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Abstract—In this paper, we study the problem of efficient
motif-based graph partitioning (MGP). We observe that existing
methods require to enumerate all motif instances to compute the
exact edge weights for partitioning. However, the enumeration
is prohibitively expensive against large graphs. We thus propose
a sampling-based MGP (SMGP) framework that employs an
unbiased sampling mechanism to efficiently estimate the edge
weights while trying to preserve the partitioning quality. To
further improve the effectiveness, we propose a novel adaptive
sampling framework called SMGP+. SMGP+ iteratively parti-
tions the input graph based on up-to-date estimated edge weights,
and adaptively adjusts the sampling distribution so that edges
that are more likely to affect the partitioning outcome will be
prioritized for weight estimation. To our best knowledge, this is
the first attempt to solve the MGP problem without employing
exact edge weight computations, which gives hope for existing
MGP methods to perform on complicated motifs in a scalable
yet effective manner. Extensive experiments on seven real-world
datasets have validated that our framework delivers competitive
partitioning quality compared to existing workflows based on
exact edge weights, while achieving orders of magnitude speedup.

I. INTRODUCTION

Graph Partitioning (GP) is a fundamental yet core op-
erator in processing large graphs and has been used in a
wide range of domains including community detection [1],
distributed computing [2] and image processing [3]. While
traditional GP approaches focus on reducing the number of
edges between partitions, recent studies have unveiled that the
network motifs, defined by a particular pattern of interactions
between vertices, may provide a deep insight into discovering
high-order communities from complex networks [4], [5]. For
example, triangular motifs are crucial to finding ground-truth
communities in social networks [6] and identifying structural
hubs in the brain [7], and multi-hop loops may indicate money
laundering process in financial transactions [4]. It thus attracts
many interests in developing motif-based GP (MGP) methods
to preserve motif patterns in the clusters or communities after
the partitioning process [6], [8], [9].

To preserve a specified motif pattern Q during the partition-
ing of a graph G, a general way is to minimize the number
of subgraphs in G that are isomorphic to Q and consist of
edges crossing different partitions. Existing MGP approaches
employ a two-step workflow. In the first step, G is transformed
into an edge-weighted graph where the weight of each edge e
is the number of induced subgraphs in G that are isomorphic
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to Q and contain e. In the second step, an existing GP kernel
is chosen to partition the weighted graph obtained from the
first step. The GP kernels can be classified based on the
objective function adopted. Two commonly adopted objectives
are modularity [10] and conductance [11].

The first step is the major efficiency bottleneck since de-
termining whether G contains a subgraph that is isomorphic
to Q is NP-complete [12]. In practice, as evidenced by our
experiments later, it takes about a week to compute the exact
edge weights over a reasonably small-scale graph with a motif
of four vertices (e.g., the motif Q1 on the Catster dataset in
our experiments).

To mitigate the inefficiency of exact edge weight computa-
tions, we first devise an edge-centric sampling method called
SMGP which is an unbiased estimator of exact edge weights
and tries to preserve the quality of partitioning result produced
upon the estimated weights. SMGP first samples a target edge
e as an induced subgraph of two vertices, and then gradually
expands the subgraph by iteratively sampling neighborhood
vertices for edge weight estimations. Upon sampling a sub-
graph I that is isomorphic to the query Q, we update the
weights of all edges in I , and the estimated weighted graph is
later fed to a GP kernel for partitioning the graph. This edge-
centric sampling method is an unbiased estimator for the exact
edge weight, which thereafter establishes the approximation
guarantees of SMGP on the partitioning quality.

SMGP treats each edge equally and may have to generate
a large number of samples to ensure an accurate weight
estimation for every edge. In fact, edges have varying degrees
of importance in affecting the outcomes of GP kernels. For
example, edges in densely connected subgraphs are likely to
have large exact edge weights, but they can be assigned with
small estimated weights due to inaccurate estimations. Thus,
it is very likely that the underlying GP kernel would place the
endpoints of these edges into different partitions. In contrast,
the accurate estimation for edges with small exact weights is
relatively less crucial to producing high-quality partitioning
results, because the decision on placing these edges may have
minimal influence on the partitioning quality.

In order to further improve the partitioning quality with a
limited budget (e.g., the sample size), we propose a novel
adaptive sampling framework called SMGP+. In each it-
eration of SMGP+, it performs sampling for edge weight
estimation followed by calling a GP kernel to partition the
graph. The partitioning outcome from the previous iteration is



used to adjust the sampling distribution for the next iteration,
where edges that are likely to affect the partitioning outcome
are prioritized for weight estimations. We also prove the
theoretical guarantees of SMGP+ w.r.t. the partitioning quality
based on martingales [13], a classical statistical tool.

To our best knowledge, this is the first attempt to solve the
MGP problem without employing exact edge weight compu-
tations. Our sampling based methods give hope for existing
motif-based graph partitioning (MGP) methods to perform on
complex-structured motifs in a scalable yet effective manner.
Our proposed methods can efficiently evaluate the potential of
complex motifs with different underlying optimization goals
(i.e., modularity and conductance). That can help existing
MGP methods choose good motifs for large network analysis
without costly trials via exact edge weight computations. To
summarize, we have made the following contributions:

1) We devise a sampling-based approach called SMGP
(in Section III) for the MGP problem and propose an
adaptive sampling framework SMGP+ (in Section IV)
that improves the effectiveness and efficiency of SMGP.

2) We prove the theoretical guarantees on the partitioning
quality based on the weighted graph produced by SMGP
(in Section III) and SMGP+ (in Section IV) respectively.

3) We conduct extensive experiments (in Section V) and
verify: (1) SMGP can work with different GP kernels
and produce competitive results compared with the one
produced based on exact edge weights; (2) SMGP+ sig-
nificantly outperforms SMGP with faster convergence
and achieves two orders of magnitude speedup than
the traditional MGP workflow while achieving nearly-
identical partitioning quality.

II. PROBLEM FORMULATION

Given an undirected, connected and unweighted graph G,
the set of vertices and edges of G are represented as V (G)
and E(G) respectively. For a vertex v ∈ V (G), Nv denotes
the set of v’s neighbors, and |Nv| denotes the degree of v.
A graph G′ is called a subgraph of G if V (G′) ⊂ V (G)
and E(G′) ⊂ E(G). A subgraph G′ is an induced subgraph
of G if ∀ u ∈ V (G),∀ v ∈ V (G) and (u, v) ∈ E(G),
we have (u, v) ∈ E(G′). A query motif Q is defined to
be an (un)directed, unweighted and connected graph. Table I
summarizes some frequently used notations in problem def-
initions and solutions. Our proposed methods can support
both undirected and directed cases. In this paper, we present
undirected cases for ease of illustration.
Definition 1 (Isomorphism). A graph G′ is isomorphic to
another graph G, denoted by G′ ' G, if there is a bijection
f : V (G′) → V (G) such that ∀u ∈ V (G), ∀v ∈ V (G),
(u, v) ∈ E(G′) if and only if (f(u), f(v)) ∈ E(G).

Definition 2 (Instance of a Motif). Given a graph G and a
query motif graph Q, we call each induced subgraph of G
that is isomorphic to Q as an instance of Q in G.

Definition 3 (Motif-based Weighted Graph). Given a query
motif Q and a graph G, we compute a motif-based weighted

TABLE I: Frequently used notations.

Notation Description
V (G) The set of vertices in graph G.
E(G) The set of edges in graph G.
Nv The set of neighbors of v (in G).
φk A partitioning plan with k partitions.

φk(u) The ID of the partition to which vertex u belongs.
ϕi The partition with an ID i.
wi

e The estimated weight of edge e in the i-th iteration.
π(I) The probability of sampling the induced subgraph I .
π̃(e) The probability of sampling edge e as the starting edge.

C(u, ϕi) The set of edges connecting u to vertices in partition ϕi.
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Fig. 1: A weighted graph based on the motif
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graph of G such that the weight we of each edge e represents
the number of instances of Q in G that contain e.

Definition 4 (Graph Partition). A partitioning plan φk of a
graph G is a division of V (G) into k disjoint vertex sets
ϕi (1 ≤ i ≤ k) such that ∪ki=1 ϕi = V (G). The partition
ID assigned to a vertex v is denoted as φk(v). The size of
a partition ϕi is denoted by |ϕi| (i.e., the number of vertices
assigned to ϕi).

Definition 5 (Motif-based Edge-Cut Weight). Given a par-
titioning plan φk of a motif-based weighted graph G, the
motif-based edge-cut weight of φk is the sum of weights
of the edges crossing the partitions, i.e., Cut(φk) =∑

(u,v)∈E(G),φk(u)6=φk(v) w(u,v).

Definition 6 (Motif-based Graph Partition). Given a query
motif Q and a graph G, motif-based graph partition (MGP)
finds a partitioning plan φk that minimizes the motif-based
edge-cut weight, i.e., minφk Cut(φk).

There are two popular metrics for MGP’s quality eval-
uation: modularity [10] and conductance [11]. Modularity
measures the density of edges inside partitions compared to
crossing edges. Conductance measures the ratio of edge-cut
weight over the sum of weights of edges in the smallest
partition. It is not hard to see that edge-cut weight is a
central factor in these objectives above. Thus, we design our
approaches with the goal of minimizing the edge-cut weight
such that our approaches can easily work with multiple GP
kernels with different objective functions.

Example 1. Figure 1 shows an example of how the exact
edge weights are computed, and an ideal partitioning result
based on the query motif
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. The weight of an edge e indicates
how many instances of

1

a

bc

d

e
f

g

h
i

j

950
730

740

480

270

390

25

60

a

bc

d

e

f

g
h

i

j

810

550
750

520

470
500

70

150

a

b

c d

e

f

g

h

i

1

2 2
1

1

1

0

0

0
0

0
0

1

1
1

1

a

b

c d

e

f

g

h

i

a

b

c d

e

f

g

h

i

a

b

c d

e

f

g

h

i

a

b

c d

e

f

g

h

i

a 700 800
600500

2

3

100

300

bc

d

e
f

g h i

j

a 900 b
c

d

e

f
g h

i

j

700

750
450

30
50

250

430

a 880 b
c

d

e

f
g h

i
j

670

760

475

20

30

200

400

a 750 b
c

d

e

f
g h

i

j

520

810

550

25

37

220

422

contain e. Here, the weight of (b, c)
is 2 since it is contained in two instances of the query motif
formed by vertices {a, b, c, e} and {b, c, d, e} respectively. The
weight of some edges like (a, f) and (a, g) is 0 as they are not



contained in any induced subgraphs isomorphic to
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. If all
vertices are partitioned into two sets while preserving motif-
based communities, the minimum sum of cross-partition edge
weights is 0, as shown in Figure 1.

III. SAMPLING-BASED ESTIMATION

In this section we first present an edge-centric sampling
method called SMGP to estimate the edge weights, and then
discuss the theoretical guarantee of SMGP.

A. Edge-centric Sampling

To estimate the edge weights in G, we need to compute how
many instances of a given query motif Q contain any edge.
A straightforward way is to sample many induced subgraphs
of size |V (Q)| uniformly, check whether they are instances
of Q, and then update the edge weights if so. However,
it is not efficient because the sampled subgraphs may be
unconnected, and an extremely large number of samples are
needed for accurate estimations. Inspired by a sampling ap-
proach for estimating subgraph concentrations [14], we devise
an edge-centric sampling method SMGP. SMGP works by
uniformly picking a starting edge (v1, v2) and then sampling
the connected subgraphs expanded from the starting edge. In
what follows, we will introduce how we conduct edge-centric
sampling via a process called subgraph expansion, to compute
the subgraph sampling probabilities and finally estimate the
edge weights.

Subgraph Expansion. We perform the subgraph expansion
process by adopting a randomized procedure [14], [15], [16].
At the initial stage, we uniformly select a starting edge as
an induced subgraph of size two. Then we incrementally
expand the size of the current induced subgraph S by adding
a randomly selected vertex v in G as well as the edges that
connect v and the vertices in S. We stop the expansion process
once the size of S reaches |V (Q)|.
Subgraph Sampling Probability. Given a query motif Q and
a graph G, for each sampled subgraph of size |V (Q)| in G,
we have a corresponding order of vertices [v1, v2, ..., v|V (Q)|]
in the expansion procedure. Suppose we have a sampled
subgraph Si of size i < |V (Q)| that is formed by the ordered
vertices [v1, v2, ..., vi], then the probability of sampling the
next vertex vi+1 is:

P[vi+1|Si] =
|E(Si+1)| − |E(Si)|∑i
j=1 |Nvj | − 2|E(Si)|

(1)

As vi+1 is uniformly sampled from the neighborhood of Si,
the probability of sampling an induced subgraph S|V (Q)| is:

π(S|V (Q)|) =
1

|E(G)|

|V (Q)|−1∏
i=2

P[vi+1|Si] (2)

where 1
|E(G)| is the sampling probability of the edge (v1, v2).

Edge Weight Estimation. To this end, suppose we have
sampled θ connected and induced subgraphs I1, I2, ..., Iθ
through the above subgraph expansion process, then for any

edge e ∈ E(G), its weight can be estimated with the Horvitz-
Thompson inverse probability weighting [17] as below:

we =
1

θ

θ∑
j=1

1(e ∈ E(Ij)) · 1(Ij ' Q)

|O(Ij)| · π(Ij)
(3)

Here, 1 refers to the indicator function, |O(Ij)| refers to
the number of possible orderings of vertices that can lead to
Ij , and π(·) refers to the subgraph sampling distribution. As
long as π is supported over all possible (connected) induced
subgraphs of size |VQ| such that the expected value is the true
edge weight, the estimator (i.e., Equation 3) is unbiased. Note
that |O(Ij)| is only dependent on the query motif Q and can
be precomputed by dynamic programming.

To extend the method to directed graphs, we only need to
consider the directions of the final induced subgraphs for the
subgraph expansion process.

B. Theoretical Analysis of SMGP

Intuitively, when the number of sampled subgraphs (aka. the
sample size θ) is sufficiently large, we can get an approxima-
tion such that each estimated edge weight is close to its exact
value. In such a case, we can feed the graph with the estimated
weights to a GP kernel that produces a competitive partitioning
result, compared with the one using exact edge weights. In
this section, we will show how the estimated weights and the
partitioning quality converge to their expected values as the
sample size θ grows.

Lemma 1. The Hoeffding’s inequality [18]. Let X1, ..., Xθ be
θ independent and bounded random variables (ai ≤ Xi ≤ bi)
and X̃ = 1

θ

∑θ
i=1Xi. For any ε ≥ 0, we have

P[|X̃ − E[X̃]| ≥ ε] ≤ 2 exp(− 2θ2ε2∑θ
i=1(bi − ai)2

).

Theorem 1. Given the weights X1, ..., Xθ estimated for an
edge e where Xi =

1(e∈E(Ii))·1(Ii'Q)
|O(Ii)|·π(Ii) , the sample size θ, and

the upper-bound η of the estimated weights, then the deviation
of the average of the estimated weights of e from E[we] is
bounded with a probability increased w.r.t. θ, such that for
any ε > 0,

P[|we − E[we]| ≥ ε] ≤ 2 exp(−2θε2

η2
)

where we = 1
θ

∑θ
i=1Xi.

Proof. Since each induced subgraph of size |V (Q)| is sampled
independently, we can apply Lemma 1 to give a concentration
bound on estimating we (Equation 3) if we can bound the
value of Xi =

1(e∈E(Ii))·1(Ii'Q)
|O(Ii)|·π(Ii) . The lower-bound of Xi is

0 if the sampled induced subgraph Ii is not isomorphic to the
query motif. In order to decide the upper-bound, we calculate
the lowest possible probability of sampling an isomorphic



subgraph, and it is decided by π(·) (as defined in Equation 2)
that satisfies the following inequality:

π(S|V (Q)|) =
1

|E(G)|

|V (Q)|−1∏
i=2

|E(Si+1)| − |E(Si)|∑i
j=1 |Nvj | − 2|E(Si)|

>
1

|E(G)|
· 1∏|V (Q)|−1

i=2

∑i
j=1 |Nvj |

Clearly, π(S|V (Q)|) is lower bounded in a connected graph,
which derives that 1

π(·) is upper bounded. We use η to denote
an upper bound on 1

π(·) . Furthermore, each weight estima-
tion is independent and bounded. Based on the Hoeffding’s
inequality, Theorem 1 is deduced.

Next, we study the impact of the sample size θ on the quality
of partitions. Note that the sum of weights of all edges is fixed
as a constant. Thus, the problem of minimizing the edge-cut
weight can be transformed to the problem of maximizing the
sum of weights of non-crossing edges. Given a partitioning
plan φk, let z(φk) and z(φk) denote the sum of weights of
non-crossing edges based on our estimated edge weights and
the exact edge weights, respectively. We have the following
Lemma to establish the convergence.

Lemma 2. z(φk)→ z(φk) as θ →∞.

Proof. By Theorem 1, for any edge (u, v) ∈ E(G), when
θ → ∞, we have w(u,v) → w(u,v) where w(u,v) is the exact
weight value. Then the following holds:

z(φk) =
∑

φk(u)=φk(v)
(u,v)∈E(G)

w(u,v) →
∑

φk(u)=φk(v)
(u,v)∈E(G)

w(u,v) = z(φk) (4)

The Lemma is thus deduced.

In the next step, we analyze the error between z(φk) and
z(φk) w.r.t. the sample size θ.

Lemma 3. Let OPT be the optimal objective value for z(·)
among all partitioning plans. For a constant ε ∈ [0, 1], we
have the following inequality |z(φk)− z(φk)| ≤ ε ·OPT hold
for any partitioning plan φk with at least a probability of 1−δ,
when the sample size θ satisfies:

θ ≥
η2 log( 2δ )

2ε2OPT 2

Proof. According to Theorem 1 and Equation 4, we have

P[|z(φk)− z(φk)| ≥ ε ·OPT ] ≤ 2 exp(−2θε2OPT 2

η2
)

The Lemma can be deduced by substituting θ = η2 log( 2
δ )

2ε2OPT 2 .

Theorem 2. Given any partitioning algorithm that can
achieve an approximation ratio of α (0 < α < 1) for
maximizing the sum of weights of non-crossing edges based on
the objective function z(·), applying this algorithm to SMGP
can result in an (α− 2ε)-approximate solution with at least a
probability of 1− δ when θ ≥ η2 log( 1

δ )

2ε2OPT 2 .

Proof. Let φ∗k denote the optimal partitioning plan on the
graph with exact edge weights and z(φ∗k) = OPT . Assuming
SMGP returns a partition φk with θ samples and let φsk be the
optimal partition on the graph with estimated edge weights.
According to Lemma 3, we know that |z(φk) − z(φk)| ≤
ε · OPT holds with at least a probability of 1 − δ for all
possible partitioning plans. Subsequently, we have:

z(φk) ≥ αz(φsk) ≥ αz(φ∗k),
and z(φk) ≥ z(φk)− ε ·OPT

≥ αz(φsk)− ε ·OPT
≥ αz(φ∗k)− ε ·OPT.

Since z(φ∗k) ≥ z(φ∗k)− ε ·OPT,
then z(φk) ≥ α(1− ε)OPT − ε ·OPT

> (α− 2ε)OPT.

(5)

Thus, the theorem is established.

Algorithm 1: SMGP+
Input : Graph G, motif Q, the number of iteration t and

partitions k, a GP kernel M , the sample size θ.
Output: A partitioning plan φk.

1 π̃ ← the uniform sampling distribution of starting edges;
2 for j = 1 to t do
3 wj(·,·) ← AdaptiveSampling(G,Q, π̃, θ);
4 for each edge (u, v) ∈ E(G) do
5 wavg(u,v) ←

1
j

∑j
i=1 w

i
(u,v);

6 φk ←M(G,wavg(·,·), k);
7 π̃ ← UpdateDistribution(G,wavg(·,·), φk, π̃);
8 return φk;

IV. AN ADAPTIVE SAMPLING FRAMEWORK

While SMGP can deliver accurate partition results, it needs
to sample an excessive number of subgraphs to ensure that the
weight for each edge is estimated with a small error. For the
MGP problem, we observe that not every single edge plays a
critical role in affecting the partition results, and the samples
dedicated to these non-significant edges are largely wasted.
Motivated by this, we propose an adaptive SMGP framework,
namely SMGP+, which can dynamically adjust the sampling
distribution of the starting edge to improve the partitioning
quality while maintaining the same sample size.

A. An Overview of SMGP+

Algorithm 1 presents an overview of the SMGP+ frame-
work that works by iteratively partitioning the original graph.
In each iteration, we sample θ subgraphs according to a
sampling distribution π̃ for the starting edge (line 3). The
estimated weights for iteration j, i.e., wj(·,·), will be aggregated
with the weights estimated from previous iterations to produce
the up-to-date estimations wavg(·,·) (line 5). The weight estimator
averaged across all t iterations will be close to its expected
value with a small error as the number of iteration increases.



We will show the convergence rate of wavg(u,v) in Section IV-C.
Subsequently, a GP kernel is invoked to partition G w.r.t. the
weights wavg(·,·) and generate a partitioning plan φk (line 6).
Based on φk and wavg(·,·), we will update the sampling distri-
bution π̃ to prioritize accurate weight estimations for those
edges that could significantly affect the partitioning result. In
this way, given a fixed sample size, we can put more focus
on sampling “important” edges to enable a better partitioning
result. We will present our approach of updating the sampling
distribution π̃ in Section IV-B. Since these subgraphs are
not sampled independently, we show a theoretical guarantee
of SMGP+ by exploiting the concept of Martingale in Sec-
tion IV-C.

B. Updating the Sampling Distribution

We update the existing sampling distribution π̃ with a
normalization as below:

π̃((u, v))← π̃((u, v)) · PF[(u, v)] · NF[(u, v)] (6)

In Equation 6, we consider two factors in updating the
sampling probability for (u, v): (1) the Partition Factor
(PF[(u, v)]) and (2) the Neighborhood Factor (NF[(u, v)]).
Partition Factor. We set a higher partition factor to the
edge (u, v), if the inaccurate weight estimation of this edge
can easily change the current partitioning plan on placing
this edge. Let C(u, ϕi) denote the set of edges connecting
the vertex u to vertices in the partition ϕi. If i = φk(u),
then C(u, ϕi) contains all non-crossing edges incident on u.
Otherwise, it contains all crossing edges connecting u to
vertices in a different partition ϕi. Let |C(u, ϕi)| denote the
sum of the weight of the edges in C(u, ϕi). The following
equation measures how well u is connected to vertices in the
same partition, as compared to those in a different partition:

ξ(u, ϕi) = |C(u, ϕj)| − |C(u, ϕi)|

where j = φk(u) and i 6= j.
We assume that the underlying GP kernel is effective such

that ξ(u, ϕi) is positive. If ξ(u, ϕi) is negative, we can always
move u to ϕi and reduce the sum of weights of the crossing
edges. When ξ(u, ϕi) is relatively small or close to zero, it
is very likely that the inaccurate weight estimation of edges
in C(u, ϕi) or C(u, ϕj) leads to a negative value of ξ(u, ϕi).
Consequently, the vertex u needs to be moved from ϕj to ϕi
to reduce the edge-cut weight (i.e., to optimize for a positive
ξ(u, ϕi) and improve the partitioning objective value). The
consequence caused by inaccurate weight estimations of such
edges can potentially trigger a domino effect that changes
the entire partitioning plan. On the contrary, if ξ(u, ϕi) is
estimated as a large positive value, then the exact value of
ξ(u, ϕi) is likely positive even when the weight estimations
of involved edges are not accurate.

Example 2. Figure 2 shows an example on how the partition
factor is used to improve the partitioning quality, where we
only show a small part of the whole graph for easy illustration.
Figure 2(a) refers to the optimal partition result based on
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(a) The optimal solution.
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(b) The solution of SMGP and
SMGP+ with θ samples.
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(c) SMGP with additional θ sam-
ples.
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(d) SMGP+ in the 2nd iteration
with θ samples.

Fig. 2: An example of using the partition factor.

the exact edge weights. When we set the sample size as θ,
both SMGP and SMGP+ uniformly sample θ starting edges
for weight estimation and may produce the partition result as
shown in Figure 2(b). In this result, the sum of weights of edges
(a, b) and (b, c) is close to the sum of weights of edges (b, d)
and (b, e). The inaccurate weight estimation of these edges
with high partition factors can easily influence the following
decision: which partition should the vertex b be placed into,
such that the edge-cut weight can be reduced?

On the other hand, the sum of weights of (f, h) and
(g, h) is much smaller than that of (h, i) and (h, j). More
accurate weight estimations of these edges with low partition
factors are unlikely to change the relationship between the
sum of weights of these two pairs of edges. Thus, in the next
iteration, SMGP+ will assign (a, b), (b, c), (b, d) and (b, e)
with higher sampling probabilities to compute more accurate
weight estimations for them, and thereby produce a better
partition result, as shown in Figure 2(d). On the contrary,
SMGP still adopts the uniform sampling strategy and may fail
to improve the partitioning quality even with a larger sample
size as shown in Figure 2(c).

Motivated by the above intuition, for edges whose inaccu-
rate weight estimations have great impacts on the partitioning
result, we need to sample them as the starting edges with high
probabilities, such that the partitioning result can be stabilized
with more accurate edge weights. When we try to define the
partition factor, several aspects need to be considered:

1) For a crossing edge (u, v) where φk(u) = j, φk(v) =
i, the values of ξ(u, ϕi) and ξ(v, ϕj) are different. It
indicates that the inaccurate weight estimation for (u, v)
has different levels of impact on movements of vertices
u and v. Thus, the partition factor of (u, v) is different
when analyzing vertex u and vertex v individually. Since



we need to make sure the weight estimation of (u, v) is
accurate enough such that neither of these two vertices
needs to be moved, a larger partition factor between u
and v should be used as the final partition factor of (u, v)
(Equation 7).

2) Similarly, for a non-crossing edge (u, v) where φk(u) =
φk(v) = j, its estimated weight is involved in every
pair of ξ(u, ϕi) (1 ≤ i ≤ k, i 6= j). That means the
inaccurate estimation for (u, v) has a different influence
on which partition ϕi we should move u into. Thus,
we also consider the smallest ξ(u, ·) among all pairs
to compute the partition factor of a non-crossing edge
(u, v) (Equation 8).

By accounting for the above two aspects, we devise the
partition factor PF[(u, v)] of an edge (u, v) as follows:

PF[(u, v)] = max(PFu[(u, v)],PFv[(u, v)]) (7)

where PFu[(u, v)] and PFv[(u, v)] are defined symmetrically:

PFu[(u, v)] =

{
exp(− ξ(u,ϕi)du

+ 1), if φk(u) 6= φk(v) = i

exp(− ξmin(u)du
+ 1), otherwise

and ξmin(u) = min
φk(u)=j,1≤i≤k,i 6=j

|C(u, ϕj)| − |C(u, ϕi)| (8)

where du is the weighted degree of u.
Neighborhood Factor. It is worth mentioning that there could
be a notably higher number of motif instances discovered in
the dense region of the graph than those discovered in the
sparse region. The different number of motif instances results
in weight difference, and higher weights have a significant
impact on the partition result. An edge may appear in either
a sparse or a dense region of the graph. Hence we penalize
an edge e if it appears in a sparse region and lowers the
sampling probability. To achieve this goal, we look at the
neighborhood of an edge e = (u, v) and use the number of
common neighbors of u and v to indicate the ‘density’ of the
neighborhood (i.e., |Nu∪Nv|). Additionally, it is possible that
the number of common neighbors of high-degree nodes is sig-
nificantly larger than that of the remaining nodes in power-law
graphs. To ensure that each edge is assigned with a reasonable
sampling probability and outliers are penalized, we apply the
log function in NF[(u,v)] as: NF[(u,v)] = log |Nu ∪Nv|.

C. Theoretical Analysis

In contrast to the theoretical analysis of SMGP (in Sec-
tion III-B), the samples in SMGP+ are not independently
generated due to the adaptive sampling strategy devised. Thus,
the Hoeffdding inequality is inapplicable to SMGP+. Instead,
we propose to employ the martingale [13], a classical statistic
tool, to restore the theoretical guarantee of SMGP+.

Lemma 4. Martingale [13]. A sequence of random variables
Z0, Z1, ..., Zt (possibly correlated) is a martingale if the
following conditions hold for all 0 ≤ i ≤ t: (1) E[|Zi|] <∞;
(2) E[Zi+1|Z1, Z2, ..., Zi] = Zi.

Lemma 5. A sequence of random variables R1, R2, ..., Rt is a
martingale where Ri =

∑i
j=1(w

j
(u,v)−w(u,v)) and 1 ≤ i ≤ t.

Proof. In SMGP+, we iteratively update the weight estimation
wi(u,v). To connect wi(u,v) to martingales, we have:

w(u,v) =
1

t
E[

t∑
i=1

wi(u,v)] (9)

Furthermore, only the starting edge’s sampling distributions
π̃1, π̃2, ..., π̃t in each iteration are correlated. Given the query
motif Q, π̃i(1 ≤ i ≤ t) is supported over all edges and thus
unbiased, and the subgraphs of size |V (G)| expanded from
the starting edges are sampled uniformly. Thereby, for any
i ∈ [1, t], we have

E[wi(u,v)|w
1
(u,v), w

2
(u,v), ..., w

i−1
(u,v)] = E[wi(u,v)] = w(u,v).

Let Ri =
∑i
j=1(w

j
(u,v) − w(u,v)), we have E[Ri] = 0 and

E[Ri|R1, R2, ..., Ri−1] = Ri−1.

Therefore, R1, ..., Rt is a martingale based on Lemma 4.

Lemma 6. The martingale R1, ..., Rt satisfies the three
properties: (1) |R1| < η, (2) |Ri − Ri−1| < η (2 ≤
i ≤ t) and (3) V ar[R1] +

∑t
i=2 V ar[Ri|R1, R2, ..., Ri−1] =∑t

i=1 V ar[Ri] < tη2.

Proof. Recall the definition of Ri, we can show that
R1, R2, ..., Rh have the properties above by showing: |wi(u,v)|
can be bounded by the same constant and the (conditional)
variance of each wi(u,v) can be bounded as well.

Based on our analysis in Section III, the lower-bound of
each wi(u,v) is 0 and we can find the upper-bound for each
wi(u,v) as η. Thus, we have |R1| < η and |Ri − Ri−1| <
η (2 ≤ i ≤ t) by the definition of Ri. This in turn de-
rives the following: V ar[R1]+

∑t
i=2 V ar[Ri|R1, ..., Ri−1] =∑t

i=1 V ar[Ri] < tη2

Lemma 7. Concentration bound [13]. Let Z1, Z2, ..., Zt be
a martingale which satisfies the properties that (1) |Z1| ≤
a, (2) |Zi − Zi−1| ≤ a (2 ≤ i ≤ t), and (3) V ar[Z1] +∑t
i=2 V ar[Zi|Z1, Z2, ..., Zi−1] ≤ b, where V ar[·] refers to

the variance of a random variable. Then for any β,

P(Zi − E[Zi] ≥ β) ≤ exp(− β2

2
3aβ + 2b

).

Theorem 3. Given the edge weights w1
(u,v), w

2
(u,v), ..., w

t
(u,v)

computed in t iterations based on the query motif Q, and the
maximum possible estimated edge weight η, the deviation of
the averaged edge weight of (u, v) from E[w(u,v)] is bounded
with a probability increased with t, such that, for any ε > 0,

P

[∣∣∣∣∣1t
t∑
i=1

wi(u,v) − E[w(u,v)]

∣∣∣∣∣ ≥ ε
]
≤ exp(− ε2

2
3εη + 2η2

t).



Proof. Given the concentration bound of martingale
(Lemma 7), Ri =

∑i
j=1(w

j
(u,v) − w(u,v)) and E[Ri] = 0, for

any ε > 0, we have

P

[
t∑
i=1

wi(u,v) − tE[w(u,v)

]
≥ εt] ≤ exp(− ε2t2

2
3εtη + 2tη2

).

Similarly, by applying the concentration bound on the
martingale −R1,−R2,...,−Rt, we have

P

[
t∑
i=1

wi(u,v) − tE[w(u,v)

]
≤ −εt] ≤ exp(− ε2t2

2
3εtη + 2tη2

).

Thus, this theorem is deduced.

By following the arguments made in Lemmas 2-3 and The-
orem 2 for SMGP, Theorem 3 naturally leads to Theorem 4.

Given a partitioning plan φk, let z(φk) and z(φk) denote the
weighted sum of non-crossing edges based on the edge weights
estimate by SMGP+ and the ground-truth edge weights re-
spectively. We have the following Lemma to establish the
convergence.

Lemma 8. z(φk)→ z(φk) as k →∞.

Proof. We can deduce this Lemma based on Theorem 3 and
similar argument made in Lemma 2.

Lemma 9. Let OPT be the optimal objective value for z(·)
among all partitioning plans. For a constant 0 ≤ ε ≤ 1, we
have the inequality |z(φk) − z(φk)| ≤ ε · OPT which holds
for any partitioning plan φk with at least 1 − δ probability
when the number of iteration t ≥ ( 2

3 εη+2η2) log( 1
δ )

ε2OPT 2 .

Proof. According to Theorem 3 and Lemma 8, we have

P[|z(φk)− z(φk)| ≥ ε ·OPT ] ≤ exp(− ε
2tOPT 2

2
3εη + 2η2

).

We can deduce the Lemma with δ = exp(− ε
2tOPT 2

2
3 εη+2η2

).

Theorem 4. Given any α-approximate (0 < α < 1) parti-
tioning algorithm for maximizing the weighted sum of non-
crossing edges defined based on the objective function z(·),
applying this partitioning algorithm to SMGP+ can result in
an (α−2ε)-approximate solution with at least 1−δ probability
when t ≥ ( 2

3 εη+2η2) log( 1
δ )

ε2OPT 2 .

Proof. Let φ∗k denote the optimal partitioning plan and
z(φ∗k) = OPT . Assuming Algorithm 1 returns a partitioning
plan φk with t iterations and let φsk be the optimal partitioning
plan on the graph with sampled edge weights. According to
Lemma 9, we know that |z(φk) − z(φk)| ≤ ε · OPT holds
with at least 1 − δ probability for all possible partitioning
plans. Subsequently, we have:

z(φk) ≥ αz(φsk) ≥ αz(φ∗k),
and z(φk) ≥ αz(φ∗k)− ε ·OPT.

Since z(φ∗k) ≥ z(φ∗k)− ε ·OPT,
then z(φk) > (α− 2ε)OPT.

(10)

Thus, Theorem 4 is established.

TABLE II: The statistics of datasets

Datasets Nodes Edges Average Degree
Epinion 75,879 405,740 10.69
Gowalla 196,591 950,327 9.66
Flixster 2,523,386 7,918,801 6.28

Digg 279,630 1,548,126 11.07
Dogster 426,820 8,543,549 40.03
Catster 149,700 5,448,197 72.79
Orkut 3,072,441 117,184,899 76.28

TABLE III: Statistics of EMGP

Dataset Statistics Query Motif
Q1 Q2 Q3 Q4 Q5

Epinion Time (s) 4.5E+02 3.3E+02 9.9E+03 2.6E+04 4.1E+04
Count 7.8E+07 1.7E+07 1.1E+09 1.7E+09 5.7E+09

Gowalla Time (s) 5.0E+02 3.0E+02 1.6E+04 3.2E+04 7.2E+04
Count 8.6E+07 1.5E+07 1.1E+09 5.4E+09 7.3E+09

Flixster Time (s) 1.6E+03 1.8E+03 5.5E+04 1.1E+05 1.8E+05
Count 2.3E+08 9.6E+07 2.5E+09 5.2E+09 8.6E+09

Digg Time (s) 1.2E+04 2.3E+04
Count 2.3E+09 1.7E+09

Dogster Time (s) 1.1E+05 2.9E+05
Count 3.5E+10 1.2E+10

Catster Time (s) 5.4E+05
Count 2.0E+11

Orkut Time (s) 2.8E+05
Count 4.8E+10

TABLE IV: Average partitioning time across motifs (seconds).
Graph Kernel Epinion Gowalla Flixster Digg Dogster Catster Orkut

Fennel 2 7 50 9 30 16 470
MAPPR 2 5 40 7 29 20 497

V. EXPERIMENT

In this section, we conduct experiments over seven real-
world datasets to compare our sampling-based approaches
with the exact MGP method. Please refer to Appendix for
more experiments.
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(a) Q1
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(e) Q5

Fig. 3: Query motifs used in the experiments.

Query motifs. We use five commonly used motifs in the
experiment discussion (Figure 3). As reported in [19], [20],
[21], [22], these motifs are discovered in many real-wold
networks across different categories. Our proposed methods
can support more complex motifs but we present the above
queries which the exact method can handle.
Datasets. Seven real-world datasets, i.e., Gowalla, YouTube,
Flixster, Digg, Dogster, Catster and Orkut [23], are used. They
range from small-scale to large-scale and from sparse to dense
graphs. Table II summarizes the statistics of each dataset.
Methods for comparison. Since this is the first work to
solve the MGP problem without employing exact edge weight
computations, we compare our sampling methods SMGP and
SMGP+ with EMGP [24], the state-of-the-art exact motif
counting method. We obtain the exact statistics with the cpu
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Fig. 4: Effectiveness comparison on Epinion (1st row), Gowalla (2nd row) and Flixster (3rd row) with Fennel as the kernel.

version of EMGP provided by the authors. The exact motif
count and runtime of EMGP are reported in Table III. The
counting statistics of some motifs on large dense graphs are
not reported as they cannot be computed by EMGP within a
week.

Underlying GP kernels and evaluation metrics. To show
that our methods are robust to work with different kernels and
objective functions for MGP, we use two widely-adopted GP
kernels with different evaluation metrics for experiments:

• Fennel [25]: it is a streaming GP kernel aiming for
optimal k-graph partitioning, which admits an equivalent
formulation of maximizing the modularity scores.

• MAPPR [6]: it aims to compute the partitioning results
with the minimum conductance, by sweeping over a
motif-based personalized PageRank vector of vertices.

Environments. We conduct all experiments on a Linux server
with Intel Xeon E5 (2.60 GHz) CPUs and 512 GB RAM. All
codes are implemented in Python and we use a state-of-the-art
method [24] for the exact edge weight computation. For a fair
comparison, all algorithms are executed with a single thread.
Parameter settings for GP kernels We set the number of
partitions k = 10 for Fennel and set the load threshold
parameter of Fennel as 5. Since MAPPR is a local clustering
method, we follow the common standard [6] to set k = 2 for
MAPPR. For all other parameters of these partitioning methods,
we adopt the default setting as reported in the original papers.

Parameter settings for our methods. There are two important
parameters in our methods: the number of iterations and

the sampling size for each iteration. We run 20 iterations
to study the convergence of SMGP and SMGP+. SMGP+
needs to invoke the GP kernel for each iteration to adjust the
sampling distribution whereas SMGP does not. Note that the
theoretical sample size could be large. We hence employ a
heuristic method to determine the stopping sample criterion
for SMGP+. We use multiple batches of samples for every
iteration and the size of each batch will be illustrated in the
next paragraph. We stop the sampling of the current iteration
when the estimated difference ratio (i.e., |bci − bci−1|/bci ) is
below a threshold 0.1 for three consecutive batches, where bci
denotes the estimated motif count of the first i batches. For a
fair comparison, we assign SMGP with the same sample size
as SMGP+ in each iteration.

Sampling batch size. For each test case, we sweep over
different choices of batch sizes {2, 4, 6, 8} × {104, 105, 106}
and choose the smallest one that leads to high-quality results
when SMGP+ converges. The convergence of SMGP+ will
be further introduced in Section V-B.

A. Effectiveness Evaluation

When evaluating the quality of the partitioning results
respectively produced by EMGP, SMGP and SMGP+, we
adopt the evaluation metric corresponding to the objective
function of the underlying GP kernel.

Modularity evaluation with Fennel. Figure 4 shows the
modularity achieved by SMGP and SMGP+ on Epinion,
Gowalla and Flixster, with Fennel as the GP kernel. A
higher modularity score indicates a better partitioning result.
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Fig. 5: Effectiveness comparison on Epinion (1st row), Gowalla (2nd row) and Flixster (3rd row) with MAPPR as the kernel.

As the iteration increases, the modularity score achieved by
SMGP+ grows and can be very competitive with EMGP when
SMGP+ converges. In contrast, the modularity score achieved
by SMGP generally grows much slower and in many cases,
SMGP produces inferior results when it finishes all iterations
(e.g., Figure 4(b),(l),(m) and (n)).

Conductance evaluation with MAPPR. Figure 5 compares
the conductance achieved by different weight estimation
methods, using MAPPR as the GP kernel. A lower conduc-
tance score indicates a better partitioning result. SMGP and
SMGP+ show better performance and faster convergence here
than using Fennel as the GP kernel in some cases (e.g.,
on Gowalla with motif Q5). We suspect that MAPPR is less
sensitive to the inaccurate edge weight estimation and thus
smaller sample sizes are needed to achieve promising results.
It is interesting to see that the conductance achieved by
EMGP on different motifs varies significantly, which indicates
the importance of choosing appropriate motifs for high-order
social network analysis. Our methods are good alternatives to
efficiently evaluate the potential of motifs w.r.t. the conduc-
tance without employing exact edge weight computations.

The performance difference of the query motifs in the same
graph can be explained by but not limited to the following:
(1) The number of motif instances are different. If the motif
4-clique has more instances than other motifs of size 4 in the
graph, it will be easier to sample 4-clique than any other motifs
of size 4. (2) The distributions of motifs could be different.
For instance, it may be easier to find a triangle subgraph in
the neighborhood of a node with low degrees than finding a
5-clique. Thus, the accuracy of estimation is data dependent.

B. Efficiency Evaluation
Figure 6 compares the runtime of SMGP+ and EMGP

with different GP kernels. We do not include SMGP in
this comparison since SMGP may not even produce a good
partitioning result after the maximum iteration, as shown
in Section V-A. On the other hand, SMGP+ can quickly
converge to EMGP in a few iterations. For a fair comparison,
we measure the runtime of SMGP+ when it converges.
The convergence of SMGP+. It is determined based on a
stopping criterion of how many iterations SMGP+ actually
needs to return promising and stable solutions. Suppose Oi
is the objective score returned by the respective GP kernel at
iteration i. We stop SMGP+ once the error difference (i.e.,
|Oi −Oi−1|) is below 0.01 for two consecutive iterations.

Figure 6 compares the runtime of SMGP+ and EMGP.
In most cases, SMGP+ notably outperforms EMGP and can
achieve up to two orders of magnitude speedup compared to
EMGP (e.g., Q4 and Q5 in Figure 6(b)). The computational
cost of EMGP is very sensitive to the pattern of the input
motif. In contrast, the performance of SMGP+ is much more
stable as it can avoid expensive weight estimations for edges
that are not critical to produce high-quality partitioning results.
The results confirm that SMGP+ can help existing MGP
methods choose good motifs for high-order network analysis
without costly trials via exact edge weight computations.

Let |OSMGP+−OEMGP|
OEMGP

be the relative error ratio where OSMGP+
is the conductance score when SMGP+ converges and OEMGP
is the exact conductance score achieved by EMGP with exact
edge weights. On Epinion, the average error ratio is 5% and
the speedup ranges from 3x to 590x. On Gowalla, the average
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Fig. 6: Runtime comparison on Epinion (1st row), Gowalla
(2nd row) and Flixster (3rd row).
error ratio is 5% and the speedup ranges from 0.95x to 196x.
On Flixster, the average error ratio is 6% and the speedup
ranges from 2x to 147x. The results show that SMGP+
achieves a good trade-off between efficiency and accuracy.

C. Scalability Evaluation on Dense Datasets

As shown in Table III, EMGP is only able to compute the
exact edge weights for all denser datasets (i.e., Digg, Dogster,
Catster and Orkut) with motif Q1. Thus, we present the
experiments on these datasets with motif Q1 to demonstrate
the scalability of SMGP+. Figure 7 and Figure 8 compare
the effectiveness of SMGP and SMGP+ with motif Q1. On
the smaller datasets Digg, Dogster and Catster, SMGP is
very competitive with SMGP+ but is notably outperformed
by SMGP+ on the large dataset Orkut, which is consistent
with our observation made in Section V-A. As shown in this

TABLE V: The speedup of SMGP+ with different k.

Dataset Motif k=10 k=20 k=30 k=40 k=50

Epinion Q3 140x 136x 132x 125x 117x
Q5 517x 507x 492x 475x 449x

Gowalla Q3 40x 38x 35x 30x 25x
Q5 148x 140x 133x 125x 114x

Flixster Q3 65x 52x 42x 37x 30x
Q5 176x 167x 153x 142x 133x

TABLE VI: The modularity scores with different k.

Dataset Motif k=10 k=50
EMGP SMGP+ EMGP SMGP+

Epinion Q3 0.326 0.325 0.323 0.321
Q5 0.369 0.365 0.358 0.352

Gowalla Q3 0.346 0.341 0.330 0.328
Q5 0.343 0.332 0.298 0.289

Flixster Q3 0.442 0.437 0.436 0.428
Q5 0.355 0.343 0.360 0.352

Section and Section V-A, SMGP+ performs notably better
than SMGP which may not produce satisfying results after
the maximum iteration in many cases. Thus, we will focus on
analyzing the scalability of SMGP+ on these datasets.

Figure 9 shows the speedup per 1% relative error achieved
by SMGP+ in each iteration. The speedup is the running
time of EMGP divided by the cumulative running time of
SMGP+. Unless specified otherwise, we use the speedup per
1% error ratio and the speedup per error ratio interchangeably.
We have the following observations: (1) Compared to EMGP,
SMGP+ can achieve up to three orders of magnitude speedup
per error ratio while maintaining high-quality solutions (e.g.,
Figure 9(b)). That demonstrates the effectiveness and scalabil-
ity of SMGP+ on dense datasets. (2) Greater exact objective
scores lead to a larger speedup per error ratio. A small error
difference |OSMGP+ − OEMGP| with a greater exact objective
score will lead to a smaller relative error ratio than the one
with a lower exact objective score. Thus, in Figure 9, the
speedup per error ratio achieved by MAPPR is generally greater
than Fennel on Digg, Dogster and Catster. (3) Smaller exact
objective scores lead to a more stable trend of speedup per er-
ror ratio. Thus, EMGP demonstrates more stable performance
with Fennel on Digg, Dogster and Catster, and shows a more
stable trend with MAPPR as the kernel on Orkut.

D. Ablation study on k

We study the impact of k with Fennel as the graph kernel,
since MAPPR is a local partitioning method with k fixed as
2. We choose two motifs Q2 and Q5 for experiments as other
query motifs show similar trends. Table V and Table VI shows
the speedup of SMGP+ against EMGP and their modularity
scores achieved respectively. The speedup decreases as k
increases because of the growing cost of partition factor com-
putation of crossing edges, the number of which increases as k
increases. The modularity scores achieved by SMGP+ is very
competitive with EMGP as k increases, which demonstrates
the effectiveness of our solution.
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Fig. 7: Effectiveness comparison with Fennel as the kernel and Q1 as the motif.
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Fig. 8: Effectiveness comparison with MAPPR as the kernel and Q1 as the motif.
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Fig. 9: Speedup per 1% error achieved by SMGP+ in each iteration.

VI. RELATED WORK

Graphlet Computation is a closely related field to motif
analysis. Given a data graph G and a connected motif graph
Q, graphlet count is the number of induced sub-graphs on G
that are isomorphic to Q. Computing the exact graphlet count
is computationally intensive [26], [27], [28] since determining
whether G contains a subgraph that is isomorphic to Q is
NP-complete [12]. Thus, many sampling-based techniques
are proposed. Monte Carlo based methods are shown to be
very successful in accurately estimating the graphlet count
with guaranteed high probabilities [29], [30], [14]. In [30],
a random walk method is proposed to estimate the 3-vertex
graphlet count so as to analyze the clustering coefficient of
social networks. To improve upon prior work, the authors in
[31], [32] generate statistics of graphlet count on high order
graphs. Paramonov et al. [16] propose a new Monte Carlo
algorithm, called lifting, for graphlet count computation. The
aforementioned solutions lay the theoretical foundation of the
sampling strategy in this work.
Graph Partitioning is a fundamental problem in graph the-

ory that has wide applications in community detection [33],
distributed computing and image processing [34]. Conduc-
tance [11] and modularity [10] are two popular metrics to
evaluate the partition quality for community detection. Given
a connected graph G, finding a bisection with the minimum
conductance [35] or the maximum modularity [36] is NP-hard.
Moreover, many practical requirements for graph partition
make the problem even more intricate. For example, the
problem of balanced k-way graph partition with minimum
ratio-cut is proven to be NP-hard as well [34]. As such, there
is a long line of efforts aiming to develop efficient k-way
partition algorithms that can achieve good empirical results
and easy-to-adjust optimization objectives [37], [38], [25].

The aforementioned existing studies focus on analyzing
only simple edges across the partitions and designing opti-
mization algorithms accordingly. Recently, it has been shown
that high-order connected subgraphs, known as network mo-
tifs, can provide more insights to understand fundamental
graph structures and behaviors of many complex systems [4],
[6], [7]. This finding drives a surge in developing meth-



ods for motif-based graph partitioning [6], [8], [9]. Existing
motif-based partition methods mainly have two drawbacks.
First, they only focus on the conductance metric while it
is not straightforward to extend these solutions to handle
more requirements raised by varying applications in reality,
e.g., the modularity-based graph partitioning offered by many
graph partitioning libraries [39], [10]. Second, they have to
compute the entire motif adjacency matrix by invoking existing
algorithms on graphlet computation, which is computationally
expensive as mentioned in Section I. To mitigate these issues,
we propose an adaptive sampling framework to estimate edge
weights, and our framework is robust to the choice of parti-
tioning objectives (i.e., conductance and modularity) to cater
for different application needs, as shown in the experiments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied how to efficiently estimate motif-
based edge weights for the motif-based partitioning problem
(MGP) for the first time. Our proposed methods are able to
effectively estimate the potential of motifs w.r.t. the conduc-
tance and modularity for the motif-based partitioning, and can
help users quickly make decisions on the choice of motifs. We
also estimate the potential of motifs individually, leaving much
room for improvement when there are many query motifs. It
will be interesting if we can use the estimation of one motif
to accurately indicate how other similar motifs will behave
when used as the query motifs. Besides, existing studies
including this work all require a motif as input. However, it
is difficult for users without knowledge on the input graphs
and graph patterns to select the query motif. Thus, another
future direction is how to automatically compute motifs with
which the underlying GP kernel is able to produce high-quality
partitioning results.
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APPENDIX

In this section, we will show more experimental results on
more motifs.
Experimental results on the triangle motifs. We include
another large dataset Sina [40] for experiments. Sina has
1,787,443 nodes, 355,095,815 edges and is three times greater
w.r.t. edge size and five times denser than the current largest
dataset Orkut. Table VII and Table VIII compares the effec-
tivenss and efficiency of EMGP and SMGP+ respectively. The
partitioning quality and efficiency of SMGP+ is very compet-
itive with EMGP in many cases (e.g., on Digg, Catster and
Sina) and SMGP+ can even outperform EMGP in terms of the
efficiency on Catster. Computing the exact triangle count can
be efficiently implemented with specialized algorithms [41],
[42], [43], [44] and thus the need of sampling is not that
critical. However, there still lacks of efficient exact algorithms
for general motifs and many of these motifs have been shown
to be useful and effective for motif-based clustering [45], [46],
[47], which is the main focus of our work.
Experimental results on motifs of size 6. We add the motif
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�� �� �� ��, which is reported to be a motif with very high statistical

significance across datasets of different disciplinary [19]. Here,
the statistical significance refers to z-sore [47] and a motif
with a large z-score is highly overrepresented in the original
network as compared to randomized ones. We only report the
results on Epinion and Gowalla as EMGP fails to compute the

TABLE VIII: Performance w.r.t. efficiency on triangle motif.

Dataset
Running time (s)

with Fennel
Running time (s)

with MAPPR
EMGP SMGP+ EMGP SMGP+

Epinion 10 24 10 27
Gowalla 19 73 17 64
Flixster 110 687 100 344

Digg 62 89 60 78
Dogster 296 321 295 529
Catster 531 181 535 297
Orkut 3123 8061 3150 8346
Sina 22290 24878 22893 29272

TABLE IX: Experimental results on motif
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Dataset Kernel Speedup
of SMGP+

Score
EMGP SMGP+

Epinion Fennel 5640x 0.411 0.403
MAPPR 4980x 0.484 0.506

Gowalla Fennel 2924x 0.418 0.407
MAPPR 2651x 0.463 0.502

edge weights on other datasets within two months. Table IX
compares the performance of EMGP and SMGP+ when it con-
verges. SMGP+ is able to achieve three orders of magnitude
speedup while producing high-quality results compared with
EMGP.


