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ABSTRACT

We study the problem of index selection to maximize the workload
performance, which is critical to database systems. In contrast to
existing methods, we seamlessly integrate index recommendation
rules and deep reinforcement learning, such that we can recommend
single-attribute and multi-attribute indexes together for complex
queries and meanwhile support multiple-index access to a table.
Specifically, we first propose five heuristic rules to generate the
index candidates. Then, we formulate the index selection problem
as a reinforcement learning task and employ Deep Q Network
(DON) on it. Using the heuristic rules can significantly reduce the
dimensions of the action space and state space in reinforcement
learning. With the neural network used in DQN, we can model the
interactions between indexes better than previous methods. We
conduct experiments on various workloads to show its superiority.
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1 INTRODUCTION

The index selection problem (ISP) is one of the central issues in
database tuning. Informally, given a workload, a dataset, a set of
index candidates, and some constraints on indexes to be built (e.g.,
maximum storage budget or maximum index number), ISP aims to
select a subset of index candidates to maximize the performance of
the workload while meeting the constraints. It has been proven to be
an NP-hard problem [8]. In this paper, we propose an index advisor
that integrates index recommendation rules and deep reinforcement
learning. The superiority of our method can be exhibited from three
aspects, which are also our main contributions.

Aspect 1: it can recommend single-attribute and multi-attribute
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indexes together for complex queries (e.g., TPC-H?).

Aspect 2: it can model the interactions between different indexes.
Aspect 3: it can support the case of multiple-index access to a table
when recommending indexes (in Aspect 1), which means using
more than one index to access a table.

Unfortunately, existing methods fail in one or more of the above
aspects, as elaborated next. There are several traditional methods
proposed to find appropriate indexes for a workload [1, 3, 7, 10, 13].
Chaudhuri et al. [1] and Valentin et al. [13] propose a two-stage
greedy-based method. However, the interactions between different
indexes are not considered in [1] (i.e., failing in Aspect 2). An in-
teraction exists between an index a and an index b if the benefit
of a is affected by the presence of b and vice-versa [11]. Although
such an interaction is considered in [13], it just randomly shuffles
indexes several times searching for potentially better indexes (i.e.,
failing in Aspect 2). ILP [7] and Cophy [3] formulate ISP as a bi-
nary integer problem (BIP) and employ a commercial BIP solver.
However, these methods do not consider the interactions between
different indexes and assume every table in a query can only use
one index, which means they fail in Aspects 2 and 3. Accessing a ta-
ble with multiple indexes is a special form of index interaction and
most commercial and open source databases have supported this
access method. Schlosser et al. [10] propose a one-stage approach
without generating index candidates. At every step, a new single-
attribute index is chosen or the existing one is extended by adding
the new attribute to consistently maximize the additional perfor-
mance per additional memory. However, they start from selecting
single-attribute indexes, thereby missing greater performance im-
provement that multi-attribute indexes can bring; moreover, they
only consider interactions based on built indexes (i.e., failing in
Aspect 2).

Some learning-based methods are proposed to address ISP [4, 9,
12, 14]. Sadri et al. [9] employ Deep Reinforcement Learning (DRL)
in ISP for a cluster database. However, they only recommend single-
attribute indexes (i.e., failing in Aspect 1) and have not implemented
or evaluated their method. The method in [14] does not consider
the constraints into the model and only deals with a simple query
that involves one table (i.e., failing in Aspect 1). The method in [12]
only deals with the query with one table and builds single-attribute
indexes (i.e., failing in Aspects 1 and 2). Ding et al. [4] use a neural
network to compare the workload cost under different index con-
figurations instead of the what-if caller. However, other parts of
the algorithm still take the methods in [1, 13]. Thus it still fails to
model the interactions well (i.e., failing in Aspect 2).

In this paper, we formulate the ISP as a DRL problem (Section
3.1) and propose a two-stage approach. Intuitively, DRL can explore
more combinations that can better foresee the global impact of in-
troducing new indexes than the traditional greedy based methods.
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First, we design five heuristic rules to generate the index candi-
dates (Section 3.2). These rules can reduce the dimensions of the
action space and the state space in DRL and support recommending
single-attribute and multi-attribute indexes together. Second, we
train a DRL model (Section 3.3) to select an appropriate subset of
candidates as the recommended indexes. Thanks to the neural net-
work used in DRL model, the interactions between indexes can be
easily modeled as the interactions between neurons. Same as all ex-
isting work, we take the cost estimated by the optimizer of database
system as the query’s performance. Although we utilize a what-if
interface to get the cost without building an index physically, it
still needs to call the interface numerous times due to exploration
in reinforcement learning (RL), which is time-consuming. Thus,
we propose a cost cache to store the cost of query under a specific
index configuration to avoid redundant interface calls.

To our best knowledge, this is the first work that integrates
heuristic rules and DRL to recommend both single-attribute and
multi-attribute indexes for complex queries over multiple tables,
and supports the case of multiple-index access to a table in recom-
mending indexes.

2 PROBLEM FORMULATION

A database D (of size n) is a set of tables in the form of {T1, Ty, ..., Ty, },
where T; is a table. A workload W (of size m) is a set of pairs in
the form of {(Q1, f1), (Q2, f2), .--(Qm> fm)}, where Q; is a query
and f; is the frequency of Q;. An index configuration X is a set of
indexes. Every index in X can be a single-attribute or multi-attribute
index. Storage(X) denotes the storage space that X takes and |X|
denotes the number of indexes in X. A constraint on the index
to be built is denoted by c. For example, ¢ can be the maximum
storage budget, or the maximum index number, etc. The query
cost Cost(Q, X) indicates the cost of a query Q under an index
configuration X. We use the what-if caller [2] to acquire its value.
The workload cost Cost(W, X) denotes the cost of a workload W
under an index configuration X and we can define Cost(W, X) =
22, fiCost(Qi, X). To this end, we define the ISP.

Definition 2.1 (Index Selection Problem (ISP)). Given a workload
W, a database D, a set of constraints C and a set of candidate indexes

X, find an index configuration X* such that X*=arg miny  y Cost(W, X)

subject to all constraints in C.

3 METHODOLOGY

In this section, we first transform the ISP into a reinforcement learn-
ing problem. Then, we define the rules used to generate the index
candidates. Last, we present the training process in our method and
discuss how to deal with the case in which the query cost estimated
by the database optimizer is not accurate.

3.1 Formulation of ISP as a DRL Problem

In (D)RL, an agent interacts with environment by actions and re-
wards. At each step t, the agent uses a policy 7 to choose an action
a; according to the current state s; and transitions to a new state
st+1. Then the environment applies the action a; and returns a
reward r; to the agent. The goal of (D)RL is to learn a policy 7, a
function that automatically takes an action based on the current

state, with the maximum long-term reward (Equation 1). y is a dis-
count factor, which pays more attention to short-term (long-term)
reward when approaching 0 (1).

T

arg maxE(Z Y'R(st,az)lso = s, a0 = a) (1)
4 =0

In ISP, an index configuration can be regarded as a result of
several steps of index selection. At every step, we add one index
from the index candidates into the current index configuration
until the constraint is violated. Assume X; represents the index
configuration after the ith step and X is the index configuration at
the beginning (before index tuning). Then, ISP can be regarded as
finding an index selection policy 7 that selects an appropriate index
at every step into index configuration to maximize the performance

improvement of W:

T—
arg maXZt_Ol(Cost(W, Xy) — Cost(W, X¢+1)) (2)
hu -

Xt+1 ZXt UiT(X,Xt,W). (3)
T is the maximum number of steps while satisfying the constraints.

To this end, we can formulate the ISP as a DRL problem, and the
key elements of DRL are defined as follows. Agent is our tuning
system, which receives the state and reward from the environment
and updates the policy to select a suitable index at every step.
Environment is the database system that needs indexes to be
built. State means the current state of the agent. State records
the information about current built indexes. State is represented
using a binary one-hot encoding: a value 1 in a slot indicates the
corresponding index has been built and 0 represents its absence.
Action in our model is choosing an index to build. The goal of
index tuning is to minimize the workload cost (i.e., maximize the
performance). Thus, we refer the performance gain of the workload
after applying the action as Reward:

_ Cost(W, X;-1) — Cost(W, X¢)) n

"= Cost(W, Xp) (

Policy is a function mapping from state to action. RL can be divided
into two categories: value-based method (e.g., Q-Learning, DQN [6])
and policy-based method (e.g., DDPG [5]). The output of value-
based method is the benefits of all actions, namely Q-value. The
action with the largest Q-value is picked with a probability of
1 — € (or a random action is picked with a probability of €), which
enables the agent to exploit current knowledge (or explore unknown
states).Differently, the output of the policy-based method is the
actions.

We adopt DQN as our modelfor the following reasons: (1) In
ISP, the action space is discrete, which is the same as DQN and Q-
Learning. (2) The state space of ISP is quite large, while Q-Learning
is only effective for small state space and thus cannot scale well.
Moreover, the state of ISP is easily encoded into vector as the input
of DQN. (3) It is difficult to map the actions generated by DDPG
into the actions in ISP.

3.2 Rules for Index Candidates Generation

We classify the attributes of one table in a query into five sets:
e J: attributes that appear in JOIN conditions.
e EQ: attributes that appear in EQUAL conditions.
o RANGE: attributes that appear in RANGE conditions.



e O: attributes that appear in GROUP BY, ORDER BY clauses.
o USED: attributes that appear in this query.
With the above defined sets, we propose five rules to guide the
index candidates generation:
Rule 1: Construct all single-attribute indexes by using the attributes
in J, EQ, RANGE.
Rule 2: When the attributes in 0 come from the same table, generate
the index by using all attributes in 0.
Rule 3: If table a joins table b with multiple attributes, construct
indexes by using all join attributes.
Rule 4: Denoting an attribute from J or an index generated by Rule
3 as j and an attribute from RANGE as r, construct indexes j + EQ +
r, indexes EQ + r, indexes j + r, and indexes j + EQ.
Rule 5: If the attribute count in USED is fewer than the maximum
number of attributes in indexes defined by users, construct indexes
by appending the remaining attributes (attributes in USED but not
in the indexes generated from rules above) into the created indexes.

3.3 Model Training

Every episode in RL is an index selection process. At every step
in one episode, the model chooses the index having the largest
Q-value with a probability of 1 — € or picks a random index. When
the users required constraint is broken, the environment will return
a done flag to finish the current episode.

During the training process, the model will call the what-if inter-
face many times to compute the rewards, which is time-consuming.
Thus, we use a cost cache to store the cost of a query under a certain
index configuration. Before calling the interface, the model first
checks whether the cost is in the cache. If the cost has been stored,
we just take the cost from the cache.

3.4 Discussion

In this paper, we assume that the query cost estimated by the opti-
mizer is accurate like many existing methods [1, 3, 7, 10] and take it
as the metric for the performance of workload. Meanwhile, we can
train our model with the execution time without any changes to
get a more accurate model when the optimizer is not convincing,.

4 EXPERIMENTS

We conduct experiments to investigate the following questions:

e Q1:How well does our method perform when recommending
indexes for complex queries (i.e., Aspect 1 in Section 1)?

e Q2: How well does our method model the interactions be-
tween different indexes (i.e., Aspect 2 in Section 1)?

e Q3: How well does our method perform over the queries
that get the best performance when accessing a table with
multiple indexes (i.e., Aspect 3 in Section 1)?

4.1 Experimental Setting

Implementation and Environment. We implement our proto-
type in Python and models are written by PyTorch. The prototype
is interfaced with PostgreSQL 10.5%. We adopt HypoPG? as part of
the what-if caller implementation which we use to obtain the query

https://www.postgresql.org/
3https://github.com/HypoPG/hypopg

cost in our method and compared methods. We employ CPLEX
v12.9* to solve the BIP problem for ILP [7].

Data and Queries. We employ a 1GB TPC-H database with eight
tables and two synthetic workloads, W° and W™. W? is generated
by the TPC-H query generator with 14 query templates from TPC-
H and 13 templates involve multiple tables. We use W€ to answer
Q1. W™ is generated by our generator with 50 query templates;
the queries in W™ only fetch tuples from the LINEITEM table and
most queries in W' get the best performance when using multiple
indexes together. The frequency of a query mentioned in Section 2
is generated randomly in the following experiments. All indexes
generated by our proposed rules (Section 3.2) in our experiments
are built on three attributes at most. In all experiments, we focus
on the B-tree index but our approach can work for all indexes.
Competitors: (1) ILP [7], a traditional approach for index selection
problem. Cophy [3] takes the same idea with ILP and has similar
performance [3]. Thus, we just compare with ILP. (2) ISRM (Index
Selection using Recursive Method) [10], a state-of-the-art tradi-
tional greedy-based method, where we choose the index with the
largest cost-decrease at every step.

Evaluation Metrics. We use the workload cost Cost(W, X) for
effectiveness evaluation, and the recommended index configuration
X with a lower value is better.

4.2 Performance Comparison

4.2.1 Index Selection on All Tables (Q1). We compare the perfor-
mance of W° under: (1) indexes recommended by our method
(DQN) which selects a subset of the candidates generated by the
proposed rules in Section 3.2; (2) all indexes in the candidates gen-
erated by the proposed rules (ALL-C), which provide the optimal
value for DQN; (3) indexes recommended by applying our DQN
model to select a subset of single-attribute indexes built on all ta-
bles (DQN-S); (4) all single-attribute indexes (ALL-S), which provide
the optimal value for DQN-S; (5) indexes recommended by ISMR.
There are 61 indexes in ALL-S and 81 indexes in ALL-C. Due to the
scalability of ILP, we exclude it in this part.

The result is shown in Figure 1. When the index number equals
1, the costs of W€ under the indexes recommended by DQN-S and
ISMR are 25.44. When index number is fewer than 4, the costs of
W? under DQN-S and ISMR are the same. Because they recommend
the same single-attribute indexes.

We can observe from Figure 1: (1) W cannot get the best perfor-
mance if only recommending single-attribute indexes by comparing
ALL-S and ALL-C. (2) When index number equals 1, the cost of
W? under DQN is much lower than DQN-S and ISMR. Because our
model generates the multiple-attribute indexes at the beginning,
which supports more queries. (3) When index number is 2 or 3, the
cost of W under indexes recommended by DQN-S is close to DQN.
Because the performance improvement of W€ is from the queries
generated from Q20 in TPC-H which only needs single-attribute
index. (4) When index number is greater than 3, the costs of W°
under DQN-S are higher than ISMR. Because ISMR starts to recom-
mend some multi-attribute indexes after 3. (5) DQN-S and DQN get
the optimal performance when index number is 7 and 10 separately.
The storage sizes used in ALL-S and ALL-C are 28.03 units and 53.15

*https://www.ibm.com/analytics/cplex-optimizer
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Figure 1: W° with indexes on all
tables

units respectively, where each unit indicates 128.57M. However,
they are 5.26 units and 10.2 units when DQN-S and DON achieve
the optimal performance. Even the costs of W° under DQN-S and
DON can be lower than the optimal values. This is because more
indexes built will increase the the difficulty for the optimizer to find
the optimal physical plan, which means the optimizer may return
a suboptimal plan and the cost is higher. (6) When the index num-
ber is greater than 1, ISMR is competitive with our method in the
current experiment. Acturally, Our method has a lower Cost(W, X)
than ISMR under every index number (slightly better by 0.1% ~ 1%).
Due to space limit, we do not report the result w.r.t. the storage
budget constraint. However, the result is similar with Figure 1.

4.2.2  Index Selection on Two Tables. Figure 2 presents the compar-
ison result when selecting indexes on two tables, LINEITEM and
ORDERS, under the index number constraint and the storage budget
constraint respectively. Our method, ILP, and ISMR all can recom-
mend single/multi-attribute indexes. The storage budget varies
from 2 units to 8 units where each unit indicates 128.57M. Note that
in Figure 2, ILP does not work when the index number constraint
is 1, which is determinded by the idea of atomic configuration [7].
When storage budget is greater than 5, ILP will take more than
half an hour to get the results. We can find that our DON is as
competitive as ILP and even better than ILP w.r.t. the constraint of
index number, and DQN consistently outperforms ISRM.

4.2.3  Index Selection on one Table for queries benefiting from multiple-
index (Q2, Q3). Figure 3 illustrates the comparison when recommed-
ing indexes on table LINEITEM under W™. We compare with the
cost of W™ under all indexes in our candidate set (ALL-C), which
consists of 69 indexes. As mentioned in Section 1, multiple-index
access to a table is also a special form of index interaction. This
experiment also answers Q2. In ILP, the authors assume every table
in a query can only be acccessed with one index at most. Thus,
it cannot recommend indexes for W™ and we thereby exclude it.
ISMR is sensitive to the order of attributes added in the algorithm.
If choosing an attribute that cannot improve the performance at
first several steps, ISMR cannot recommend any indexes and stops.
However, if choosing a right attribute, the performance of ISMR is
similar to ours, which means it only models the interactions based
on built indexes.

Figure 2: W° with indexes on two tables

Storage Budget

Figure 3: W™ with indexes on
one table

5 CONCLUSION

We proposed a novel method to solve the ISP by integrating heuris-
tic rules and DRL together. Unlike previous RL based methods, our
method can recommend single and multi-attributes index together
and support complex queries; moreover, our method can model the
interaction between different indexes in a fine-grained manner.
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