
Local Clustering over Labeled Graphs: An
Index-Free Approach [Technical Report]

Niu Yudong, Yuchen Li
Singapore Management University

Singapore
ydniu.2018@phdcs.smu.edu.sg, yuchenli@smu.edu.sg

Ju Fan
Renmin University of China

Beijing, China
fanj@ruc.edu.cn

Zhifeng Bao
RMIT University

Melbourne, Australia
zhifeng.bao@rmit.edu.au

Abstract—In this paper, we study local clustering over labeled
graphs, which extracts a subgraph with nodes having high label
density matched to the query labels as well as high structure
density around a seed node. Despite the progress made in the
last few years, we observe two major limitations of existing
methods: (I) The candidate subgraphs have to comply with strict
topology-driven models and better candidates can be pruned
by these topological constraints; (II) The topological constraints
give rise to substantial computational overheads and existing
works have to construct prohibitively large indexes for online
processing. To mitigate these limitations, we explore the idea
of using conductance in local clustering that ensures structure
density through minimizing conductance. Conductance is a well-
understood metric primarily for detecting unlabeled clusters but
for labeled graphs, applying conductance directly is insufficient
because the label information is not taken into consideration.
To this end, we propose a novel Label-Aware Motif weighted
framework (LAM) to transform the labeled graph to a weighted
graph so that both the label and the structure proximity of nodes
are captured. We define label-aware motifs as small high-order
structures of nodes with query labels. Nodes within a label-
aware motif are both closely connected and relevant to query
labels, which ease the process of identifying labeled clusters. Our
theoretical study shows that LAM is able to better distinguish the
desired candidates under the personalized pagerank distribution
from the seed node on random graphs generated by the stochastic
block model. Based on such nice properties of LAM, we propose
an index-free peeling algorithm to efficiently search local clusters
on labeled graphs. Extensive experiments on both real-world and
synthetic networks show that our proposed algorithm can achieve
up to 90% relative effectiveness improvements (F1 scores), while
using 10 times less memory than the SOTA algorithm.

I. INTRODUCTION

The graph model has emerged as a prevalent tool to enable
analysis over growing complexity of big data. By modeling
relationships between entities, such as persons, genes or trans-
actions, insights can be extracted from the graph structure
for numerous domains [1], [2]. Nevertheless, many real-world
graphs are labeled graphs, which associate nodes with labels.
For instance, in citation networks, papers are modeled as
nodes and the node label captures the topic of the paper.
Two nodes are connected by an edge if there is a citation
relationship between the corresponding papers. In gene inter-
action networks, a set of genes (nodes) are connected by edges
representing the functional correlation between two genes and
each node is labeled with its corresponding gene’s functional
attributes. Node labels contain additional information about

𝑣𝑣1

𝑣𝑣0

𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

DMIR

DBIR DBIR

DBIRDBIR

𝑣𝑣5

𝑣𝑣6

𝑣𝑣8

𝑣𝑣7

DM

DM

DM

DM

Fig. 1: A labeled graph G with a desired cluster H∗ =
{v0, v1, v2, v3} given the seed node v0 and query labels
{DB,IR}. The small dots represent the remaining nodes in
the graph

entities besides the graph structure and it is crucial to utilize
these information properly in various analysis tasks to achieve
better results.

In this paper, we study the problem of local clustering on
labeled graphs to support group-level analysis: given a set
of query labels, we find a labeled cluster (i.e., a densely
connected subgraph) around a seed node, while ensuring that
the nodes in the discovered cluster have similar labels to the
query labels. The set of query labels is used to find clusters
with labels that are relevant to the user’s interests.

Example 1. Fig. 1 displays a small part of an academic col-
laboration graph G. Each node in G denotes a researcher and
the labels associated with the node denote her research areas.
Each edge represents a collaboration relationship between two
researchers. Users can issue a local clustering query from a
researcher as the seed node (e.g., v0 in Fig. 1) and areas of
interest (e.g., labels DB,IR) to discover a subgraph that is not
only densely connected, but also relevant to the query labels,
e.g., H∗ = {v0, v1, v2, v3}.

Applications. Local clustering on labeled graph can benefit
various real-world applications. (1) Social marketing. Online
advertisement through social networks has become an impor-
tant approach to boosting sales. Label-aware local clustering
on social networks can help advertisers choose advertising
targets. For example, to place ads for certain instrument, the
advertiser can find a cluster with label “music” around a
user who has already bought this instrument and push ads
to users in this cluster. The seed node user who has bought
this instrument is important for effectiveness of the ad since it
is more likely for users to trust the ad if they have heard

about it from their friends. (2) Protein function analysis.
Label-aware local clustering can be applied on protein-protein
interaction (PPI) networks to aid function analysis of proteins.
Proteins that have similar functions will interact with each
other frequently and thus form a cluster in the PPI network.
To determine the function of a given protein, the researchers
can launch queries with different function labels from the
given protein. The protein will have a certain function with
high probability if a good labeled cluster can be found around
the protein. Such promising candidate functions will then be
thoroughly studied by lab experiments [3], [4], [5].
Prior works. A line of study has focused on a similar
problem called community search on labeled graphs. However,
this line of works have two major drawbacks. First, most
if not all existing works for community search on labeled
graphs have to define communities through topology-driven
models such as k-core [6] and (k, d)-truss [7], which employ
topological constraints on the resulting community. Thus,
some desirable clusters can be overlooked when they do not
satisfy the strict topological constraints. As verified in our
experiments, these methods based on topology-driven models
only achieve inferior effectiveness to our proposed methods
even if the model parameters are fine-tuned specifically for
each query. Second, to enable online processing for large
graphs, it requires prohibitive indexes to identify candidate
communities satisfying the topological constraints. For large
graphs such as friendster in our experiments, constructing
the SOTA indexes [7] requires more than 256GB memory
and overwhelm the memory size of the server used in our
experiments. Thus, it is demanding to call for index-free
methods that are scalable for detecting labeled clusters without
strict topological constraints.

Our work. In this paper, we propose to search local clusters
on labeled graphs with a conductance-driven approach. Con-
ductance [8], [9], [10], as a well-understood metric for graph
clustering on unlabeled graphs, measures the ratio between the
number of out-going edges and the total number of edges of
a candidate cluster. A small conductance implies a densely
connected cluster as the number of edges going out of the
cluster is relatively small compared with the number of edges
within the cluster. The benefit of adopting conductance is
two-fold: (1) conductance does not impose strict topological
constraints and extends the search space of the candidate
clusters compared with the community search methods; (2)
efficient index-free algorithms are available to quickly identify
dense clusters with small conductance values. Nevertheless, a
naı̈ve adoption of conductance leads to suboptimal quality on
labeled graphs as conductance does not consider the synergy
between label and structure information for labeled clusters.

Motivated by the above, we propose a novel and intuitive
Label-Aware Motif weighted framework (LAM) to fuse struc-
ture and label information in the conductance model. LAM
considers label-aware motifs, which are triangle instances
where the labels of each node in the triangle have non-
zero overlap with the query labels. The core idea of LAM

is to transform a graph G into a weighted graph GM by
assigning a weight to each edge based on the number of query
motifs containing that edge. Prior works for high-order graph
clustering [11], [12], [13], [14] have shown the significance of
utilizing motifs (especially triangles) in clustering to capture
the structure proximity between nodes. The LAM model fur-
ther captures the label and the structure proximity between any
two nodes simultaneously in edge weights through considering
label-aware motifs. Then, the edge weighted graphs are fed to
the weighted conductance model for detecting labeled clusters.
Notably, unlike the indexes for topology-driven models which
require time-consuming offline preprocessing of the whole
graph G, our method only requires constructing GM online
and locally around the seed node, which is both time and
space efficient.

We theoretically show that, with the LAM framework, the
PPR (Personalized PageRank) distribution will become more
concentrated within the labeled cluster around the seed node
on random graphs generated by the stochastic block model.
The concentrated PPR distribution will benefit conductance
minimization algorithms [9], [15], [16] – nodes in the desired
cluster are boosted with higher PPR values so that they are
easily distinguished from nodes outside the cluster. Our anal-
ysis is also applicable to other random-walk ranking models
such as the heat-kernel [16] and the inversed [17] pagerank.

On top of the LAM framework, we further propose an
efficient index-free algorithm to address local clustering on la-
beled graphs. Since conductance optimization is NP-hard [18],
we propose a two-stage heuristic algorithm for efficient cluster
detection. In the first stage, we employ the general sweep
algorithm [9], [15], [16] to efficiently extract a cluster as
a coarse-grained candidate H0. Since some outliers may be
included in this coarse-grained candidate, we further execute
a peeling procedure in the second stage that iteratively trims
unpromising nodes in H0 to form smaller candidate clusters.
Finally, we identify the best cluster H∗ among the candi-
dates. We conduct extensive experiments on both real and
synthetic datasets. The experimental results show that our
proposed method not only recovers the ground-truth clusters
significantly better than the topology-driven methods, but also
achieves superior performance on time and memory efficiency.

The contributions of this work are summarized as follows:
• We propose a novel LAM framework and prove that

LAM can effectively concentrate the PPR value within the
labeled cluster around the seed node. To the best of our
knowledge, this is the first work for local clustering driven
by the concept of motifs on labeled graphs (Sec. III).

• We devise a two-stage algorithm based on the LAM
framework. One highlight of our algorithm is index-free,
which makes it possible to process graphs with billions
of edges. For a real network friendster with more
than 66 million nodes and 1.8 billion edges, the exist-
ing topology-driven method fails to construct the indexes
due to prohibitive memory consumption. In contrast, our
method well supports friendster without resorting to
costly indexes (Sec. IV).

• We conduct extensive experiments on both real and syn-
thetic networks to validate the effectiveness as well as the
efficiency of the proposed approach over the state-of-the-
art methods. LAM consistently outperforms the baselines
and achieves up to 90% relative improvement on F1 scores.
The two-stage algorithm shows similar or better efficiency
while using 10x fewer memory than the indexed-based
approaches (Sec. V).

II. PRELIMINARIES & LITERATURE REVIEW

In this section, we first introduce the basic notations and
problem formulations of local clustering on labeled graphs.
Subsequently, we discuss the related literature.

A. Notations and Problem Formulation

Notations. In this work, we consider an undirected labeled
graph G = (V,E,L) with node set V , edge set E and label
set L. Each edge e = (u, v) ∈ E connects two nodes u and
v, and each node u is associated with a set of labels, denoted
by L(u) ⊆ L. For ease of presentation, we denote the set of
neighbors of a node u ∈ V by N (u), and the degree of u by
d(u) = |N (u)|. For the given query label set Lq ⊆ L, we use
V (Lq) to denote the set of nodes associated with at least one
label within Lq , i.e. V (Lq) = {u|L(u) ∩ Lq 6= ∅}. Without
loss of generality, we consider that graph G is connected.
Local Clustering on Labeled Graphs. A fundamental analyt-
ical task is to find clusters. For labeled graphs, users can input
query labels to find dedicated clusters that are relevant to the
queries, i.e., nodes in the cluster should contain relevant labels
specified by users. Furthermore, global clustering algorithm
is often prohibitively time-consuming for large graphs [19].
Following existing works [9], [15], [11], we study local
clustering on labeled graphs where the clusters are extracted
around any seed node.

It is worth highlighting that how to select the seed node is
orthogonal to this work. Interested users can refer to existing
works on how to pick a good seed node [10], [20], [21]. In this
work, we follow [7] and randomly select the seed node from
each ground-truth cluster to avoid the influence of different
seeding algorithms.

Definition 1. Given a labeled graph G = (V,E,L) and a
set of query labels Lq ⊆ L, we aim to find a cluster H∗ to
maximize the metric fq(H) among all clusters containing a
seed node s,

H∗ = arg max
{H⊂V |s∈H}

fq(H)

where fq(H) is a cluster metric that simultaneously measures
the query label density and structure density of H .

The objective function fq(H) can be defined as the product
of two sub-functions, representing the structure density and
query label density of H respectively.

Example 2. Existing works define the structure density as an
indicator function of certain topological model. For example,
the authors in [7] define the structure density of a subgraph

H as Ik,d(H), where Ik,d(H) = 1 if H is a (k, d)-truss, and
Ik,d(H) = 0 otherwise. The query label density ρ(H,Lq) can
be intuitively defined as the average number of query labels in
H . Combining Ik,d(H) and ρ(H,Lq), we can get a definition
for objective function as fq(H) = Ik,d(H) · ρ(H,Lq). In Fig.
1, if we take k = 1, d = 2 and query labels as Lq = {DB,IR},
the score of H∗ = {v0, v1, v2, v3} is fq(H∗) = 1 · 8

4 = 2.

Various fq(H) have been proposed by existing works and
we review them in the remaining part of this section.

B. Related Work

We review closely related studies of community discovering
on labeled graphs: (1) community search on labeled graphs;
(2) global graph clustering on labeled graphs. The comparison
between these related studies and this paper is summarized in
Table I. Note that there are a plethora of works on local graph
clustering or community search for unlabeled graphs [15],
[9], [11], which are not the focus of our work. We refer the
interested readers to the survey [22].
Community Search on Labeled Graphs aims at finding
the community according to the query given by the user.
Several community metrics fq(H) are proposed to consider
structure and label densities simultaneously. According to
different query inputs, the existing community search methods
on labeled graphs can be further divided into three categories.

The first category, namely node-centric keyword-aware
community search (NKCS), receives same inputs as our prob-
lem with both a set of query labels and a set of query
nodes [6], [7], and aims to find a community that contains
the query nodes and has high query label density within the
community. Although methods in this category can be adopted
to solve our label-aware local clustering problem to some
extent, they adopt strict topological community models, like k-
core [6], (k, d)-truss [7], and triangle-connected k-truss [23],
and define the structure density in fq(H) as the indicator
function of the model. Thus, these methods can overlook
desirable clusters when they do not satisfy the rigid topological
constraints. Besides, as discussed in Sec. I, these methods
requires prohibitively large indexes for online processing and
thus can’t scale to large graphs1. In contrast, our proposed
method finds local clusters efficiently without imposing hard
constraints and index construction.

The second category, known as keyword community search
(KCS), receives a set of query labels as inputs [24], [25], [26].
The target is to find a community in the labeled graphs such
that the nodes in the community are most relevant to the query
labels. Methods in this category cannot take the seed node as
input. Thus, they are not customized to different users and
often require the expensive global access of the entire graph.
The third category [27], [28], namely node-centric community
search (NCS), only takes a set of query nodes as the input
and do not support query labels. VAC [27] is topology-driven

1There are two basic algoithms that do not require indexes for ACQ in
[6]. However, these two methods are slower than index-based algorithms by
several orders of magnitude and thus are not scalable to large graphs.

TABLE I: A comparison of representative community search
works on labeled graphs.

Method Seed
Node

Query
Labels

Topological
constraints free

Index
free

[24], [26] 8 4 8 8
[25] 8 4 4 4
[27] 4 8 8 4
[28] 4 8 4 4

[6], [7], [23] 4 4 8 8
[29] 4 8 8 8
Ours 4 4 4 4

and finds a k-truss formed by nodes with similar labels.
[28] finds communities through GNN. However, the GNN
requires manual supervision for finetuning the community.
Furthermore, both methods in the third category do not find
different communities according to query labels.

Recently, meta-path based community search over hetero-
geneous networks (HCS) was proposed in [29]. Instead of
receiving query labels as the input, this work requires a
query meta-path to strengthen the connections between nodes
with the same type. However, its method cannot be used
to solve our problem even if we regard labels on node as
node types. The key difficulty lies in finding a meta-path
that represents the set of query labels. The meta-path will
inevitably impose structural constraints when strengthening the
connection between nodes of same type, whereas the set of
query label does not assume any structural constraints.
Global Graph Clustering on Labeled Graphs, also known
as labeled community detection (LCD), divides a labeled
graph into a number of partitions such that each partition is
densely connected and the nodes in each partition share similar
labels [30], [31], [32], [33], [34]. These LCD methods are not
applicable to the problem studied in this work because: (1) The
LCD methods always produce the same partition result and do
not consider user queries; (2) The LCD methods employ global
algorithms which are not scalable to large graphs. In this work,
we allow users to input query labels for searching customized
clusters and devise local algorithms to handle large graphs.

III. THE LAM FRAMEWORK

In this section, we present a Label-Aware Motif weighted
framework (LAM) which fuses the structure information and
the label information. The idea is to transform the original
labeled graph G into a weighted graph GM based on the
query labels so that the desired clusters are easier to be
extracted, regardless of the cluster metric used. Subsequently,
we theoretically show that the framework concentrates the
PPR distribution of the desired clusters for any seed node
in that cluster. We focus on formalizing the LAM model in
this section, and our index-free algorithm based on local LAM
transformation will be introduced in Sec. IV.

A. Transformation under LAM
Motivated by the motif-aware graph clustering on unlabeled

graphs [11], [12], [13], [14], we adjust the edge weights based
on the number of query-aware motif instances containing
the corresponding edge. We formally define the query motif
instance as well as the query motif support as follows:

Definition 2 (Query Motif Instance). Given the set of query
labels Lq , a query motif instance w.r.t Lq is a triangle formed
by nodes vi, vj and vk in G, denoted as 4ijk, such that
vi, vj , vk ∈ V (Lq). The label weight of a query motif instance
is defined as

w(4ijk) =
∏

u∈{vi,vj ,vk}

|Lq ∩ L(u)|

Definition 3 (Query Motif Support). The query motif support
of an edge (vi, vj) w.r.t Lq in G, denoted as sup(vi, vj , Lq),
is the sum of label weights of query motif instances containing
(vi, vj), i.e.,

sup(vi, vj , Lq) =
∑

vk∈N (vi)∩N (vj)

w(4ijk)

The query motif support of an edge e is the sum of label
weights from all triangle motifs containing e. We employ
the triangle rather than other more complex motifs because:
(1) Triangles in different networks represent stable connec-
tions between nodes and are universal building blocks of
clusters [35], [36], whereas other motifs are usually only
meaningful in certain networks. Thus, we select triangles in
this work to avoid finetuning the motifs for different networks.
Although higher-order cliques can also represents stable con-
nections, they are very rare in sparse networks and thus cannot
achieve good effectiveness in real-world networks which are
often sparse. The experiments show that our methods achieve
significant results with triangles in different networks. (2)
Triangles can be computed efficiently in large graphs [37],
[38] whereas it is quite time-consuming to detect complex
motifs in large graphs.

Furthermore, the building block of a desired labeled cluster
should be a triangle of nodes with matching query labels.
Hence, the query motif support is an effective method to
capture label density and structure density simultaneously.

We can directly use the query motif support to set the
weight of e to increase the structure density of the desired
labeled cluster H∗. Nonetheless, using triangle motifs alone
will result in graph fragmentation for unlabeled graphs [39].
The issue of fragmentation gets worse with our proposed query
motif definition, as only a fraction of nodes may contain some
query labels. The fragmentation leads to many disconnected
components of the underlying graphs, which could even divide
H∗ into smaller subgraphs and make it more challenging for
detecting H∗. Thus, we combine the original graph with the
query motif support to define the LAM graph.

Definition 4 (The LAM Graph). Given a labeled graph G, the
set of query labels Lq and a real number λ ∈ (0, 1), the LAM
graph GM is a weighted graph such that V (GM) = V (G) and
E(GM) = E(G). The weight of an edge (vi, vj) ∈ E(GM)
is defined as:

wM (vi, vj) = λ · sup(vi, vj , Lq) + (1− λ).

In the LAM graph, we denote dM =
∑
v∈N (u) wM (u, v) as

the weighted degree of u.

𝑣𝑣1

𝑣𝑣0

𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑣𝑣6

𝑣𝑣8

𝑣𝑣7

4.5 8.5 6.5

4.5

4.5

2.5

2.5
0.5

0.5

0.5

0.5
0.5

0.5

0.5

Fig. 2: The LAM graph GM given query labels Lq = {IR,DB}
and λ = 0.5.

The hyperparameter λ is used to balance between the query
motifs and the original graph structure. In our experiments,
we show that it is easy to find a consistent λ across different
datasets for LAM, which validates the user-friendly character
of LAM. In contrast, for topology-driven methods, different
hyperparameters have to be finetuned for even every query
from the same datasets.

Based on the LAM graph, the LAM conductance is defined
as the following.

Definition 5 (The LAM Conductance). The LAM conductance
is defined as the weighted conductance in the LAM graph GM :

φM (H) =

∑
(u,v)∈∂(H) wM (u, v)

min(volM (H), volM (V)− volM (H))

for a cluster H . The volume volM (H) in GM is defined as
volM (H) =

∑
u∈H

∑
v∈N (u) wM (u, v).

The LAM conductance measures the structure density of H
with the consideration of both query labels and triangle motifs.
Intuitively, when λ = 1 and a query with a single label lq ,
one can show that φM (H) represents the ratio of the number
of query motifs cut across the boundary of H over the total
number of query motifs of H . Thus, when φM (H) is small,
the nodes within H are more densely connected with query
motifs and indicates a desired local cluster w.r.t. the query. We
will further conduct an in-depth theoretical analysis to show
that LAM can reveal and distinguish the desired cluster in the
next subsection.

Example 3. In Fig. 1, given the query labels Lq = {IR,DB}
and a triangle 4234 formed by v2, v3 and v4 as the query mo-
tif, its label weight is w(4234) = 4. The query motif support
of edge (v2, v3) equals to 12, since it is contained in two query
motifs 4234 with label weight 4 and 4023 with label weight 8.
Let λ = 0.5, the weight of (v2, v3) in the LAM graph GM is
wM (v2, v3) = 0.5×12+(1−0.5) = 6.5. Fig. 2 shows the LAM
graph GM induced by Lq = {IR,DB} and λ = 0.5. The LAM
conductance of the desired cluster H∗ = {v0, v1, v2, v3} is
φM (H∗) = 5

62 = 0.08. Note that the unweighted conductance
of H∗ is φ(H∗) = 2

12 = 0.17 > 0.08. Hence, the desired
cluster becomes more densely connected under LAM.

B. Theoretical Properties of LAM

In this section, we show that the LAM framework can
effectively concentrate the personalized pagerank (PPR) dis-
tribution from the seed node within the desired cluster, i.e. the
PPR values of the nodes within the desired cluster on LAM
graph GM is larger than the corresponding PPR values in the

original graph G. Notably, our analysis is also applicable to
other random walk ranking models such as the heat-kernel
pagerank [16] and the inversed pagerank [17].

The above theoretical guarantee of LAM leads to an eas-
ier clustering task. Local graph clustering algorithms [9],
[15] commonly utilize the PPR distribution to extract the
cluster around the seed node to minimize conductance, and
a concentrated PPR distribution can better distinguish the
desired cluster from the rest of the graph. For example, [15]
extracts the local cluster by identifying sharp drops of the PPR
distribution on the boundary of the cluster. By concentrating
the PPR distribution, LAM effectively widens the PPR gap
between nodes inside and outside the desired cluster, which
hence leads to an easier clustering task.

We next formally define the PPR distribution on graphs.
Given the seed node s and a decay factor α ∈ (0, 1), a
random walk with restart from s is a traversal of G that starts
from s, and at each step, either (i) stops at the current node
with α probability, or (ii) goes forward to a randomly selected
neighbor of the current node. In this paper, we set α = 0.1
by default. For any node v ∈ V , the personalized pagerank
(PPR) π(s, v) of v w.r.t. s is the probability that a random
walk from s terminates at v. Formally, π(s) is defined as the
linear combination of probabilities that random walks with
different lengths terminates at certain nodes and the lengths
of random walks are sampled from a geometric distribution:
π(s) = α · s

∑∞
t=0 (1− α)t · P t where P is the transition

probability matrix of G and s is the indicator vector of s.
In this section, following previous works [40], [9], [15], we
consider the approximate PPR distribution which is defined as

π̃(s) = αs

T∑
t=0

(1− α)t · P t

for a positive integer T as the maximum walk length. Note that
the contribution of t-step random walks decays exponentially
as t increases. Thus, a good approximation can be achieved
with a relatively small T .

For our theoretical analysis, we employ the stochastic block
model [40] to generate random graphs of two clusters. Since
the stochastic block model does not consider labels, we assign
all nodes in one cluster (the desired cluster) with a label lq .
The rest nodes in the graph is assigned with label lq with a
probability. We formalize the random graph model as follows.

Definition 6 (Random Graph). We denote a random labeled
graph G ∼ S(N, 2, pin, pout, pq) as a simple graph with two
clusters generated by the stochastic block model. Each cluster
contains exactly N nodes. For each pair of nodes from the
same cluster, an edge exists with probability pin; for each pair
of nodes from different clusters, an edge exists with probability
pout and pin > pout. Nodes in cluster H0 have label lq , and
nodes in cluster H1 are assigned with lq with probability pq .

We denote the set of nodes with label lq in H1 as H1+,
and the set of nodes without label lq in H1 as H1−. We take
any node s ∈ H0 as the seed node and label lq as the query
label. Thus, the desired cluster of the query should be H0 and

the following theorem shows that LAM concentrates the PPR
distribution within H0 asymptotically.

Theorem 1. Let G ∼ S(N, 2, pin, pout, pq), and π(H0) and
πM (H0) denote the expectation PPR value of a node in H0

on G and GM respectively. For any δ > 0, there exists a
sufficiently large N such that the following holds with at least
1− δ probability:

π̃M (H0) > π̃(H0)

for the approximated PPR distribution π̃ with any maximum
random walk length T > 0.

To prove the theorem, note that the PPR distribution is a
linear combination of the terminating distribution of random
walks with different lengths. Thus, the high-level idea of the
proof is to show that for random walks with any fixed length,
the probability for such a random walk terminates at a node
within H0 on GM is larger than the probability on G, as stated
in Lemma 2.

The terminating distribution of random walks with any fixed
length is decided by the transition probabilities between H0

and H1±, which is further decided by the degree distribution
between them. Thus, we first give the following lemma that
for each node bounds the degree of connection to Hi in G ∼
S(N, 2, pin, pout, pq) and the corresponding GM .

Lemma 1. Let dj(u) and djM (u) be the degree of u connected
to Hj in G and GM respectively. For any γ, δ > 0 there exists
a sufficiently large N such that

dj(u) ∈ [(1− γ)d̄j(u), (1 + γ)d̄j(u)],∀u,∀j ∈ {0, 1+, 1−}

djM (u) ∈ [(1−γ)d̄jM (u), (1+γ)d̄jM (u)],∀u,∀j ∈ {0, 1+, 1−}

holds simultaneously with a probability of at least 1 − δ,
where node u has in expectation d̄j(u) and d̄jM (u) degree
of connection to Hj on G and GM respectively.

Proof. The proof on graph G can be achieved using Chernoff
bounds [41] and union bounds directly since each edge in G
exists independently to each other. However, the proof for GM
is more intricate. When query labeled triangles (i.e., triangles
with nodes having lq) are used to set the edge weights, the
edge weights in GM could become correlated.

To this end, we first give concentration bounds on the
number of query labeled wedges in G between any pair of
nodes u and v, denoted as Λuv . Note that for two different
nodes a and b, they will form a wedge between u and v
independently since there is no edge overlap between such two
wedges. Thus, by Chernoff bounds we have for any γ1 > 0
and any pair of nodes u and v:

Pr
(

Λuv /∈ [(1− γ1)Λ̄uv, (1 + γ1)Λ̄uv]
)
≤ O(e−N)

Then, by union bounds, we have:

Pr
(
∃u, v : Λuv /∈ [(1− γ1)Λ̄uv, (1 + γ1)Λ̄uv]

)
≤ O(N2e−N)

On the other hand, by Chernoff bounds and union bounds, for
any γ2 > 0, we also have:

Pr
(
∃u : dj(u) /∈ [(1− γ2)d̄j(u), (1 + γ2)d̄j(u)]

)
≤ O(Ne−N)

According to the definition of GM we have:

djM (u) =
∑
v∈Hj

[
(1− λ)Auv + λ · Λuv ·Auv

]
where A is the adjacent matrix of G.

By the above three formulas and union bounds, we can get:

djM (u) ≥ (1− λ) · (1− γ2)d̄j(u) + λ · (1− γ2)d̄j(u) · (1− γ1)Λ̄u(Hj)

with a probability of at least 1−O(N2e−N), where Λ̄u(Hj)
is the expectation of total number of query labeled wedges
formed between u and nodes within Hj . Notice that d̄jM (u) =
(1− λ)d̄j(u) + λd̄j(u)Λ̄u(Hj), thus we get:

djM (u) ≥ (1− γ)d̄jM (u) + (γ − γ2)d̄jM (u) + γ1(γ2 − 1)d̄j(u)Λ̄u(Hj)

which implies djM (u) ≥ (1− γ)d̄jM (u) given:

γ ≥ γ1(1− γ2)
d̄j(u)Λ̄u(Hj)

d̄jM (u)
+ γ2

Since γ1 and γ2 can be arbitrarily small, γ can also be
arbitrarily small. An upper bound can be derived similarly,
which leads to:

Pr
(
djM (u) ∈ [(1− γ)d̄jM (u), (1 + γ)d̄jM (u)]

)
≥ 1−O(N2e−N)

for any u. By union bounds we further get:

Pr
(
djM (u) ∈ [(1− γ)d̄jM (u), (1 + γ)d̄jM (u)],∀u,∀j

)
≥ 1−O(N3e−N)

which implies Lemma 1 on GM .

Note that d̄jM (u) and d̄j(u) keep constant as long as u is
in the same Hi. Thus, we denote the d̄j(u) for u ∈ Hi as
d̄i(Hj) and d̄jM (u) for u ∈ Hi as d̄iM (Hj). We further use
D̄(Hj) and D̄M (Hj) to denote the average degree of nodes
within Hj on G and GM .

Based on Lemma 1, we can prove the following lemma
which directly lead to Theorem 1.

Lemma 2. Given any integer T , let rt(Hi)(r
M
t (Hi)) denote

the probability that a t-step random walk terminates at a
certain node in Hi on G(GM) seeded at s ∈ H0. For any
δ > 0, there is an N sufficiently large such that with a
probability of at least 1− δ:

rMt (H0) > rt(H0)

for all 0 < t ≤ T .

Proof. Let Rt(Hi) = rt(Hi) · |Hi| and RMt (Hi) = rMt (Hi) ·
|Hi| denote the probabilities for a t-step random walk termi-
nates within Hi on G and GM seeded at s ∈ H0. Based on
Lemma 1, we can prove the Equations 1 and 2 using a similar
approach described in the first section of appendix for [40].
We omit the details here due to the space limitation.

For any ε, δ > 0, any i ∈ {0, 1+, 1−} and any T ∈ N+,
there is an N sufficiently large such that:

Rt(Hi) ∈
[
(1− ε)R̄t(Hi), (1 + ε)R̄t(Hi)

]
(1)

RMt (Hi) ∈
[
(1− ε)R̄Mt (Hi), (1 + ε)R̄Mt (Hi)

]
(2)

holds with a probability of at least 1 − δ for all 0 < t ≤ T ,
where R̄t(Hi) and R̄Mt (Hi) are the solutions to the recurrence
relation:

R̄t(Hi) =
∑
j

d̄i(Hj)

D̄(Hj)
R̄t−1(Hj)

R̄Mt (Hi) =
∑
j

d̄iM (Hj)

D̄M (Hj)
R̄Mt−1(Hj)

with R̄0(H0) = R̄M0 (H0) = 1, R̄0(H1±) = R̄M0 (H1±) = 0.
With Equations 1 and 2, Lemma 2 is equivalent to: for any

0 < t ≤ T and 0 < λ < 1, R̄Mt (H0) > R̄t(H0).
Let p = pin

pout
> 1. As d̄1−M (Hj)

D̄M (Hj)
= O(N−1) for j ∈

{0, 1+}, we can omit them given N is sufficiently large.

Thus, R̄Mt (H1−) =
(
d̄1−M (H1−)

D̄M (H1−)

)t
R̄M0 (H1−) = 0. By further

omitting quantities that are O(N−1), we can derive:

R̄Mt (H0) =
d̄0
M (H0)

D̄M (H0)
R̄Mt−1(H0) +

d̄0
M (H1+)

D̄M (H1+)
R̄Mt−1(H1+)

=
(p2 + pq)R̄

M
t−1(H0)

p2 + 2pq + p2
q

+
(1 + pq)(1− R̄Mt−1(H0))

1 + 2pq + p2p2
q

Let a =
(p2+pq)

p2+2pq+p2q
− (1+pq)

1+2pq+p2p2q
, b =

(1+pq)
1+2pq+p2p2q

, we have:

R̄Mt (H0) = aR̄Mt−1(H0) + b

which implies:

R̄Mt (H0) = at +
b

1− a
(1− at)

We can observe that R̄Mt (H0) is not influenced by λ when N
is sufficiently large. Similarly, we can get

R̄t(H0) = ct +
d

1− c
(1− ct)

given c = p−1
p+1 , d = 1

p+1 . It’s easy to check that a > c and
d

1−c <
b

1−a < 1. Thus, we have:

R̄t(H0) = ct +
d

1− c
(1− ct) < at +

d

1− c
(1− at)

< at +
b

1− a
(1− at) = R̄Mt (H0)

for which we complete the proof.

Apart from the above theoretical analysis, as to be intro-
duced later in our experiment, we further evaluate the PPR
distribution on real-world datasets with ground-truth clusters
and verify that LAM framework concentrates the PPR distri-
bution within the desired ground-truth clusters empirically. As
shown in Table II, when the LAM framework is applied, the
PPR value within ground-truth clusters consistently becomes
larger across all datasets.

TABLE II: Comparison of PPR distribution on the LAM graph
GM and the original graph G. We use π̄M to denote the
average amount of PPR value within ground-truth clusters on
GM and π̄ to denote the corresponding value on G. Note
that the seed node for each ground-truth cluster is selected
randomly within the ground-truth cluster.

Dataset π̄ π̄M Relative Increase
facebook 0.51 0.6052 18.7%
amazon 0.865 0.9886 14.3%
dblp 0.5944 0.8841 48.7%

youtube 0.31 0.431 39%
livejournal 0.6115 0.9538 55.98%

orkut 0.2773 0.8755 215.7%

IV. INDEX-FREE LOCAL CLUSTERING

In this section, we first introduce the cluster metric based
on the LAM framework. Subsequently, we devise the index-
free algorithm for local clustering over labeled graphs by
optimizing the proposed cluster metric. Note that our algorithm
only requires local access of the graph around the seed node.
The trick is to only construct the necessary edges in GM on
the fly instead of constructing the whole GM .
A. Cluster Metric based on LAM

As presented in Sec. II-A, the cluster metric fq(H) simulta-
neously considers the query label density and structure density
of cluster H . We introduce a general cluster metric based on
the LAM conductance φM (H):

fq(H) =
ρ(H,Lq)

φM (H)

The above metric fq(H) uses φM (H) to measure the structure
density as LAM effectively increases structure density within
the desired cluster as shown in Sec. III-B. The function
ρ(H,Lq) is used to measures the label density of H and a
suitable definition of ρ(H,Lq) is crucial for the effectiveness
of fq(H). Different datasets and queries require different
ρ(H,Lq) to achieve best effectiveness. In this paper, we
consider two kinds of label score functions. The SOTA labeled
community search algorithm ATC [7] adopt the label score
function ρ1(H,Lq) =

∑
l∈Lq

|V (l)∩H|2
|H| . We also use another

label score function ρ2(H,Lq) =
∑
l∈Lq

|V (l)∩H|
|H| , which

measures the average number of matched query labels in H .
Note that it is NP-hard to optimize fq(H). The proof is

trivial when considering a subset of instances of the problem.
For unlabeled graphs, we have ρ(H,Lq) = 0 constantly for
any H and Lq . Thus, the problem is equivalent to conduc-
tance minimization problem, which is a well-known NP-hard
problem [42].

B. Index-free Two-stage Algorithm

Given that maximizing fq(H) is NP-hard, in this section,
we devise a two-stage heuristic algorithm to maximize fq(H).
Note that the objective function fq(H) is a fraction with
ρ(H,Lq) as its numerator and φM (H) as its denominator. In
stage I, the algorithm obtains a candidate cluster as an initial
solution by minimizing the LAM conductance φM (H). Then,

Algorithm 1: LAM Clustering
Input: Graph G, the seed node s and the set of query

labels Lq , error tolerance ε, size bound b
Output: The subgraph H∗ with maximum fq(·)

1 πM (s, u)← 0 for each u ; // Stage I
2 r(s, u)← 0 for each u 6= s and r(s, s)← 1;
3 while ∃u : r(s, u) > ε · d(u) do
4 πM (s, u)← πM (s, u) + α · r(s, u);
5 r(s, u)← (1− α) · r(s,u)

2 ;
6 for each v ∈ N (u):

r(s, v)← r(s, v) + (1− α) · r(s,u)·wM (u,v)
2·dM (u) ;

7 end
8 for each u with πM (s, u) > 0: πM (s, u)← πM (s,u)

d(u) ;
9 sort nodes by descending πM (s) and ui denotes the

i-th node after sorting;
10 H ← arg min

Hi∀i≤b
φM (Hi), where Hi = {u1, ..., ui} ;

11 ρ← 0 ; // Stage II
12 while ρ < ρ(H,Lq) do
13 ρ← ρ(H,Lq);
14 vr ← arg min

u∈H
dep(u,H);

15 remove vr from H;
16 end
17 H∗ ← H ∪ {vr}, where vr is the last removed node;
18 return H∗

in stage II, it iteratively trims the nodes from the initial solution
to maximize ρ(H,Lq).

In the two-stage algorithm, φM (H) is minimized first, after
which ρ(H,Lq) is maximized through a peeling process. There
are two major benefits to choose this optimization order. First,
minimizing φM (H) first can obtain a good initial solution as
φM (H) has already incorporated the label information in the
processing. In contrast, maximizing ρ(H,Lq) first may lead
to find a cluster with nodes having query labels but poorly
connected, which has undesirably low structure density. Sec-
ond, there exist many theoretically guaranteed algorithms to
obtain clusters with low un/weighted conductance scores [9],
[15], [43]. Furthermore, these algorithms are index-free and
efficient to be executed on large graphs. Hence, we can simply
apply these existing algorithms to obtain a good initial solution
without reinventing the wheels. The pseudo code of the two-
stage algorithm is presented in Alg. 1. It takes graph G, a
seed node s, a set of query labels Lq and error tolerance
ε for computing the personalized pagerank (PPR) as inputs,
and outputs a cluster H∗. We next describe the details of the
algorithm as follows.
Stage I: minimizing φM (H) (Lines 1-10). We adopt the
sweep algorithm [9] for minimizing φM (H). The sweep
algorithm first requires calculating the approximate PPR distri-
bution around the seed node over GM . To avoid constructing
the whole GM , we extend the LocalPush (Line 1-7) through
lazy construction of GM , i.e. it only constructs the adjacent

edges of nodes when they are going to be pushed. According to
[9], the LocalPush algorithm computes πM (s) by accessing
at most O(1

ε) edges. Hence, we can efficiently obtain the PPR
distribution over GM with the LocalPush extension and only
a local construction of GM .

Subsequently, the nodes are sorted by the normalized PPR
values in a descending order (Line 8-9). Finally, a “sweep”
operation is employed to examine first b prefixes in the sorted
node list. It computes the LAM conductance φM (H) of each
prefix and returns the one with the smallest φM (H) as the
output cluster of stage I (Line 10). The size bound b is used
to avoid the free-rider effect as mentioned in [44] and we set
b = 1000 in this work.
Stage II: maximizing ρ(H,Lq) (Lines 11-17). We further
refine the result by peeling unpromising nodes to optimize
for ρ(H,Lq). Note that we should consider the impact of
node removals on φM (H), which determines the overall score
fq(H). However, finding the set of nodes R that maximizes
fq(H \ R) is again NP-hard. To this end, we adopt a greedy
framework that removes nodes iteratively from the initial
solution H to form smaller candidate clusters with higher
label density. In each iteration, the algorithm computes a
score, namely density perturbation dep(u,H), for each node
u in H . This density perturbation dep(u,H) measures the
impact on φM (H) and ρ(H,Lq) of removing node u from H
simultaneously. Then, the node vr, which has the minimum
score dep(vr, H), is iteratively removed from H until the
ρ(H,Lq) cannot be increased anymore.

It is crucial to define a proper dep(u,H). For a node
u ∈ H , dep(u,H) should be large if removing u from H
leads to substantially higher LAM conductance. Meanwhile,
dep(u,H) should be large if removing u from H reduces
ρ(H,Lq) significantly. Therefore, we define dep(u,H) as:

dep(u,H) = ∆ρ · φM (H − {u})
φM (H)

The first factor of dep(u,H) measures the impact of removing
u to the label density ρ(H,Lq). For example, ∆ρ = |L(u) ∩
Lq| for ρ2. The second factor is the ratio between the LAM
conductance before and after removing u.

Now it comes to computing the φM (H−{u}) for all u ∈ H
in each iteration. Note that φM (H − {u}) is equal to:

din(u,H)− dout(u,H) +
∑

(u,v)∈∂(H) wM (u, v)

volM (H)− dM (u)

where din(u,H) is the weighted degree of u connected to
nodes within H , i.e. din(u,H) =

∑
v∈N (u)∩H wM (u, v);

dout(u,H) = dM (u) − din(u,H) is the weighted degree
of u connected to nodes outside H . Computing dep(u,H)
directly requires traversing the neighbors of u and counting
din(u,H) and dout(u,H) respectively, which takes O(d(u))
time per iteration. We use an O(|H|) additional space and a
simple pre-processing in each iteration to compute dep(u,H)
efficiently. At the beginning of stage II, we initialize din(u,H)
and dout(u,H) for each node u ∈ H , which takes O(|H|)
space. Then, at each iteration, removing node vr only affects

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) perr = 0.1

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) perr = 0.08

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) perr = 0.06

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) perr = 0.04

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(e) perr = 0.02

0.0 0.2 0.4 0.6 0.8
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(f) perr = 0

Fig. 3: Preferred label score function for queries on youtube
database with different label noise (Refer to Sec. V-A). The
horizontal axis represents the label-aware motif conductance
(φM) and the vertical axis represents the average number of
matched query labels(ρ). Each point represents a query. A red
point indicates that ρ1(H,Lq) is preferred by the query; a
green point indicates that ρ2(H,Lq) is preferred.

din(u,H) and dout(u,H) of u ∈ N(vr)∩H , which is updated
by traversing the neighbors of vr only. Thereby, dep(u,H −
{vr}) is computed in O(1) by loading the din(u,H − {vr})
and dout(u,H − {vr}) values.
Complexity Analysis. Let dmax = maxu∈V d(u) denote
the maximum node degree in G, and Lmax = maxu |L(u)|
represent the maximum number of labels attached to a node.
The following theorem gives the time complexity of Alg. 1.

Theorem 2. Alg. 1 terminates in O(dmax·Lmax

ε) time.

Proof. We first give the time complexity of obtaining the
approximate PPR distribution over GM . The key point here is
to calculate the complexity for computing sup(vi, vj , Lq) of
an edge (vi, vj) that will be accessed during LocalPush. The
support sup(vi, vj , Lq) is obtained by counting all the query
motifs containing (vi, vj) and their weights, which requires
computing the common neighbors of vi and vj . We assume
that the neighbor list of each node is sorted,N (vi)∩N (vj) can
be computed in O(d(v1)+d(v2)) = O(dmax) time. To obtain
the query motif weights, for each u ∈ N (vi) ∩ N (vj), the
algorithm computes |L(u) ∩ Lq| by scanning L(u), which is

bounded by O(Lmax). In summary, the time complexity for
computing sup(vi, vj , Lq) is O(dmax · Lmax). Furthermore,
the LocalPush algorithm will access O(1

ε) edges. Thus, the
time complexity for computing PPR distribution over GM is
O(dmax · Lmax) ·O(1

ε) = O(dmax·Lmax

ε).
The algorithm then sorts nodes according to normalized

PPR value. Note that we only obtain the ordered list of
the b nodes with the largest normalized PPR value among
nodes that are pushed (i.e. with PPR value larger than 0) in
the algorithm. The number of nodes that are pushed is also
bounded by O(1

ε). Thus, this operation can be implemented
with a time complexity of O(1

ε · logb) through a max heap.
The last step of Stage I requires computing the conductance
of each prefix in the sorted node list. The time complexity of
this step is bounded by the volume of the first b nodes, which
is O(dmax · b). Since the size bound b is set to be a constant
number, the total time complexity of Stage I is bounded by
O(dmax·Lmax

ε) +O(1
ε · logb) +O(dmax · b) = O(dmax·Lmax

ε).
We then dicuss the time complexity of Stage II. Denoting

the output cluster of Stage I as H , the initialization of
din(u,H) and dout(u,H) for each node u requires a traversal
of neighbors of u, and thus takes O(vol(H)) time. In any
iteration, the computation of dep(u,H) for each node u takes
O(|H|) time. Given that there are at most |H| iterations,
the time complexity of removing irrelevant nodes until the
algorithm terminates is O(|H|2). Thus, the total time taken
by stage II is bounded by O(|H|2 + vol(H)). Obviously, we
have |H| ≤ b and vol(H) ≤ dmax · b, which means the time
complexity of Stage II is constantly bounded.

Thus, the time complexity of Alg. 1 is bounded by the time
complexity of Stage I, which is O(dmax·Lmax

ε).

According to Theorem 2, by setting ε = Ω(1
n) where

n = |V | is the number of nodes in G, we can get a sublinear
algorithm for local clustering on labeled graphs. To further
demonstrate the efficiency of our proposed framework, in the
experiments, we set ε = Θ(1

n) and the experimental results
show that even under this setting, our proposed algorithm can
achieve the local clustering on labeled graphs efficiently.

C. Label Score Function Selection
The label score function ρ(H,Lq) is used in Stage II of

our two-stage algorithm for refining the candidate cluster
generated in Stage I. Hence, a suitable label score function
is crucial for the effectiveness of our algorithm. Different
datasets and queries will prefer different label score functions.
Thus, we further propose a linear classifier to decide for a
query whether ρ1(H,Lq) or ρ2(H,Lq) should be used.

Through experiments, we find that the label-aware motif
conductance and the average number of matched query labels
of the coarse candidate cluster generated in stage I are effective
features for the classifier. Fig. 3 presents the relationship
between the performance of two label score functions, i.e.
ρ1(H,Lq) and ρ2(H,Lq), and the two features in youtube
with different label distributions as an example. The queries
that prefer ρ1(H,Lq) (red points) and ρ2(H,Lq) (green
points) can be divided nicely through a linear classifier.

Therefore, we choose the linear classifier as the model for
deciding the proper label score function for each query. For
a query q, let φM (q) and ρ(q) denote the label-aware motif
conductance and the average number of matched query labels
of the coarse candidate cluster generated in Stage I of Alg. 1,
respectively. Then, the linear classifier is defined as C(q) =
θ1 · φM (q) + θ2 · ρ(q).

We use Q to denote the set of queries that are sampled
for training. For each q ∈ Q, we use y1(q) to denote the
performance of Alg. 1 for q with ρ1(H,Lq) and y2(q) to
denote the performance of Alg. 1 with ρ2(H,Lq). We also use
Q+ to denote the set of queries such that y2(q) > y1(q) and
use Q− to denote the set of queries such that y2(q) < y1(q).

We train the classifier through minimizing the following loss
function based on the least square error.

Loss =
∑

q∈Q+∧C(q)>0

(y2(q) − y1(q))2 −
∑

q∈Q−∧C(q)>0

(y2(q) − y1(q))2

−
∑

q∈Q+∧C(q)≤0

(y2(q) − y1(q))2 +
∑

q∈Q−∧C(q)≤0

(y2(q) − y1(q))2

(3)

For query processing, we first execute the stage I of Alg. 1
and obtain the values of the two features for the linear clas-
sifier. If C(q) > 0, the classifier outputs ρ1(H,Lq); otherwise
the classifier outputs ρ2(H,Lq). Then, the chosen label score
function will be used for the peeling process of stage II.

V. EXPERIMENTS

We evaluate the LAM framework with the two-stage al-
gorithm through experiments on both real-world and sythetic
datasets. Sec. V-A describes the setup. Subsequent subsections
are presented to answer the following research questions:

• Can LAM outperform the SOTA solutions for identifying de-
sired clusters in both real and synthetic datasets (Sec. V-B)?

• Is LAM robust to different label distributions (Section V-C)?
• Does the peeling process in the two-stage algorithm indeed

boost the results (Sec. V-D)?
• Is the index-free algorithm efficient and scalable enough to

handle large graphs (Sec. V-E)?
• Can queries with different labels reveal diverse yet densely-

connected clusters (Sec. V-F)?
• Is parameter tuning made easy for the LAM (Section V-G)?

A. Experimental Setup

Datasets. Eight real-world datasets are used in our
experiments: facebook, amazon, dblp, youtube,
livejournal, orkut, wikidata and friendster.
We use the first 6 datasets for effectiveness study, and use
the last 2 datasets for efficiency and scalability study. The
dataset statistics are reported in Table III.

The facebook dataset contains 10 ego-networks for ego-
users X ∈ {0, 107, 348, 414, 686, 698, 1684, 1912, 3437, 398
0} with both ground-truth clusters and real-world labels. For
a given user X , the ego-network of X is the induced subgraph
of the facebook network by X and its neighbors. Each node
in the facebook dataset has labels representing features like
political stand and education degree. The label values are

TABLE III: Dataset Statistics. Φ gives the average unweighted
conductance of ground-truth clusters in the network. sbm is
generated by the stochastic block model with µ = 0.9.

Network |V | |E| dmax Φ Labeled
fb0 347 2519 77 0.59 4

fb107 1045 26749 253 0.59 4
fb348 227 3192 99 0.52 4
fb414 755 1693 57 0.45 4
fb686 170 1656 77 0.52 4
fb698 66 270 29 0.265 4
fb1684 792 14024 136 0.29 4
fb1912 755 30025 293 0.76 4
fb3437 547 4813 107 0.87 4
fb3980 59 146 18 0.415 4
amazon 335K 926K 549 0.07 8
dblp 317K 1M 342 0.414 8

youtube 1.1M 3M 28754 0.84 8
livejournal 4M 35M 14815 0.395 8

orkut 3.1M 117M 33313 0.73 8
friendster 65M 1.8B 5214 0.76 8
wikidata 20.6M 75M 2.9M - 4

sbm 500 125K 288 0.9 8

anonymized to numbers for privacy concern. In our experi-
ments, we aggregate the results of 10 ego-networks within
facebook for ease of presentation when doing efficiency
study and parameter tuning.

The amazon, dblp, youtube, livejournal, orkut
and friendster are real-world networks contain ground-
truth clusters but do not contain real-world labels. To this end,
we follow the setup used in [7] to augment labels for these
datasets. We generate a label set consisting of |L| = η · |V |
distinct labels for each network with η = 0.0001 by default.
For each ground-truth cluster, we randomly select 3 labels
from L as the representative labels for this cluster and assign
each of these labels to nodes in the cluster with probability
(1−perr). We set perr = 0 by default. Furthermore, to model
noise in the label data, for each node v in the network, we
randomly assign 1 to 5 labels to v uniformly.

The wikidata is a large knowledge graph (KG) extracted
from wikidata2. Each node represents an entity in the KG and
has different types of relationships with other entities. The
node types are node categories from the KG ontology.

We also include synthetic random graphs generated by
stochastic block model S(N, k, pin, pout), where the mixing
ratio µ = (k−1)pout

pin+(k−1)pout
is used to measure the fraction of

neighbors of each node that belong to different clusters. In
our experiments, we set k = 10, N = 50, pin = 0.5, and
vary µ from 0.1 to 0.9 to generate different random graphs.
The labels are generated for these synthetic graphs as for real-
world networks with η = 0.02 by default.
Query Generation. We generate one query for each ground-
truth cluster contained in each network. The seed node is
randomly selected from the cluster to avoid the influence of
different seeding algorithms [7]. Note that seed selection is
orthogonal to our work. The query labels are selected for each

2https://dumps.wikimedia.org/wikidatawiki/entities/

TABLE IV: Parameters used in experiments.
Param. Description Default
µ The mixing ratio of the stochastic block

model.
0.9

η The ratio between the total number of
generated labels to |V |.

1e-4, 2e-2

perr The probability of label noise within
ground-truth clusters.

0.0

λ The hyperparameter in LAM. 0.4

query as the representative labels for the corresponding cluster.
The representative labels for unlabeled real-world networks
and synthetic random networks are the labels assigned to
the cluster, described in the label generation process. For
facebook ego-networks with real-world labels, we use top-
3 labels that occurring most frequently in a given cluster and
rarely occuring outside the cluster as representative labels [7].
Compared Methods. We compared the proposed methods
with the SOTA methods on label-aware community search.
• ATC [7] returns a (k, d)-truss community containing the

seed node and maximizes the label density ρ1(H,Lq).
• ACQ [6] finds a k-core community containing the seed

node that maximizes the number of labels shared in Lq by
all nodes in the returned community.

• CAC [23] finds a triangle-connected k-truss containing the
seed node that maximizes the number of labels shared in
Lq by all nodes in the returned community.

Note that for ACQ, CAC and ATC, suitable hyperparameters
k and d have to be assigned for each query. We follow the
setup in [7] and tune k for each query to be the maximum
value that can return a non-empty community for ATC and
ACQ. The value of d for ATC is set as the same in [7].
Variants of Our Approach. We compare different variants of
our approach for the ablation study.
• TEC1 uses unweighted conductance with ρ(H,Lq) =
ρ1(H,Lq) and employs the two-stage algorithm to extract
the cluster.

• TEC2 is a variant of TEC1 with ρ(H,Lq) = ρ2(H,Lq).
• LAE1 uses edge weighted conductance with ρ(H,Lq) =
ρ1(H,Lq) and employs the two-stage algorithm to extract
the cluster. An edge weight is assigned as 1 if it has two
side nodes with query labels, and (1− λ) otherwise.

• LAE2 is a variant of LAE1 with ρ(H,Lq) = ρ2(H,Lq).
• LAM1 is our proposed approach with the LAM conduc-

tance and ρ(H,Lq) = ρ1(H,Lq) used in fq(H).
• LAM2 is a variant of LAM1 with ρ(H,Lq) = ρ2(H,Lq).
• LAM∗ uses a linear classifier to determine whether
ρ1(H,Lq) or ρ2(H,Lq) shoudl be used as the label score
function, as described in Sec. IV-C. We randomly sample
100 queries on each dataset for training and the training
query set is excluded from the test set.

Parameter Setup. The parameters used in the experiments
and their default values are summarized in Table IV. We set
the hyperparameter λ = 0.4 during our experiments, under
which LAM based methods can consistently achieve the best
overall result across all datasets (Sec. V-G).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

fb0 fb107 fb348 fb414 fb686 fb698 fb1684 fb1912 fb3437 fb3980

F1

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(a) facebook with real-world labels

 0

 0.2

 0.4

 0.6

 0.8

 1

sbm amazon dblp youtube livejournal orkut

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(b) Networks with generated labels

Fig. 4: Effectiveness comparison for queries with single seed.

Evaluation Metric. We use the F1-score, which is the har-
monic average of precision and recall w.r.t. the ground-truth
clusters to validate the effectiveness of different algorithms.
For evaluating the efficiency, we consider the average of time
and memory consumption for answering the queries.
Environment. All experiments are conducted on a Linux
Server with Intel Xeon Gold 6140 CPU and 256 GB memory
running Ubuntu 18.04. We use the original implementation of
ATC [7], CAC [23] (implemented with C++) and ACQ [6]
(implemented with Java) provided by the authors. Other algo-
rithms are implemented with C++ and executed with a single
thread.

B. Effectiveness Evaluation

We evaluate the overall effectiveness of our proposed
methods based on the LAM framework (LAM1, LAM2 and
LAM∗) against both the topology-driven methods (ATC, ACQ
and CAC) and variants of our approaches for the ablation
study (TEC1, TEC2, LAE1 and LAE2). Fig. 4 reports the
F1 scores of the compared methods on each dataset for
queries with single seed node and LAM∗ achieves the best
effectiveness over most datasets. Note that the results of CAC
on livejournal and orkut are omitted since CAC cannot
finish index construction within 100 hours. We further make
the following two observations from the results.

First, on networks with generated labels (Fig. 4(b)), LAM∗

achieves the same effectiveness as LAM2; on ego-networks
with real-world labels from facebook, LAM∗ can achieve
better effectiveness than both LAM1 and LAM2. This is due
to different distributions of generated labels and real-world
labels. The generated labels are well distributed within the
ground-truth clusters for each query, and thus all queries

from these networks prefer ρ2(H,Lq) over ρ1(H,Lq); in
contrast, real-world labels on ego-networks from facebook
(Fig. 4(a)) contain much more noises, LAM∗ can achieve better
performance than LAM1 and LAM2 by automatically choosing
a suitable label score function for each query.

Second, both LAM1 and LAM2 outperform the correspond-
ing TEC1, TEC2 and LAE1, LAE2 in most cases, which
shows that our LAM framework can indeed enhance the
effectiveness of the proposed two-stage algorithm regardless of
different choices of ρ(H,Lq). Specifically, LAM1 outperforms
TEC1 and LAE1 on 9 out of 10 facebook networks, LAM2
outperforms TEC2 and LAE2 on 7 out of 10 facebook
networks. On networks with generated labels, only the effec-
tiveness of LAM2 is slightly worse than TEC2 and LAE2 on
amazon. This is still due to the well-structured ground-truth
clusters of amazon, which makes it easy to extract the clusters
solely based on unweighted conductance or label-aware edge
weighted conductance.

We also conduct experiments for queries with multiple seed
nodes. Our method only requires one seed node as input. Thus,
for queries with multiple seed nodes, we lauch a query for
each seed node respectively and then return the community
that maximize the score function fq(H). Fig. 5 and Fig. 6
present the effectiveness results for queries with 2 and 3 seed
nodes respectively. Note that ACQ and CAC cannot support
queries with multiple seed nodes, thus the results for ACQ
and CAC are omitted. We can observe that LAM∗ still perform
better than ATC and other variants of the two-stage algorithm
for queries with multiple seed nodes over most datasets. Note
that the result of ATC for queries with 3 seed nodes on orkut
is omitted from Fig. 6(b) since it takes more than 3 days for
ATC to finish 1000 queries. Nevertheless, in the following
experiments, we only consider queries with single seed node
by default since it’s usually easier for users to specify just one
node to kick start the clustering task in practice. Besides, the
querying time for ATC increases significantly with the increase
of number of seed nodes, whereas the querying time for our
method only increases slightly when multiple seed nodes are
selected.

We further use the synthetic networks with different values
of mixing ratio µ on the sbm dataset to evaluate all compared
methods. A larger µ implies that the number of edges between
clusters increases which thereby makes the clusters harder to
extract. The experimental result is shown in Fig. 7. Overall,
LAM∗ consistently outperform the baselines with various
values of µ. When µ is varied from 0.1 to 0.6, LAM∗ can
almost recover the ground clusters exactly; when µ is varied
from 0.6 to 0.8, the effectiveness of LAM∗ decreases slightly;
when µ is further increased to 0.9, the F1 score of LAM∗

incurs a relatively sharp drop, but still achieves significantly
better performance than the baselines. The F1 score of all other
baselines, except for TEC2 and LAE2, incur a sharp drop
with a smaller value of µ; TEC2 and LAE2 incur a sharper
drop than LAM∗ when µ is increased to 0.9. This observation
indicates that LAM∗ is more robust to structural noises than
the baselines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

fb0 fb107 fb348 fb414 fb686 fb698 fb1684 fb1912 fb3437 fb3980

F1

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(a) facebook with real-world labels

 0

 0.2

 0.4

 0.6

 0.8

 1

sbm amazon dblp youtube livejournal orkut

F1

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(b) Networks with generated labels

Fig. 5: Effectiveness comparison for queries with 2 seeds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

fb0 fb107 fb348 fb414 fb686 fb698 fb1684 fb1912 fb3437 fb3980

F1

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(a) facebook with real-world labels

 0

 0.2

 0.4

 0.6

 0.8

 1

sbm amazon dblp youtube livejournal orkut

F1

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(b) Networks with generated labels

Fig. 6: Effectiveness comparison for queries with 3 seeds.

C. Label Distribution Robustness

In this section, we vary the parameters perr and η of
label assignments to evaluate the robustness of all methods
to different label distributions.
Varying perr. The parameter perr measures the query label
distribution within each ground-truth cluster, i.e., the proba-

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
µ

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

Fig. 7: Effectiveness on synthetic networks.

ACQ CAC ATC TEC1 TEC2 LAE1 LAE2 LAM1 LAM2 LAM*

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 2 4 6 8 10

F1

perr (%)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(a) sbm

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

F1

perr (%)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(b) amazon

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

F1

perr (%)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(c) dblp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 2 4 6 8 10

F1

perr (%)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(d) youtube

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

F1

perr (%)

ACQ
ATC

TEC1
TEC2

LAE1
LAE2

LAM1
LAM2

LAM*

(e) livejournal

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

F1

perr (%)

ACQ
ATC

TEC1
TEC2

LAE1
LAE2

LAM1
LAM2

LAM*

(f) orkut

Fig. 8: Varying perr.

bility that a node within the ground-truth cluster is assigned
with the desired labels of the queries. We vary perr from
2% to 10%. Figure 8 reports the F1 scores of all compared
methods when perr is varied. The scores drop in general as
there are less query labels within the ground-truth cluster.
Our proposed method LAM∗ still achieves consistently better
results than those produced by the topology-driven community

search methods as well as other variants of the two-stage
algorithm over all datasets.

We also see that LAM2 is relatively more sensitive to
query label distributions within the ground-truth clusters than
LAM1. This is due to different label score functions ρ(H,Lq)
that are used in LAM1 and LAM2. The label score function
ρ1(H,Lq) =

∑
l∈Lq

|V (l)∩H|2
|H| , which is quadratic to the count

of query labels within H , tends to extract H with a large count
of query labels but possibly small query label density. Thus,
when the query label within H is relatively infrequent, it can
still be extracted by LAM1 since H is still the cluster that
contains the largest count of query labels around the seed.
On the other hand, ρ2(H,Lq) =

∑
l∈Lq

|V (l)∩H|
|H| is linear

to the count of query labels within H , which means LAM2
will extensively trim the nodes that are not assigned with
query labels so that the query label density is maximized.
Nevertheless, LAM∗ is more robust than both LAM1 and
LAM2 since it can select the proper label score function for
each query.
Varying η. The parameter η measures the query label distri-
bution outside each ground-truth cluster, i.e., the probability
that a node outside the ground-truth cluster H is assigned with
the same labels of H . We vary η from 1e-4 to 5e-4 for real-
world datasets, and vary η from 0.02 to 0.1 for the synthetic
network generated by stochastic block model. Figure 9 reports
the F1 scores with varying η. As in the previous experiments,
our LAM∗ consistently outperform other baselines.

We also observe that LAM1 is more sensitive to query label
distributions outside the ground-truth cluster (LAM1 requires a
larger η to achieve good performance whereas LAM2 performs
well with small η). This is consistent with the properties of
ρ(H,Lq) used in LAM1 and LAM2. The label score function
ρ1(H,Lq) tends to include nodes outside the ground-truth
cluster that are assigned with query labels, whereas LAM2
will trim these nodes from the result cluster.

D. Ablation Study of the Peeling Process

In this section, we conduct an ablation study on the effec-
tiveness of the peeling process in Stage II of our algorithm. We
use LAM−, LAE− and TEC− to represent the algorithm that
only optimizes the corresponding conductance through Stage I
without conducting the peeling process in Stage II. We report
the results on datasets where ground-truth communities are
present.

Table V(a) reports the F1-score of LAM− compared with
corresponding algorithms LAM1 and LAM2. The results show
that both the peeling process in Stage II based on ρ1(H,Lq)
and ρ2(H,Lq) can boost the performance of local clustering
significantly on labeled graphs. Similar observations can be
obtained form Table V(b) and V(c) for LAE− and TEC−.

E. Efficiency and Scalability

In this section, we compare the efficiency and scalability
between topology-driven methods (ACQ, CAC and ATC) and
our conductance-driven approaches (LAM∗). The purpose is to
demonstrate the efficacy of our index-free algorithm.

ACQ CAC ATC TEC1 TEC2 LAE1 LAE2 LAM1 LAM2 LAM*

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

F1

η(x10-2)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(a) sbm

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

F1

η(x10-4)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(b) amazon

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

F1

η(x10-4)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(c) dblp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 2 3 4 5

F1

η(x10-4)

ACQ
CAC

ATC
TEC1

TEC2
LAE1

LAE2
LAM1

LAM2
LAM*

(d) youtube

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

F1

η(x10-4)

ACQ
ATC

TEC1
TEC2

LAE1
LAE2

LAM1
LAM2

LAM*

(e) livejournal

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

F1

η(x10-4)

ACQ
ATC

TEC1
TEC2

LAE1
LAE2

LAM1
LAM2

LAM*

(f) orkut

Fig. 9: Varying η.

Time Consumption. Fig. 10(a) compares the running time of
LAM∗ and topology-driven methods. Note that all topology-
driven methods need to construct indexes before processing
queries. Thus, we compare the running time of 1000 queries
for LAM∗ with the running time of 1000 queries plus time of
index construction for topology-driven methods.

We note that ATC is still less efficient than LAM∗ even with
the help of indexes over most datasets. The queries of CAC is
faster than LAM∗ with the help of indexes. However, the index
construction of CAC is extremely time-consuming. Note that
CAC even cannot finish index construction in reasonable time
on livejournal, orkut and wikidata. ACQ is more ef-
ficient than LAM∗ on relatively small datasets but is still more
time consuming than LAM∗ when the networks grow larger
(orkut and wikidata). Nevertheless, the effectiveness of
ACQ is inferior among the compared methods.
Memory Consumption. Fig. 10(b) reports the memory con-
sumption of LAM∗ and topology-driven methods. Due to
large indexes required by topology-driven baselines. Topology-
driven baselines consume significantly more memory than
index-free LAM∗. The gap on memory consumption between
LAM∗ and topology-driven baselines scales w.r.t. the size of
the network. For example, on small networks facebook,
dblp, youtube, ATC requires 3 to 4 times memory than
LAM∗. On larger networks livejournal, orkut, ATC

(a) LAM
Dataset LAM− LAM1 LAM2

facebook 0.48 0.484 0.525
amazon 0.90 0.939 0.95
dblp 0.61 0.743 0.945

youtube 0.26 0.52 0.78
livejournal 0.75 0.975 0.98

orkut 0.79 0.89 0.91
sbm 0.36 0.37 0.598

(b) LAE
Dataset LAE− LAE1 LAE2

facebook 0.386 0.405 0.512
amazon 0.8 0.905 0.97
dblp 0.53 0.66 0.925

youtube 0.24 0.45 0.71
livejournal 0.75 0.94 0.97

orkut 0.57 0.73 0.76
sbm 0.16 0.17 0.37

(c) TEC
Dataset TEC− TEC1 TEC2

facebook 0.39 0.393 0.51
amazon 0.53 0.886 0.97
dblp 0.42 0.648 0.914

youtube 0.21 0.427 0.67
livejournal 0.63 0.93 0.967

orkut 0.45 0.68 0.72
sbm 0.16 0.184 0.36

TABLE V: Ablation Study of the Peeling Process.

10-1

100

101

102

103

104

105

sbm fb amazon dblp youtube livej orkut wiki

Ti
m

e
(s

)

ATC Index
ATC Query

ACQ Index
ACQ Query

CAC Index
CAC Query

LAM*

(a) Time consumption
10-2

10-1

100

101

102

sbm fb amazon dblp youtube livej orkut wiki
M

em
or

y
(G

B)

ATC ACQ CAC LAM*

(b) Memory consumption

Fig. 10: Time and memory consumption.

requires up to 10 times memory than LAM∗. This implies
that our methods are much more efficient than topology-driven
baselines in terms of memory consumption.
Scalability. We further compare the scalability of LAM∗ with
topology-driven baselines using the extremely large network
friendster. All topology-driven methods cannot handle
queries from friendster since they fail to construct the
indexes with 256GB memory on our machine. In contrast, our
method can handle queries from friendster with 60GB
memory. We randomly select 100 queries from friendster
and it takes on average 50 seconds to process a query for
LAM∗. Furthermore, the performance can be easily accelerated
by parallel processing [45]. Thereby, our methods based on
LAM is scalable to handle large networks.

F. A Case Study on facebook

In this subsection, we further validate that LAM∗ can extract
diverse (different clusters will be detected for different query
labels) yet densely-connected clusters through a case study on
facebook dataset.

(a) fb414 (b) fb1912

Fig. 11: Examples of clusters returned with different query
labels. In each ego-network of facebook, two queries are
issued from the highlighted seed in the green square with query
labels l1 and l2 respectively. The subgraph shaded with red
(blue) is the cluster returned for label l1 (l2). The color of
each node represents its labels. Red nodes are associated with
l1; blue nodes are associated with l2; black nodes have both
labels; the white node has neither labels.

λ

sbm
amazon

dblp
youtube

livejournal
orkut

facebook

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F1

λ

sbm
amazon

dblp

youtube
livejournal

orkut

facebook

(a) Varying λ for LAM1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F1

λ

sbm
amazon

dblp

youtube
liveJournal

orkut

facebook

(b) Varying λ for LAM2

Fig. 12: Parameter Tuning.

In Fig. 11, we visualize two clusters extracted by differ-
ent query labels l1 and l2 from ego-networks fb414 and
fb1912. The query labels l1 and l2 are top-2 representative
labels for the corresponding ground-truth clusters. In fb414,
we can see that both clusters extracted for query label l1 and l2
have high structure density. For the query label l2, the returned
cluster (with blue shade) includes nodes that contain label l2
(note that black nodes are attached with both labels), while
nodes with only label l1 is excluded. In contrast, using l1 as
the query label extracts a cluster containing nodes with label l1
(nodes colored in red). Note that several nodes with l1 are also
excluded by LAM∗ for the red-shaded cluster to achieve higher
structure density. In fb1912, with l1 as the query label, the
red-shaded cluster is returned. Note that a blue node with only
label l2 is included to achieve higher structure density. When
the query label is l2 , the blue-shaded cluster that are highly
related to label l2 is extracted. The observation shows that
using local clustering queries with different labels can reveal
label-aware cohesive clusters.

G. Parameter Tuning for λ in LAM
We vary the hyperparameter λ used in the LAM framework

and report the F1 scores of LAM1 and LAM2 in Figure 12.
We have the following observations. First, the performance

is relatively stable when λ varies from 0.1 to 0.9 across all
datasets for both LAM1 and LAM2, and drops dramatically
when λ equals to 0 or 1. The reason is that when λ = 0, the
LAM framework is equivalent to the unweighted conductance
and does not consider the motif and label information at all;
whereas when λ = 1, LAM suffers from the fragmentation
issue. Note that fragmentation is not observed on the sbm
dataset when λ = 1. This is because the clusters in sbm are
well connected with each other due to the large µ, and thus
do not suffer from fragmentation.

Second, with the increase of λ, the F1 scores of both
LAM1 and LAM2 slightly decrease on amazon, dblp and
livejournal, while first increase and then decrease on
youtube and orkut. With a larger λ, the LAM framework
places more emphasis on the query motif, which results in
the PPR distribution to be more concentrated around the
seed node. Hence, on amazon, dblp and livejournal
with well-structured ground-truth clusters (i.e., small average
unweighted conductance as shown in Table III), the PPR
distribution is very concentrated even with a relatively small λ.
In this case, LAM would omit some relevant nodes and cause
the slight drop on the F1 scores. On the other hand, youtube
and orkut have illy-structured clusters (i.e., large average
unweighted conductance). Focusing on the query motif can
help LAM avoid nodes outside the cluster, and thus the F1
scores increase when λ is varied from 0.1 to 0.4. However,
if λ continues to increase, the PPR distribution becomes
too concentrated and causes slight performance drops. The
fluctuation of the F1 scores on ego-networks from facebook
is less regular than that on other datasets. This is because the
distribution of real-world labels is not as ideal as that of labels
generated synthetically for other datasets. Nevertheless, the F1
scores of both LAM1 and LAM2 on facebook is relatively
stable when λ is varied.

According to the observations in Figure 12, we can see that
a consistent λ = 0.4 for all queries across all datasets achieves
the best result overall. The results have confirmed the design
of the LAM framework, which strikes a balance between the
original graph and the adjusted edge weights by the query
motif instances.

VI. CONCLUSION

In this paper, we studied the problem of local clustering
over labeled graphs. We observed that some existing topology-
driven labeled community search approaches can be adapted
to our problem. However, these methods suffer from the
requirement of strict topology constraints and prohibitively
large indexes. We thus proposed a novel LAM framework and
devised the index-free two-stage algorithm for local clustering
on labeled graphs. Theoretically, we have proved that this
framework can concentrate the PPR values within the desired
cluster, which is a desired property for local graph clustering.

Compared with prior community search methods, our methods
can find clusters with more complex structures by extending
the search space of the candidate cluster, and thus achieves
better effectiveness across all datasets in the experiments.

REFERENCES

[1] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[2] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in MOBIHOC, 2007, pp. 32–40.

[3] X. Li, M. Wu, C.-K. Kwoh, and S.-K. Ng, “Computational approaches
for detecting protein complexes from protein interaction networks: a
survey,” BMC genomics, vol. 11, no. 1, pp. 1–19, 2010.

[4] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
nature, vol. 435, no. 7043, pp. 814–818, 2005.

[5] E. L. Huttlin, R. J. Bruckner, J. A. Paulo, J. R. Cannon, L. Ting,
K. Baltier, G. Colby, F. Gebreab, M. P. Gygi, H. Parzen et al.,
“Architecture of the human interactome defines protein communities and
disease networks,” Nature, vol. 545, no. 7655, pp. 505–509, 2017.

[6] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” Proceedings of the VLDB Endowment, vol. 9,
no. 12, pp. 1233–1244, 2016.

[7] X. Huang and L. V. Lakshmanan, “Attribute-driven community search,”
Proceedings of the VLDB Endowment, vol. 10, no. 9, pp. 949–960, 2017.

[8] T. Van Laarhoven and E. Marchiori, “Local network community detec-
tion with continuous optimization of conductance and weighted kernel
k-means,” The Journal of Machine Learning Research, vol. 17, no. 1,
pp. 5148–5175, 2016.

[9] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in FOCS, 2006, pp. 475–486.

[10] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods,” in SIGKDD, 2012,
pp. 597–605.

[11] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order
graph clustering,” in SIGKDD, 2017, pp. 555–564.

[12] C. E. Tsourakakis, J. Pachocki, and M. Mitzenmacher, “Scalable motif-
aware graph clustering,” in WWW, 2017, pp. 1451–1460.

[13] A. Arenas, A. Fernandez, S. Fortunato, and S. Gomez, “Motif-based
communities in complex networks,” Journal of Physics A: Mathematical
and Theoretical, vol. 41, no. 22, p. 224001, 2008.

[14] L. Huang, C.-D. Wang, and H.-Y. Chao, “A harmonic motif modularity
approach for multi-layer network community detection,” in ICDM, 2018,
pp. 1043–1048.

[15] R. Andersen and F. Chung, “Detecting sharp drops in pagerank and a
simplified local partitioning algorithm,” in TAMC, 2007, pp. 1–12.

[16] K. Kloster and D. F. Gleich, “Heat kernel based community detection,”
in SIGKDD, 2014, pp. 1386–1395.

[17] P. Li, I. Chien, and O. Milenkovic, “Optimizing generalized pagerank
methods for seed-expansion community detection,” in NeurIPS, 2019,
pp. 11 710–11 721.

[18] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[19] Y. Li, K. He, K. Kloster, D. Bindel, and J. Hopcroft, “Local spectral
clustering for overlapping community detection,” ACM transactions on
knowledge discovery from data, vol. 12, no. 2, pp. 1–27, 2018.

[20] H. Yin, A. R. Benson, and J. Leskovec, “The local closure coefficient: A
new perspective on network clustering,” in WSDM, 2019, pp. 303–311.

[21] F. Moradi, T. Olovsson, and P. Tsigas, “A local seed selection algorithm
for overlapping community detection,” in ASONAM, 2014, pp. 1–8.

[22] X. Huang, L. V. Lakshmanan, and J. Xu, “Community search over
big graphs: Models, algorithms, and opportunities,” in ICDE, 2017, pp.
1451–1454.

[23] Y. Zhu, J. He, J. Ye, L. Qin, X. Huang, and J. X. Yu, “When structure
meets keywords: Cohesive attributed community search,” in Proceedings
of the 29th ACM International Conference on Information & Knowledge
Management, 2020, pp. 1913–1922.

[24] Y. Zhu, Q. Zhang, L. Qin, L. Chang, and J. X. Yu, “Querying cohesive
subgraphs by keywords,” in ICDE, 2018, pp. 1324–1327.

[25] L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou, “Contextual community
search over large social networks,” in ICDE, 2019, pp. 88–99.

[26] Z. Zhang, X. Huang, J. Xu, B. Choi, and Z. Shang, “Keyword-centric
community search,” in ICDE, 2019, pp. 422–433.

[27] Q. Liu, Y. Zhu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Vac: Vertex-
centric attributed community search,” in ICDE, 2020, pp. 937–948.

[28] J. Gao, J. Chen, Z. Li, and J. Zhang, “Ics-gnn: lightweight interactive
community search via graph neural network,” Proceedings of the VLDB
Endowment, vol. 14, no. 6, pp. 1006–1018, 2021.

[29] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient
community search over large heterogeneous information networks,”
Proceedings of the VLDB Endowment, vol. 13, no. 6, pp. 854–867, 2020.

[30] X. Huang, H. Cheng, and J. X. Yu, “Dense community detection in
multi-valued attributed networks,” Information Sciences, vol. 314, pp.
77–99, 2015.

[31] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” Proceedings of the VLDB Endowment, vol. 2,
no. 1, pp. 718–729, 2009.

[32] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community detection
in large networks using content and links,” in WWW, 2013, pp. 1089–
1098.

[33] J. Yang, J. McAuley, and J. Leskovec, “Community detection in net-
works with node attributes,” in ICDM, 2013, pp. 1151–1156.

[34] C. Zhe, A. Sun, and X. Xiao, “Community detection on large complex
attribute network,” in SIGKDD, 2019, pp. 2041–2049.

[35] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of erdős-rényi graphs,” Physical Review E, vol. 85,
no. 5, p. 056109, 2012.

[36] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[37] J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in ICDE, 2015, pp. 149–160.

[38] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed
memory,” in HPEC, 2017, pp. 1–4.

[39] P.-Z. Li, L. Huang, C.-D. Wang, and J.-H. Lai, “Edmot: An edge en-
hancement approach for motif-aware community detection,” in SIGKDD,
2019, pp. 479–487.

[40] I. M. Kloumann, J. Ugander, and J. Kleinberg, “Block models and per-
sonalized pagerank,” Proceedings of the national academy of sciences,
vol. 114, no. 1, pp. 33–38, 2017.

[41] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge
university press, 1995.

[42] J. Šı́ma and S. E. Schaeffer, “On the np-completeness of some graph
cluster measures,” in SOFSEM, 2006, pp. 530–537.

[43] F. Chung, “The heat kernel as the pagerank of a graph,” Proceedings of
the National Academy of Sciences, vol. 104, no. 50, pp. 19 735–19 740,
2007.

[44] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detection:
on free rider effect and its elimination,” Proceedings of the VLDB
Endowment, vol. 8, no. 7, pp. 798–809, 2015.

[45] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank
on mapreduce,” in SIGMOD, 2011, pp. 973–984.

