follow the setting of scaled inner-product
form of attention mechanism, which can be described as mapping
a query and a set of key-value pairs to an output vector representa-
tion [30]. Formally, it is defined as

Attention(Q,K,V) = softmax
(
QK𝑇√
𝑑𝑘

)
V (6)

where Q, K and V are the stacked query, key, and value vectors
of dimension 𝑑𝑘 , 𝑑𝑘 , 𝑑𝑣 respectively. Notably, self-attention mech-
anism adopts a position-insensitive transformation, and thus the
positional embedding proposed in the Input Embedding Layer is
essential for the self-attention network to incorporate the input
order information.

In our work, we adopt multi-head self-attention [30] to model tra-
jectory sequences. Given the input representationsX= [x1, x2, ..., xM] ∈
R𝑀×𝑑𝑖𝑛 of a trajectory that consists of𝑀 road segments, they are
mapped to output representations Z = [z1, z2, ..., zM] ∈ R𝑀×𝑑𝑜𝑢𝑡 .
Specifically, the input representations are projected intoℎ subspaces
with different learnable parameters as queries, keys, and values.
Each projection indicates a “head" that allows the model to jointly
attend to information from several independent subspaces. Then
self-attention is applied in each subspace, followed by concatena-
tion and another projection, to produce the output representations:

Z = MH-Attn(X) = [ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ] ·W𝑂

ℎ𝑒𝑎𝑑𝑖 = Attention
(
XW𝑄

𝑖
,XW𝐾

𝑖 ,XW
𝑉
𝑖

) (7)

whereW𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
∈ R𝑑𝑖𝑛×𝑑𝑖𝑛/ℎ ,W𝑂∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 are self-attention

parameters.
Position-wise Feed-forward Network. After bidirectional inter-
actions across different positions by multi-head self-attention, the
output representations are sent to a fully connected feed-forward
network. More precisely, the output representations Z are passed
through a feed-forward network as follows:

FFN(Z) = Φ (ZW1 + b1)W2 + b2 (8)

where Φ() is the ReLU activation function, W1, W2, b1 and b2 are
parameters of feed-forward network.
Model Stacking. It is usually beneficial to learnmore complex tran-
sition patterns in trajectory data by stacking multiple layers, each of
which is composed of two sub-layers: multi-head self-attention and
position-wise feed forward network described above. To alleviate
possible training difficulty caused by the increasing depth of more
stacked layers, we follow [30] to employ the residual connection
on each of the two sub-layers, followed by layer normalization [2].
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It can be formally expressed as
Z′ = LayerNorm(X +MH-Attn(X))
X′ = LayerNorm(Z′ + FFN(Z′))

(9)

where LayerNorm denotes layer normalization and Z′ denotes the
final output of a layer, which is also the input for next layer.

4.3.2 Model Training. Despite the power of the bidirectional self-
attention network, a critical question is how to ensure that the rep-
resentations contain traveling semantics on road networks. In such
a network architecture, it is usually the case that a well-designed
loss function plays a vital role in achieving desired properties for
various domains (e.g., language [6], image [23], video [28]) as it
provides useful signals to guide the parameter tuning process. In
other words, we need to design appropriate training tasks which
call for the knowledge of traveling semantics on road networks to
achieve effective performance. In this way, as the loss decreases
with model training, the representations are gradually tuned to
encode the required knowledge of traveling semantics.

In previous work where transformer architecture is employed,
BERT [6] designs two self-supervised training tasks, namelymasked
language modeling (MLM) and next sentence prediction (NSP), to
learn representations for various natural language processing tasks.
Although these two tasks lead to successful representations, they
could not achieve our target under road network settings.

First, in the MLM task, each word in a sequence is randomly
masked with a certain probability (e.g., 15%), and then the model is
asked to predict those masked words. Due to high flexibility and
complexity of human languages, there are often a large number of
syntactically appropriate words that could fill a masked location,
and thus the model will be forced to learn the semantically mean-
ingful word to best fit that position, which implies that high-level
semantic meanings of the words would have to be captured by their
representations. However, this is not the case for road segments
prediction in a trajectory, because two consecutive road segments
in a trajectory must be connected in a road network. In this case,
given the left and right context road segments, the masked road
segment could be trivially inferred from the knowledge of graph
structure, as it is the only road segment that makes the sequence
a valid route. Given that graph structure is well captured by the
skip-gram objective, this task will not provide any new information
for the representation learning.

Second, in the NSP task, we choose a sentence pair as input, and
the latter sentence is either the next sentence of the former one or
a random sentence from the corpus. Then the model is trained to
distinguish which group this pair belongs to. However, this task
will not take effect in our problem because it does not provide any
essential information in road network settings.

To this end, we propose two new training tasks: route recovery
and trajectory discrimination, to effectively encode the travelling
semantics of trajectory data into their representations.
Route Recovery. Different from the MLM task where every single
word is randomly masked, we mask a consecutive sequence of road
segments to make a trajectory as a partially observed route. In
particular, given a route we randomly mask 20% consecutive road
segments in the sequence. In this task, we could not trivially recover
the masked road segments by the awareness of graph structure.

Instead, it requires the representations to capture more complex
transition patterns and pick the most possible option for the masked
parts. The model is trained to optimize the cross entropy loss be-
tween masked road segments and the predicted ones.
Trajectory Discrimination. We propose to train the model to
judge whether a given trajectory is a real trip or not. Specifically,
the real trips are sampled from our trajectory databases, and the
fake trips are generated by random walks sampled on the road
network. Then, we train the model to minimize the prediction error.
The purpose of this task is two-fold. First, it is another way to enable
the model to capture transition patterns. After training, the model is
able to identify fake trips by observing that some sub-sequences do
not follow the normal transition patterns. Second, since trajectories
are scattered around a road network, this task would provide an
overall understanding of traveling semantics on road network. In
particular, there can exist some frequent trips between two distant
regions; by correctly distinguishing such trips, high-order depen-
dencies and correlations across distant road segments could also be
well captured. The whole training procedure of Toast is described
in Algorithm 1.

Algorithm 1: Pseudocode for training Toast

Input: Road network 𝐺 = (V, E, CV ); trajectory databases
T ; epoch number 𝑒 ; target and context road network
embeddings U = {u𝑖 }𝑖=1: |V | ,W = {w𝑖 }𝑖=1: |V | ;
feature embeddings C = {C𝑛}𝑛=1:𝑁 where
C𝑛 = [c𝑛𝑗 ] 𝑗=1: |𝑐𝑛 |

1 for epoch ∈ 0, 1, . . . 𝑒 do
2 Perform a set of random walks S on 𝐺 ;
3 for 𝑠 ∈ S do
4 Calculate L = L𝑆𝐺′ + ∑𝑁

𝑛=1 𝛼𝑛L𝑐𝑛 ;
5 Update U, W, C by minimizing L via

backpropagation;
6 end
7 for 𝑡 ∈ T do
8 Sample a training 𝑡𝑎𝑠𝑘 described in Sec. 4.3.2;
9 Calculate loss L𝑡 for the sampled 𝑡𝑎𝑠𝑘 ;

10 Update U by minimizing L𝑡 via backpropagation;
11 end
12 end

Remarks. The road segment representations are encoded to cap-
ture multi-faceted characteristics of a road network, and hence
become effective in numerous downstream applications. Further-
more, we can extract the route representation of a trajectory from
the stacked self-attention network by pooling the final represen-
tations on the top layer, or following [6] to insert a placeholder in
the first position throughout training tasks and take it as the route
representation.

5 EXPERIMENTS
In this section, we evaluate the usefulness of road network repre-
sentations learned by Toast. Similar to the experimental objectives
of previous work on road network representation learning meth-
ods [14, 33, 34, 41], the objective of this experimental study is to
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evaluate the utility of the road network representations. In other
words, we aim to evaluate whether the proposed model can bet-
ter capture underlying characteristics of road networks than the
existing methods [14, 33, 34, 41].

5.1 Datasets
We use the road network and trajectories of two cities, Chengdu
and Xi’an. The road networks are obtained from OpenStreetMap2,
and the trajectories are obtained from public datasets released by
DiDi Chuxing3. To better verify the effectiveness of leveraging
trajectory data in road network representation learning, we filter
out the road segments not covered by trajectory data. We further
apply map matching [44] to transform GPS records of trajectories
into sequences of road segments. The statistics of the datasets are
shown in Table 1.

Table 1: Statistics of the datasets

Dataset #Road Segments #Edges #Trajectories
Chengdu 4,885 12,446 677,492
Xi’an 5,052 13,660 373,054

5.2 Downstream Tasks & Baseline Methods
Since Toast is able to produce both road segment representations
and route representations, we evaluate its effectiveness on both
road segment based applications and trajectory based applications.

5.2.1 Road segment based applications. We consider two typical
tasks: 1) road label classification, and 2) traffic inference. We com-
pare Toastwith seven strong competitors, namelyDW [26],GAE [15],
node2vec [9],GraphSAGE [12],RFN [14], IRN2Vec [33] andHRNR [41].
Here, DW, node2vec, GAE and GraphSAGE are general graph node
representation learning methods; RFN, IRN2Vec, and HRNR are
the recent representation learning methods that are designed for
road networks.

Note that we compare with the state of the art representation
learning methods for road networks, and several representative
graph representation learning methods. This is consistent with
the objective of the experiments as discussed in the beginning of
Section 5. We do not consider the specialized methods that are
developed for a specific application because 1) our target is to
evaluate the effectiveness of the learned representations, and thus
we use the same task-specific components and make them as simple
as possible for all the compared methods to reduce the effects of
other elements; 2) specialized methods are highly dependent on
the task-specific model designs which usually take more factors as
input and it is not a fair comparison.

Details of the competitors and their parameter settings are pro-
vided as follows.
• DW [26]: It first transforms the network into node sequences by
truncated random walks, and then applies the skip-gram model
on the node sequences to learn representations. The walk length,
the number of walks per node, and the window size are set to be
30, 25, and 5 respectively.

2https://www.openstreetmap.org/
3https://outreach.didichuxing.com/research/opendata/en

• node2vec [9]: It is a variant of DW and employs a biased random
walk procedure to explore neighborhood of a node, which cap-
tures both the local and global structural properties of a network.
The walk length, the number of walks per node, and the window
size are set to be the same as in DW. The biased random walk
parameter 𝑝 and 𝑞 are tuned in the set of {1/8, 1/4, 1/2, 1, 2, 4, 8}.

• GAE [15]: It uses graph convolutional network (GCN) to learn
node representations, and is trained to reconstruct the original
road network network structure. The model consists of two GCN
layers followed by an MLP layer.

• GraphSAGE [12]: It is a GNN based framework that learns node
representations by sampling and aggregating features fromnodes’
local neighborhoods. We apply the unsupervised training par-
adigm in the original paper. The depth is set to be 2 and mean
aggregator is applied as different aggregators’ performance are
relatively comparable in our datasets.

• RFN [14]: It aims to learn representations based on node-relational
and edge-relational views of road network graphs, where mes-
sage passing and interaction are performed for on both views.
We use network reconstruction as the training objective and the
number of layer is set to be 3.

• IRN2Vec [33]: It applies a multi-task learning framework which
applies skip-grammodel to predict the information of geo-locality
and intersection tags given road segment context. We set the
parameters the same as that in DW.

• HRNR [41]: It is a GNN based framework adapted to model
different semantic levels of road networks, namely functional
zones, structural regions and road segments in a hierarchical way.
We follow the experiment settings in the original paper.

For the task of road label classification, we choose road type as
the label, and the total label number is 5 in both datasets. For the
task of traffic inference, we choose average speed on road segment
as the inference objective. In evaluation stage, the learned road seg-
ment representations are input to a one-vs-rest logistic regression
classifier and a linear regression model for road label classification
and traffic inference, respectively. We apply 5-fold cross validation
to evaluate the performance of all the methods.

5.2.2 Trajectory based applications. Our framework is evaluated
on two typical tasks: 1) trajectory similarity search, and 2) travel
time estimation. Given a trajectory, route representation is derived
first, and then sent to a task-specific component to get the final
prediction result. Specifically, for the task of trajectory similarity
search, we use route representations to calculate the similarity score
between trajectories; for the task of travel time estimation, we adopt
a multi-layer perceptron as a task-specific component, which takes
a route representation as input and outputs the estimated travel
time. It is noted that we do not apply task-specific complex models
or use other form of inputs (e.g., external data sources) because our
target is to verify the effectiveness and ubiquity of our model with
other methods in the same setting. We compare our framework
with the following route representation baselines.

• para2vec [17]: An embedding methods to learn paragraph repre-
sentations. Here we treat a trajectory as a paragraph and derive
its representation. We consider each trajectory as a paragraph
and train the whole trajectory dataset for 20 epochs.
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Table 2: Results for road segment based applications

Task Road Label Classification Traffic Inference
Chengdu Xi’an Chengdu Xi’an

Micro-F1 Macro-F1 Micro-F1 Macro-F1 MAE RMSE MAE RMSE
DW 0.522 0.493 0.552 0.524 7.32 9.14 6.78 8.57

node2vec 0.524 0.495 0.586 0.559 7.12 9.00 6.41 8.22
GAE 0.432 0.328 0.447 0.339 6.91 8.72 6.41 8.39

GraphSAGE 0.452 0.324 0.466 0.347 6.48 8.52 6.12 7.98
RFN 0.516 0.484 0.577 0.570 6.89 8.77 6.57 8.43

IRN2Vec 0.497 0.458 0.531 0.506 6.52 8.52 6.60 8.59
HRNR 0.541 0.527 0.631 0.609 7.03 8.82 6.52 8.45
Toast 0.602 0.599 0.692 0.659 5.95 7.70 5.71 7.44

Table 3: Results for trajectory similarity search

Chengdu Xi’an
MR HR@10 MR HR@10

para2vec 216.92 0.251 279.38 0.205
t2vec 46.17 0.781 38.67 0.806
LCSS 67.72 0.487 83.94 0.469
EDR 458.20 0.174 529.74 0.119

Fréchet 21.17 0.847 22.79 0.894
Toast 10.10 0.885 13.71 0.905

Table 4: Results for travel time estimation

Chengdu Xi’an
MAE RMSE MAE RMSE

para2vec 220.45 302.72 244.73 345.49
t2vec 165.18 240.72 207.56 311.04

Road-Pool 151.80 223.02 185.47 293.82
Toast 127.80 190.86 175.68 265.09

• t2vec [21]: This is a state-of-the art method of learning trajec-
tory representation for similarity computation. It is an encoder-
decoder framework which is trained to reconstruct the original
trajectory. We use a sequence of road segment to represent a
trajectory and apply two layers of LSTM for both encoder and
decoder.
In the task of trajectory similarity search, we directly use route

representations to calculate the similarity score between trajec-
tories for all the baselines. Besides, we also compare with three
widely adopted trajectory similarity measures, namely LCSS [32],
EDR [4] and Fréchet [1]. In the experiment, we randomly select
5,000 trajectories to serve as queries. To evaluate the effectiveness
of different models, for each query we generate a similar trajec-
tory as a ground truth. Specifically, given a trajectory, we choose
a start and an end point, then we make a detour between these
two points by travelling along another path deviating from the
original one, and the average detour length is 8.8% of the whole
path. We randomly sample 100,000 trajectories together with the
generated ground truth trajectories as the trajectory database for
query processing.

For the task of travel time estimation, we also apply another
method denoted by Road-Pool, which applies average pooling on
the road segment representations for a trajectory to get its route
representation. Road-Pool can be considered as a variant of Toast
without the learned road segment representations going through

stacked self-attention layers. In the experiments, we randomly sam-
ple 80,000 trajectories for training and 20,000 trajectories for testing.
Evaluation Metrics. For road label classification, Micro-F1 and
Macro-F1 are used to measure the classification accuracy. For traffic
inference and travel time estimation tasks, MAE (Mean Average
Error) and RMSE (Root Mean Square Error) are used to measure
the closeness between the predicted value and the real value. For
trajectory similarity search, we treat it as a ranking problem and
adopt Mean Rank (MR) and Hit Ratio@10 (HR@10) for evaluation.
Parameter Setting. We set the size of representations for both
road segment and route to be 128 across all methods. We choose
road type prediction as an auxiliary traffic context prediction task
where the weight is set to 1, and we apply negative sampling [24] to
improve training efficiency. In order to avoid data leakage, we do not
adopt this auxiliary task when the task is road label classification.
Multi-head self-attention layer is stacked 2 layers and the head
number is set as 4. We choose the batch size to be 32 for both
modules. The framework is first trained by SGD with a learning
weight 0.001 for the traffic context aware skip-gram module, then
the learned representations are further tuned in the trajectory-
enhanced Transformer by Adam with a learning rate of 0.001.

5.3 Overall Performance
We first compare Toast with six competitors on two datasets in
terms of road segment based applications. The results are presented
in Table 2 and we make several observations. First, GNN mod-
els and random walk based methods show different performance
superiority on two tasks due to their capability of handling two
issues as argued in Section 1. Compared to the GNN models, the
random walk based methods perform much better on the task of
road label classification, which validates our claim that feature
uniformity on a road network would greatly dampen the effective-
ness of GNN models. Meanwhile, they perform worse on traffic
inference task. Since random walk based methods follow the as-
sumptions that connected road segments or road segments with
similar topology structure would share similar representations, they
may not hold in terms of traffic patterns in road network settings.
Second, Toast consistently achieves the best performance on both
datasets across all evaluation metrics. For example, it outperforms
the second best method by 9.8% in Macro-F1 and 8.5% in RMSE on
average. It shows that Toast can better capture the traffic patterns
and traveling semantics with the help of auxiliary traffic context
prediction objective and trajectory-enhanced Transformer module.
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Figure 3: Ablation Study of Toast
Third, three road network representation learning methods do not
show their superiority, because they could only partially handle the
issues faced by road network representation learning problem. In
contrast, Toast leverages both traffic context and trajectory data to
encode multi-faceted knowledge about road networks, and address
the two issues discussed in Section 1.

Next, we discuss the performance on trajectory similarity search
and travel time estimation in Table 3 and Table 4 respectively. It can
be observed that Toast consistently outperforms all competitors
on both tasks. Additionally, for the task of travel time estimation,
Road-Pool, deriving route representation by pooling from road
segment representations outperforms the rest baseline methods,
which demonstrates the effectiveness of the learned road segment
representations of Toast from another perspective. For the task of
trajectory similarity search, three trajectory similarity measures
result in very different performance: EDR collapses while Fréchet
is the second best among all the methods.
5.4 Model Analysis
5.4.1 Ablation Study for our Toast. We conduct an ablation study
by independently removing different key components of Toast to
understand their impacts on model performance. Specifically, we
evaluate the following model variants: 1) Toast-SG: the model that
removes the the traffic context aware skip-grammodule and trained
with only trajectory-enhanced Transformer module; 2) Toast-ST:
the model which replaces self-attention network by RNN sequence-
to-sequence learning as in [21, 40]; and 3) Toast-AX: the model that
does not use auxiliary traffic context prediction objective and apply
only the original skip-gram objective.

Figure 3 shows the results of all the model variants on four
downstream tasks, and we make some observations. First, the per-
formance drops significantly for Toast-SG with only the trajectory-
enhanced Transformer on road segment based applications. Second,
for trajectory based applications, self-attention network architec-
ture shows its superiority compared to RNN (Toast-ST), which vali-
dates our choice of adopting it to capture the information encoded
in trajectories. Third, the removal of auxiliary tasks (Toast-AX) also
leads to a degradation of model performance, which indicates the
contribution of the auxiliary traffic context prediction objective. In
summary, these findings verify the effectiveness of different model
components, and justify the rationale of our model design.

(a) Chengdu (b) Xi’an

Figure 4: Trajectory similarity search efficiency

(a) Chengdu (b) Xi’an

Figure 5: Training scalability

5.4.2 Model Efficiency. We choose the task of trajectory similarity
search to evaluate the model efficiency. We vary the trajectory
database size and record the average query time.

From the results presented in Figure 4, we find that route rep-
resentation learning methods, namely t2vec and Toast, can be an
order of magnitude faster than calculating trajectory similarity
measures. In these methods, trajectories are encoded as vectors and
we could simply use cosine similarity for query processing, which
takes much less time compared to intricate pruning techniques
applied in trajectory similarity measures. Moreover, the represen-
tation generation process can be done offline and is also efficient.
It costs less than 4 minutes to encode all trajectories into vectors in
our experiment. Therefore, our Toast scales well on large datasets,
and is capable to support interactive analysis for computationally
expensive operations such as trajectory clustering.

5.4.3 Training Scalability. We also investigate the training scalabil-
ity of Toast. Here we focus on trajectory-enhanced transformer part,
since skip-gram based model has been applied in many previous
methods and already proved its scalability on large graphs [9, 26].
We compare the self-attention network with RNN on trajectory
modeling efficiency, and all the trainings are conducted with a batch
size of 32 on a single NVIDIA Tesla 100 SXM2 GPU. Figure 5 shows
the results.

It can be observed that self-attention network has lower time
cost than RNN. This is because self-attention attends all positions
in parallel, so it requires𝑂 (1) sequential operations; in contrast, an
RNN requires 𝑂 (𝑛) sequential operations to process the whole se-
quence. Also, the training time grows linearly w.r.t the training size,
demonstrating that the model could handle large-scale datasets.
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6 CONCLUSION
In this paper, we proposed a novel framework called Toast to learn
both effective road segment representations and route representa-
tions, and leverage them to benefit different types of downstream
applications. Two new modules were proposed in our framework:
1) traffic context aware skip-grammodule to incorporate traffic con-
texts into the learning process, and 2) trajectory-enhanced Trans-
former module to capture the travelling semantics encoded in tra-
jectory data. Our experiments demonstrated that Toast outperforms
the state-of-the-art methods consistently on four different tasks.
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