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Abstract—Detecting anomalous trajectory has become an im-
portant and fundamental concern in many real-world applica-
tions. However, most of the existing studies 1) cannot handle the
complexity and variety of trajectory data and 2) do not support
efficient anomaly detection in an online manner. To this end,
we propose a novel model, namely Gaussian Mixture Variational
Sequence AutoEncoder (GM-VSAE), to tackle these challenges.
Our GM-VSAE model is able to (1) capture complex sequential
information enclosed in trajectories, (2) discover different types
of normal routes from trajectories and represent them in a
continuous latent space, and (3) support efficient online detection
via trajectory generation. Our experiments on two real-world
datasets demonstrate that GM-VSAE is more effective than the
state-of-the-art baselines and is efficient for online anomalous
trajectory detection.

I. INTRODUCTION

With the proliferation of mobile devices and sensor tech-
nologies (e.g., GPS), a huge amount of location traces, i.e., tra-
jectories, are being generated at an unprecedented speed [1]–
[5]. For example, tens of thousand of taxis travel in a modern
city everyday, generating massive volumes of trajectories.
These trajectories contain rich information about the mobility
of people, vehicles, goods and services. With the availability of
large-scale trajectory data, automatically detecting anomalous
trajectories has become a critical concern in many real-world
scenarios. For example, many tourists are victims of taxi
driving frauds, i.e., the taxi drivers take unnecessary detours
to overcharge the passengers.

Intuitively, a trajectory is considered as anomalous if it does
not follow the normal routes of a specific travel itinerary
(i.e., from a source S to a destination D) [6], [7], where
a route represents the path taken by a trajectory in the real
world. Figure 1 shows two examples. Suppose we have a
set of trajectories between a source S1 and a destination D1,
and most of them follow two routes r1 (purple line) and r2
(blue line), respectively. We can see that the trajectory T1
(red dashed line) is an anomaly because it does not follow
the normal routes r1 and r2. Another case shown in Figure
1 is that the normal trajectories between S2 and D2 usually
follow r3 and r4 (solid lines), while an anomalous trajectory
T2 (red dashed line) switches its route from r3 to r4, i.e.,
it does not follow r3 or r4 completely. This may indicate an
unusual condition (e.g., road construction, car accident) on the
sub-route r′3.
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Fig. 1. Examples of anomalous trajectory detection.

However, detecting such anomalous trajectories is non-
trivial due to the following two challenges:
- Discovering normal routes. The key of trajectory anomaly

detection is to effectively discover and represent the normal
routes of trajectories. This is challenging because the normal
routes of trajectories may vary across different places due
to the complexity of transportation systems, and thus are
difficult to be predefined and represented. Also, the sequen-
tial correlation between different segments of a normal route
should also be considered, as it is imporatnt for detecting
route-switching anomalies as shown in Figure 1.

- Efficient online detection. To allow actions to be promptly
taken when anomalies occur, it is more desirable to support
efficient online detection of anomalous trajectories, i.e.,
updating the anomaly score of a trajectory while it is being
generated sequentially. However, it is challenging because
trajectories are often generated at a very high speed and in
a massive scale. For example, 790 million GPS points of
taxi trajectories were generated in Beijing in a period of 3
months [8], [9].
In recent years, anomalous trajectory detection has attracted

extensive research attention and various methods have been
proposed [6], [7], [10]–[14]. However, none of them solves
the above two challenges simultaneously. In particular, most
of the previous studies [6], [10]–[14] use hand-crafted features
that usually fail at discovering normal routes of trajecto-
ries. Their heuristic definitions of “normal routes” cannot
handle the variety, complexity and sequential correlation of
the routes traveled by real-world trajectories. Worse still,
there is very few research work on tackling the challenge of
online detection. Chen et al. [10] are the first to study the
problem of online anomalous trajectory detection. However,
their proposed method needs to refer to the existing trajectories



when updating the anomaly score for a trajectory being
generated, which is very inefficient. Wu et al. [7] also try to
detect potential anomalies with partial observations. However,
their method needs to complete a partial trajectory with the
shortest path algorithm before the detection, which increases
the computational cost significantly and cannot support “on-
the-fly” online detection.

In this paper, we propose a novel solution for online
anomaly detection of trajectories based on a deep generative
model, namely Gaussian Mixture Variational Sequence Au-
toEncoder (GM-VSAE). GM-VSAE consists of a route infer-
ence network and a route-guided generative network, which
are designed to handle the two aforementioned challenges,
respectively.

To address the challenge of discovering normal routes, we
propose an inference network that employs a recurrent neural
network (RNN) to encode the complex sequential information
underlying the trajectories, and represent the route of each
trajectory as a vector in a continuous latent space. Meanwhile,
a Gaussian mixture model is jointly learned to model the prob-
ability distribution of routes represented in the latent space.
The distribution characterizes the probability of being normal
of all the routes of trajectories. We also reveal that different
Gaussian components can be interpreted as different types
of routes, such as streets in downtown areas and highways
that connect distant locations. As a result, in the latent space,
routes that are close to the center of a Gaussian component
are more likely to be normal routes, because they have higher
probability to be traveled.

To address the challenge of efficient online detection, we
design a novel detection-via-generation scheme using the gen-
erative network. The intuition is that the anomalous trajectories
do not follow normal routes, and thus cannot be well-generated
from normal routes using the generative network. Therefore,
we detect a trajectory by computing its likelihood of being
generated from normal routes, where the likelihood can be
computed online and updated in O(1) time. Nevertheless, the
time cost of trajectory generation using GM-VSAE would
increase by a factor of the number of components in the
Gaussian mixture distribution. To this end, we further propose
an approximate posterior inference method that selects only
one component from the mixture distribution to generate and
detect a trajectory, which significantly reduces the time cost
of GM-VSAE. By doing this, the proposed detection-via-
generation scheme enables efficient online anomaly detection.

Overall, our contributions can be summarized as follows:
• We develop a deep generative model GM-VSAE, which

is powerful at capturing the sequential information of
trajectories and represent their routes in a continuous latent
space. We jointly use a Gaussian mixture distribution to
model the route representations, which allow us to dis-
cover different types of normal routes to support effective
anomalous trajectory detection.

• We propose a novel paradigm, detection-via-generation,
for anomalous trajectory detection using GM-VSAE. To
the best of our knowledge, we are the first to use the

generation scheme to detect anomalous trajectories, which
can be computed online and updated in O(1) time. In
addition, we propose an approximate posterior inference
method that largely reduces the time cost of GM-VSAE
and enables a more efficient online detection.

• We design an all-around evaluation procedure on two
large-scale real-world trajectory datasets. We conduct ex-
tensive experiments on detecting anomalous trajectories
with both partial and complete observations of the tra-
jectories. The results show that our proposed GM-VSAE
model is more effective than the state-of-the-art baselines
and is efficient for online detection.

II. RELATED WORK

A. Trajectory Anomaly Detection

We divide the existing studies of anomalous trajectory
detection into two categories: metric-based methods and
learning-based methods. The first category is usually based
on hand-crafted features and contains two steps: 1) defin-
ing “normal routes” with representative trajectories and 2)
comparing a target trajectory with representative trajectories
based on distance or density metrics. For example, an early
study [11] propose to detect anomalous trajectory segments
via computing the distance of each segment of the target
trajectory to other trajectories. Zhang et al. [6] propose to
detect trajectory anomalies by checking how much a trajectory
can be isolated from reference trajectories with the same
itinerary. This method is further extended by considering the
order of the locations in a trajectory [10]. Lv et al. [14] and
Zhu et al. [12] both propose new edit distance metrics for
trajectory comparison, which are applied for mining normal
patterns. In addition, Ge et al. [15] try to combine distance and
density metrics to detect taxi frauds. However, this category of
methods have two drawbacks. Firstly, their heuristic definitions
of representative trajectories are usually hand-crafted with
many predefined parameters, such as the frequency or density
thresholds of being “representative”. As trajectories between
different places are usually very different, those definitions
might only be effective for several scenarios but fail for many
other situations. Secondly, the trajectory comparison is usually
time-consuming and cannot support efficient online detection.

As machine learning techniques, especially sequence model-
ing methods, are widely applied for modeling trajectories [16]–
[22], some studies also propose learning-based methods for
anomalous trajectory detection. Wu et al. [7] leveraged a
probabilistic model that learns to detect anomalies for both
the whole trajectories and partial trajectories. However, the
linearity of the model makes it hard to capture complex
information behind the data. Also, it does not take sequential
information of trajectories into consideration. Another recent
proposal [23] develops a supervised model with recurrent
neural network (RNN) for anomalous trajectory detection.
However, the model requires labeled data that is usually
unavailable in real applications. Recently, Gray et al. [24]
propose an adversarial learning method for anomalous tra-
jectory detection. Nevertheless, their method cannot handle



trajectories with variable lengths. Moreover, it is not suitable
for online detection of anomalous trajectories. These limit its
application to real-world scenarios. Other studies [25]–[27]
on other types of anomalous trajectories, such as detecting
visually and temporally anomalous trajectories, which propose
totally different solutions, will not be discussed further.

B. Anomaly Detection with Deep Representation Learning

Due to the powerful capacity of extracting complex infor-
mation from large-scale data, many deep learning methods
have been applied to the problem of anomaly detection [28]–
[31]. Most of them leverage autoencoder (AE) to learn the
latent features of data and compute anomaly scores using
reconstruction (i.e., decoding) error. However, conventional
autoencoders are both ineffective and inefficient for online
anomalous trajectory detection. First, they lack the means
of mining useful information about trajectory anomalousness
in the latent embedding space, i.e., they may only embed
trajectories in a low-dimensional space, without exploring
which part in the latent space represents normal and which
part stands for anomalous. Second, as a new GPS point
of a trajectory comes, it needs to re-encode and re-decode
the whole trajectory to update the anomaly score, and thus
is inefficient for online detection. Our GM-VSAE model is
different from conventional autoencoders in two-fold. First,
GM-VSAE can characterize and memorize different types
of normal routes using the latent Gaussian components in
the embedding space. Second, we can detect a trajectory by
generating it from the normal routes in an online manner,
which saves the time cost of the encoding step (i.e., route
inference step) and can support efficient online detection.

III. PROBLEM FORMULATION

A. Problem Definition

A trajectory is defined as a sequence of chronologically
ordered points P = {p1 → p2 → ...→ pn}, where each point
pi is represented by GPS coordinates. Intuitively, a trajectory
can be considered as a representative (i.e., sample) of a route,
which represents the continuous path in the physical world the
trajectory follows.

As illustrated in Figure 1, there usually exist normal routes
within a specific travel itinerary, which have relatively high
probability to be traveled by trajectories (e.g., r1 and r2
between S1 and D1 in Figure 1). Based on this, we can
intuitively consider those trajectories that do not follow those
normal routes as anomalous trajectories, such as T1 and T2
in Figure 1.

More formally, we formulate these intuitions using proba-
bilities as follows:
• We define the probability of a route r being traveled by

trajectories as p(r). Higher p(r) means r is more likely
to be a normal route.

• We specify the probability of a trajectory T following a
normal route (denoted as r∗) as p(T |r∗). Lower p(T |r∗)
means T is more likely to be anomalous.

Next, we follow the previous studies [6], [17] to evenly
partition a geographical space into discrete grids (denoted as
G) and map the GPS coordinates to the grids. By doing this, a
trajectory can be represented by a sequence of grid tokens,
i.e., T = {t1 → t2 → ... → tn}. Other methods such
as map matching [32] to tokenize GPS coordinates is also
applicable [7]. We represent the source and the destination
of a trajectory T as ST = t1 and DT = tn. Note that
ST and DT are both given before a trajectory T starts to
be recorded [6]. Finally, we formulate the problem of online
anomalous trajectory detection as:

Definition 1 (Online Anomalous Trajectory Detection):
Given an ongoing trajectory T being generated, its source
ST and destination DT , the purpose of Online Anomalous
Trajectory Detection problem is to 1) discover the normal
routes between ST and DT and, 2) compute and update the
probability of T following the normal route, i.e., p(T |r∗),
while T is sequentially generated.

B. Overview of Our Solution

After formulating the problem, our main goals of designing
an anomalous trajectory detection method become

• discovering normal routes by modeling p(r), and
• detecting anomalous trajectories by modeling p(T |r∗).

To achieve these goals, we develop a novel solution to solve
the online anomalous trajectory detection problem based on a
deep generative model, namely Gaussian mixture variational
sequence autoencoder (GM-VSAE), which is inspired by
previous studies on variational autoencoder (VAE) [33], [34].

In particular, we first learn a GM-VSAE model that can 1)
infer and represent routes of trajectories as vectors in a latent
embedding space, 2) model the probability distribution of the
routes (i.e., modeling p(r)), and 3) generate trajectories given
a specific route (i.e., modeling p(T |r)).

Based on the learned GM-VSAE model, we develop an ef-
ficient anomalous trajectory detection framework. The frame-
work can 1) discover normal routes by exploiting the learned
probability distribution of routes, and 2) detect a trajectory
via computing its probability of being generated from normal
routes. Furthermore, we propose an approximation module,
namely SD-network (SDN), to further improve the detection
efficiency.

Our solution enables an effective and efficient detection of
anomalous trajectories. In the following, we introduce GM-
VSAE, the detection framework and the SD-network module
in Section IV, V and VI, respectively.

IV. GAUSSIAN MIXTURE VARIATIONAL SEQUENCE
AUTOENCODER

Figure 2 shows the architecture of the proposed GM-VSAE,
which consists of the following components:

• Inference network. The inference network aims to infer
the route of a given trajectory T and representing it as a
vector rT in a continuous latent space.



TABLE I
DESCRIPTION OF NOTATIONS.

Symbols Descriptions
T the token sequence of a trajectory
ti the ith grid token of a trajectory
n the length of a trajectory

(S,D) a pair of source and destination
G a set of all the grids on a geographical space
r the representation of a route in the latent space
k the dimensionality of the RNN hidden vectors
d′ the dimensionality of the input grid embeddings
M the dimensionality of the latent space of route
C the number of route types
φ the parameters of the inference network
γ the parameters of the latent Gaussian mixture distribution
θ the parameters of the generative network
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Fig. 2. The overall architecture of GM-VSAE.

• Probability distribution of routes. We use a probability
distribution to model the routes and represent how likely
a route can be considered as a normal route.

• Generative network. The generative network is designed
with the ability of generating trajectories from a given
route.

For GM-VSAE, our main goal is to jointly train these
components, such that 1) the probability distribution can well
characterize the routes of trajectories in the latent space, and
2) the generative network can generate trajectories from latent
routes. The probability distribution of routes and the generative
network will be subsequently used for online anomalous
trajectory detection in Section V. In the rest of this paper,
we use the terms “latent route”, “latent route space” and
“latent route distribution” to denote the vector representation
of routes, the latent space and the probability distribution of
routes, respectively. Table I lists the notations used in the
model. In the next three subsections, we elaborate each of
the three components.

A. Latent Route Inference.

Before we exploit routes and route distribution for anoma-
lous trajectory detection, we need to infer and represent the
routes of trajectories. To achieve this, we propose a route

inference network qφ(r|T ) to infer the latent route (i.e., the
route representation vector) rT ∈ RM for a given trajectory
T = (t1, t2, ..., tn). Here, φ represents the parameters of
qφ(r|T ) and M represents the dimensionality of the latent
route space.

In particular, we implement qφ(r|T ) with a recurrent neural
network (RNN), which accepts variable-length trajectories as
inputs and can capture the sequential information behind
trajectories. Specifically at each step i, the inference RNN
reads ti and produces a hidden state hi ∈ Rk by:

hi = f1(ti,hi−1) i = 1, 2, ..., n, (1)

where f1 is a deterministic non-linear function to be learned,
which can be implemented with Long Short-Term Memory
(LSTM) [35] or Gated Recurrent Unit (GRU) [36]. By doing
this, the sequential information of T is encoded in the latent
representation hn. Note that the RNN accepts inputs in the
form of real-valued vectors. Thus, we introduce a token
embedding layer to embed the discrete token (i.e., ti) in a
vector.

To cope with the possible uncertainties and noise (e.g., GPS
error) behind trajectory T , we infer rT by drawing from a
posterior distribution as

rT ∼ qφ(r|T ) = N (µµµT ,σσσ
2
T I) (2)

where µµµT ∈ RM , σσσT ∈ RM and {µµµT ,σσσT } = g1(hn). The
function g1(·) is a non-linear function to be learned and I
is an identity matrix. With the help of RNN, we are able to
capture the sequential information of trajectories and represent
their latent routes in the latent route space.

B. Modeling Latent Route with Gaussian Mixture Distribu-
tion.

With the ability of inferring and representing the routes of
trajectories in the latent route space, we still lack knowledge
about which routes in the space are normal routes, or which
routes are more normal than the others. Motivated by this,
we aim at modeling the latent routes with a probability
distribution, which can be used to measure how likely a given
route can be considered as a normal route. However, this is
non-trivial as the routes in the real world are usually diverse
and complicated. For example, vehicles may travel in different
areas in an urban city (e.g., downtown, suburb) and on different
types of roads (e.g., major/minor highway, ramp, street). It is
non-trivial to model such complex route distribution.

To tackle this challenge, we propose to model the latent
route distribution with a Gaussian mixture distribution, which
is comprehensive for modeling various types of latent routes.
In particular, we first assume there are C different types of
routes underlying the trajectory data, where C is a hyper-
parameter of the model. Different types of routes have different
semantic meanings (e.g., road type, traveling area). To model
different types of latent routes, we introduce two probability
distributions:



• A multinomial distribution pγ(c) = Mult(πππ), where πππ ∈
RC are the parameters. It models the probability of a
specific type (denoted as c) of routes being traveled by
trajectories.

• A Gaussian distribution pγ(r|c) = N (µµµc,σσσ
2
cI) for each

type c, where µµµc ∈ RM and σσσc ∈ RM are the mean and
standard deviation vectors. It models the probability of a
route r of type c being traveled by trajectories.

Here, we use γ = {πππ,µµµc,σσσc} to denote all the parameters in
pγ(c) and pγ(r|c). These two distributions together model the
latent route space as pγ(r) = pγ(r|c)pγ(c).

After incorporating the latent route type c, we need to extend
the inference network in Eq. (2) to qφ(r, c|T ) to infer the route
type c in addition to the latent route r. Specifically, we apply
the mean-field approximation to factorize qφ(r, c|T ) as

qφ(r, c|T ) = qφ(r|T )qφ(c|T ), (3)

where qφ(r|T ) is defined in Eq. (2). For qφ(c|T ), it can be
intuitively considered as the probability of route type c given
the route of a trajectory T , i.e., qφ(c|T ) := pγ(c|rT ). Thus,
qφ(c|T ) can be defined as

qφ(c|T ) := pγ(c|rT ) =
pγ(c)pγ(rT |c)∑C

i=1 pγ(ci)pγ(rT |ci)
, (4)

where rT is drawn from qφ(r|T ) as in Eq. (2). The intuition
is that the probability of T traveling a route of type c (i.e.,
pγ(c|rT )) is proportional to the probability pγ(rT |c).

C. Recurrent Trajectory Generation.
Next, we need to formalize the probability of a trajectory T

following a given latent route r, which enables the detection
of anomalous trajectories in Section V. To achieve this, we
design a novel generative network pθ(T |r), where θ is the set
of parameters. The objective is to optimize pθ(T |r) such that
a trajectory T can be well generated from its inferred latent
route rT .

However, different from other generation tasks (e.g., im-
age generation), the generation of a trajectory is naturally
sequential, i.e., the mobility of an object at a specific step
is correlated with its previous trace. Therefore, we resort to
a recurrent generation process with the help from an RNN.
Specifically at each step i, we consider that the generation
of ti is related to 1) the latent route r, and 2) the previous
sequence t<i, where t<i = {t1 → t2 → ... → ti−1}. Thus,
we generate ti via ti ∼ pθ(ti|t<i, r). In particular, we first
recurrently encode the information of r and the sequence
t≤i = {t1 → t2 → ...→ ti} into a hidden vector gi ∈ Rk as:

gi = f2(ti,gi−1) i = 1, 2, ..., n g0 = r, (5)

where f2 is a deterministic non-linear function to be learned
(e.g., GRU cell, LSTM cell). Note that the same token embed-
ding layer that is used in the inference network is also applied
here before feeding inputs to the RNN. Based on these, at each
step i, we can generate ti from a multinomial distribution as

ti ∼ pθ(t|t<i, r) = pθ(t|gi−1) = Mult(softmax(g2(gi−1))).
(6)

Here, the output function g2(·) converts gi−1 to a |G|-
dimensional vector, where |G| denotes the total number of grid
tokens. Then, we use a softmax function to get a probability
vector to parameterize the multinomial distribution. By doing
this at each time step, a trajectory can be recurrently generated.

D. Training GM-VSAE

Objective of joint optimization. The parameters to be learned
in GM-VSAE include φ = {f1(·), g1(·)}, γ = {πππ,µµµc,σσσc},
θ = {f2(·), g2(·)} and the token embeddings. Intuitively,
the objective of training GM-VSAE is to jointly optimize
the inference and generative networks, and the latent route
distribution, such that the generative network can properly
generate a trajectory with its route inferred by the inference
network. More formally, the objective is to maximize the
marginal log-likelihood of generating the training data:

log pθ(T
(1), T (2), ..., T (N)) =

N∑
j=1

log pθ(T
(j)), (7)

where T (1), T (2), ..., T (N) are the N trajectories in the training
data. We derive the evidence lower bound on the marginal
likelihood of each trajectory T (denoted as L(θ, γ, φ;T )) as

log pθ(T ) ≥ L(θ, γ, φ;T ) = Eqφ(r,c|T )

[
log

pθ,γ(T, r, c)

qφ(r, c|T )

]
= Eqφ(r|T )

[
log pθ(T |r)

]
− Eqφ(r|T )

[
DKL(qφ(c|T )||pγ(c))

]
− Eqφ(c|T )

[
DKL(qφ(r|T )||pγ(r|c))

]
,

(8)

where DKL(·||·) represents the KL-divergence between two
distributions. For the log-probability log pθ(T |r), we can fur-
ther decompose it as the sum of the log-likelihood of gener-
ating each ti ∈ T , i.e., log pθ(T |r) =

∑n
i=1 log pθ(ti|t<i, r).

Therefore, we can rewrite the first term in Eq. (8) as

Eqφ(r|T )[log pθ(T |r)] = Eqφ(r|T )[

n∑
i=1

log pθ(ti|t<i, r)]. (9)

We train GM-VSAE via maximizing the lower bound.
Alternative optimization scheme. To maximize L(θ, γ, φ;T ),
we need to optimize three sets of parameters, i.e., φ, γ and
θ, which parameterize the inference network, latent route
distribution and the generative network, respectively. Jointly
optimizing all the parameters would be difficult and unstable.
Therefore, we adopt an alternative optimization scheme, which
alternatively updates two sets of parameters {φ, θ} and γ.
We apply reparameterization trick and Stochastic Gradient
Variational Bayes (SGVB) estimator [33] to train the model
in an end-to-end manner with alternative gradient decent.
Complexity analysis. The average time complexity for train-
ing GM-VSAE is O(Nk(k + d′)n̄+NkM), where N repre-
sents the number of trajectories in the training data, k repre-
sents the size of RNN hidden states, M is the dimensionality
of the latent route space, d′ represents the dimensionality
of the input grid embeddings and n̄ stands for the average
length of the training trajectories. Intuitively, the first term



O(Nk(k + d′)n̄) represents the time cost of encoding and
decoding trajectories, and the second term O(NkM) is the
time cost of mapping between RNN hidden states and latent
route representations, e.g., mapping the last encoder state to a
latent route representation. The value of M is usually set to be
similar or equal to k. When M = k, the training complexity
can be written as O(Nk(k+d′)n̄). We can see that the training
time of GM-VSAE scales linearly w.r.t. the number of training
trajectories.

V. EFFICIENT ONLINE ANOMALOUS TRAJECTORY
DETECTION VIA TRAJECTORY GENERATION

In this section, we design a novel detection-via-generation
framework for online anomalous trajectory detection by ex-
ploiting the probability distribution pγ(r|c) and the generative
network pθ(T |r) that are learned by GM-VSAE.

In particular, we first consider normal routes as those
routes which are more likely to be traveled by trajectories.
With the learned Gaussian probability distribution pγ(r|c) =
N (µµµc,σσσ

2
cI), the normal routes of a specific type c can be

considered as the routes that are close to µµµc, i.e., rc∗ ' µµµc.
Based on this, we use µµµc as normal routes to approximate rc∗.
We will analyze the accuracy of this approximation later.

Next, we need to detect the probability of a given trajec-
tory T following µµµc. By leveraging the generative network
pθ(T |r), we propose a detection-via-generation scheme, where
the probability of T following µµµc is implemented as the
probability of T being generated from µµµc. The main advantage
of this scheme is that the detection can be updated online while
the trajectory is being sequentially generated, which is very
efficiency. We will analyze the time complexity in the end of
this section.

In particular, we define the anomaly score of a given
trajectory T using pθ(T |µµµc) as

s(T ) = 1− arg max
c

exp
[ log pθ(T |µµµc)

n

]
, (10)

where exp(·) is the exponential function and log pθ(T |µµµc) =∑n
i=1 log pθ(ti|t<i,µµµc). Figure 3 illustrates the detection pro-

cedure using GM-VSAE. Note that log pθ(T |µµµc) is divided by
n, i.e., the length of a trajectory T , to normalize trajectories
with different lengths.

For online detection, i.e., detecting an ongoing trajectory
(denoted as t≤i = {t1 → t2 → ...→ ti →}), we maintain the
probability pθ(t≤i|µµµc) for all µµµc. When a new location point
is recored, i.e., t≤i becomes t≤i+1, we can derive the new
anomaly score as

s(t≤i+1) = 1−arg max
c

exp
[ log pθ(t≤i|µµµc)pθ(ti+1|t≤i,µµµc)

i+ 1

]
,

(11)
Here, we have s(T ) ∈ [0.0, 1.0] and high s(T ) indicates

that T cannot be well generated from any type of normal route
(i.e., has low pθ(T |µµµc) values), and thus is more likely to be
an anomaly. To have a deterministic definition of anomalous
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Fig. 3. The framework of anomalous trajectory detection using GM-VSAE.

trajectories, one can set a threshold ∆ on the anomaly score,
i.e., T is detected to be anomalous if s(T ) > ∆.
Approximation ratio. We analyze the accuracy of using µµµc
to approximate rc∗. Based on Bayes’ theorem, we have the
following equation

pγ(rc∗|c)pθ(T |rc∗)
qφ(rc∗|T )

= pγ,θ(T |c) =
pγ(µµµc|c)pθ(T |µµµc)

qφ(µµµc|T )
. (12)

Thus, we derive the approximation ratio τττ as

τττ =
pθ(T |µµµc)
pθ(T |rc∗)

=
pγ(rc∗|c)qφ(µµµc|T )

pγ(µµµc|c)qφ(rc∗|T )
. (13)

Based on rc∗ ' µµµc, we denote rc∗ = µµµc + δδδ∗, where δδδ∗ is a
small offset. We substitute the probability density functions of
all the Gaussian distributions in Eq. (13) to finalize τττ as

τττ = exp
[δδδ2∗(σσσ2

c − σσσ2
T ) + 2δδδ∗σσσ

2
c(µµµc −µµµT )

2σσσ2
cσσσ

2
T

]
. (14)

We can see from Eq. (14) that τττ is related to δδδ∗. If δδδ∗ → 0,
we would have a good approximation ratio, i.e, τττ → 1. We
consider a latent route r with a very high probability pγ(r|c)
as a normal route rc∗. This implies rc∗ → µµµc and δδδ∗ → 0.
Therefore, δδδ has a very small value empirically, and can give
us a good approximation ratio τττ → 1.
Complexity analysis. To compute s(T ), we need to generate
T for C times, i.e., using different µµµc. According to Eq. (10),
the time complexity of computing s(T ) is O(CkM +Ck(k+
d′)n), where O(kM) is the complexity of mapping between
RNN states and latent route vectors, and O(k(k + d′)) is the
complexity of updating the RNN hidden state gi ∈ Rk in each
step i = 1, 2, ..., n. Because M , k, d′ and C are constants, the
time complexity of computing s(T ) is therefore O(n). For
online detection, the time complexity of updating s(T ) for an
ongoing trajectory is O(Ck(k + d′)). It is because updating
the log-likelihood log pθ(T |µµµc) only requires to compute the
RNN hidden state gi+1 for the new step i+1 and then compute
pθ(ti+1|gi). We omit the constants k, d′ and C and finalize
the time complexity of updating s(T ) as O(1).

VI. IMPROVING EFFICIENCY WITH APPROXIMATE
INFERENCE OF ROUTE TYPE

Although GM-VSAE has a constant time complexity for
online detection, the time cost is related to C, i.e., the number
of Gaussian components in the latent route distribution. If C
is large, the detection would still be slow. To address this,
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we proposed to infer the route type c∗T that is the most likely
to generate a trajectory T . By doing this, we only need to
generate a trajectory from only one route type µµµc∗T .

A straightforward way is to use the route type c with
the maximum posterior probability qφ(c|T ), i.e. c∗T =
arg maxc qφ(c|T ). However, this is not practical for online
detection due to two reasons. First, the posterior inference
qφ(c|T ) might be inaccurate with partial trajectory, i.e., while
the trajectory is not complete. Second, qφ(c|T ) might be
updated when a new location is recorded for the ongoing
trajectory T . If c∗T = arg maxc qφ(c|T ) is changed after
updating qφ(c|T ), we need to re-generate T with the new c∗T
to update the anomaly score, which takes O(n) time in the
worst case for online detection.

To this end, we propose an approximation method to infer
c∗T for a trajectory T and achieve O(1) time complexity for
updating the anomaly score. We name the model SD-VSAE,
which is extended from GM-VSAE. The intuition is that
the normal routes between a specific source-destination pair
(S,D) usually have the same or similar type. For example,
vehicles usually drive through highway between two distant
places. Motivated by this, we propose to infer c∗T with ST and
DT . As ST and DT are given before T is being generated,
the inference of c∗T can also be done beforehand.
SD-network. We propose a new module, namely SD-network
(SDN), to distill the information of posterior qφ(c|T ) into
a new probability distribution qη(c|ST , DT ), which is pa-
rameterized by η. Specifically, we first introduce two extra
embedding layers of grid tokens, i.e., S-embedding layer and
D-embedding layer, respectively. Therefore, we can represent
the ST and DT of a trajectory T as continuous vectors sT
and dT , respectively. Then, we concatenate sT and dT and
feed it to a multi-layer perceptron as MLPL([sT ,dT ]) where
L denotes the number of layers in the MLP. We compute the
probability values on the C types of routes as

qη(c|ST , DT ) = softmax(oL), (15)

where oL ∈ RC represents the final-layer output of the
MLP. Since computing qη(c|ST , DT ) can be done before
T is being generated and does not need to be recurrently
updated like qφ(c|T ), the time complexity of inferring c∗T
using qη(c|ST , DT ) is O(1), which is much more efficient
than using qφ(c|T ), whose time complexity is O(n).
Training SDN via knowledge distillation. We train the
SDN module via knowledge distillation, i.e., using the orig-
inal posterior of route type qφ(c|T ) as the supervision

to train qη(c|ST , DT ). In particular, we add one more
step in the alternative optimization of L(θ, γ, φ;T ). The
objective of training SDN is to minimize the cross en-
tropy between qη(c|ST , DT ) and qφ(c|T ), i.e., H(qφ, qη) =

−
∑C
c=1 qφ(c|T ) log qη(c|ST , DT ).

After training SD-VSAE, we can replace qφ(c|T ) with
qη(c|ST , DT ) to infer c∗T . Subsequently, the online trajectory
generation (i.e., detection) can be done with the inferred route
type µµµc∗T , where c∗T = arg maxc qη(c|ST , DT ). SD-VSAE is
therefore C times faster than GM-VSAE. Figure 4 summarizes
the detection procedure using SD-VSAE.

VII. DISCUSSION

We discuss two extensions of our proposed methods (i.e.,
GM-VSAE and SD-VSAE) for different problem settings.

A. Handling Concept Drift of Anomalous Trajectories

As trajectories are usually recorded in a streaming manner,
the concept of “normal route” and “anomalous trajectory” may
change over time. For example, there are two places connected
by a road rold. When a more convenient (e.g., shorter distance)
road rnew is constructed between the two places, drivers may
gradually prefer to travel the new road than the old road.
Thus, rnew should be considered as a normal route, while
new trajectories traveling rold will be considered as anomalous
trajectories. To tackle this issue, we perform online update for
the current model by feeding newly recorded trajectory data.
Given a trajectory stream, we keep updating the model using
stochastic gradient descent.

Moreover, we have conducted an experiment to validate this
strategy, where the detailed results are not presented due to
the space limitation. We observe from the experiments that
the model with fine-tuning has a consistent performance when
new trajectories are being continually recorded, while the per-
formance of the model without fine-tuning keeps decreasing.

B. Detection of Other Types of Anomalous Trajectories

As introduced in Section III-A, this paper mainly focuses
on detecting anomalous trajectories that do not follow normal
routes. It is worth noting that there are also other anomalous
trajectory detection problems with different settings. For exam-
ple, Banerjee et al. [27] propose to detect over-speeding and
under-speeding trajectories, i.e., the definition of anomalous
trajectories is based on their temporal attributes. Our proposed
methods can also be extended to solve those problems with
different problem definitions. For detecting anomalous trajec-
tories w.r.t. a particular sequential pattern, we just need to en-
code the patterns of trajectories into a low-dimensional vector
(denoted by x), and model pγ(x), qφ(x|T ) and pθ(T |x) using
the inference network, the Gaussian mixture distribution and
the generative network, respectively. Taking the over/under-
speeding trajectory detection as an example, we can feed the
speed features of a trajectory to the inference and generative
network, instead of feeding grid token embeddings. Also,
the generative network should be modified to generate the
corresponding speed values of a given trajectory at different



TABLE II
TRAJECTORY DATASETS AFTER PREPROCESSING.

Dataset #Points #Trajectories #(S,D) Avg. n
Porto 11,635,104 262,574 4,567 44.31

Beijing 909,642 52,497 6,752 17.32

𝑻𝟏
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(a) Detour (D).
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(b) Route-switching (RS).

Fig. 5. Examples of generated anomalies.

time steps. By doing this, our proposed methods are able to
capture the normal speed patterns in the low-dimensional latent
space, and our detection-via-generation scheme can naturally
be deployed to detect speed anomalies.

VIII. EXPERIMENTS

A. Experimental Setup

Datasets & Preprocessing. Our experiments are conducted
on two real-world taxi trajectory datasets. In particular, the
first dataset (Porto)1 is generated from 442 taxis running in
the city of Porto during Jan 07 2013 to Jun 30 2014. Each
taxi reports its location at 15 second intervals. Following
previous study [17], we partition the geographical space into
100m×100m grids and filter those (S,D) pairs with fewer
than 25 trajectories. The filtered dataset contains 262,574
trajectories. The second dataset (Beijing) is a subset of T-
Drive trajectory dataset2 [8], [9], which contains a one-week
trajectories of 10,357 taxis. We partition the geographical
space into 300m×300m grids and select the grid cells with
the highest trajectory density (e.g., top-200 popular cells) as
S or D. We use the trips between the popular cells as the
trajectories in the experiments. To choose trajectories with
reasonable traveling distance and sampling rate, we further
select the trajectories with a length of at least 10 and with
time gaps between consecutive sample points being between
10 seconds and 10 minutes. We also filter those (S,D) pairs
with fewer than 5 trajectories and finally obtain a dataset
with 52,497 trajectories. Table II presents the statistics of the
filtered datasets.
Ground truth. Since there is no labeled dataset available
for anomalous trajectory detection, some existing studies [6],
[10], [14] try to manually label anomalies. However, it is
very time-consuming and often limits the evaluation on just a
few (S,D) pairs. Following previous work on spatial outlier
detection [37], we use generated anomalies for the evaluation.

In particular, we use two different perturbation schemes to
generate two types of anomalous trajectories, namely detour

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
2https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-

data-sample/

TABLE III
DESCRIPTION OF NOTATIONS USED IN EXPERIMENTS.

Symbol Description
α the proportion of the detour segment of detour anomalies
d the moving distance (i.e., offset) of the detour segment
β the split location of generating route-switching anomalies
ρ the proportion of a trajectory being observed for detection

anomalies (D) and route-switching anomalies (RS), respec-
tively. The first perturbation scheme moves a random part of
a trajectory along a direction that is roughly perpendicular to
the moving direction of the trajectory. Figure 5(a) shows an
example of a normal trajectory T1 (blue line) and the generated
anomaly T2 (red line). We can see that it corresponds to the
case where a moving object takes a long detour. The second
perturbation scheme is exampled in Figure 5(b). In particular,
we first randomly select two trajectories T3 and T4 between
the same (S,D), each of which can be divided into two sub-
trajectories, i.e., T3 = T

(1)
3 → T

(2)
3 and T4 = T

(1)
4 → T

(2)
4 ,

where T (1) and T (2) represent the first and the second part of
T . Then, we replace T (2)

3 with T (2)
4 , i.e., injecting an anomaly

T5 = T
(1)
3 → T

(2)
4 to the dataset.

We parameterize the injection of detour anomalies with two
parameters d and α, where d represents the moving distance
of the detour segment and α defines the proportion of the
detour part. For example, α = 0.3 and d = 5 means 30%
of a trajectory is moved with a distance of 5 grids. We
parameterize the injection of route-switching anomalies with
β, which stands for the split location of a trajectory. For
example, β = 0.3 means T (1) contains the earliest 30% points
of T and T (2) contains the remaining 70%. The notations
of the injection parameters are listed in Table III. In the
experiments, we vary d, α and β, and evaluate all the methods
on detecting the two types of anomalies separately. Following
previous studies [6], [7], [37], the proportion of the injected
anomalies in each dataset is set to 5%. Note that the proportion
of the injected anomalies in the training data would not largely
affect the performance of our methods.
Baselines. We compare these methods in our experiments:
• TRAOD [11]. It first partitions all trajectories to segments.

The anomaly score of a trajectory is based on the total
length of its anomalous segments, which are distant to the
other trajectories with the same (S,D).

• T-DBSCAN [14]. This method is a density-based method.
It clusters trajectories with the same (S,D) using DB-
SCAN [38]. The anomaly score of a trajectory is computed
as its distance to the closest “core trajectories” found in the
clustering procedure.

• iBAT [6]. This method detects anomaly by checking how
much the target trajectory can be isolated from reference
trajectories with same (S,D) pair.

• DBTOD-embed [7]. This method considers driving speed,
road levels and turning angle as features and learns a
probabilistic model that can automatically detect anomalous
trajectories. However, to make a fair comparison to other
baselines that do not use any side information, we use a grid



token embedding vector to represent the features, which is
jointly trained with the probabilistic model.

• Sequence autoencoder (SAE) [28]. This is a conventional
RNN-based sequence to sequence model, which is learned
via minimizing a reconstruction error. The anomaly score
is defined based on the reconstruction error.

• Variational sequence autoencoder (VSAE). This is a
degenerated model of GM-VSAE, where the latent route
distribution is a Gaussian distribution.

• GM-VSAE. This is our proposed model. We set C =
{10, 20, 50} on Porto data, and C = 5, 10, 20 on Beijing
data. For example, GM-VSAE10 stands for the GM-VSAE
model with 10 Gaussian components.

• SD-VSAE. This is extended from GM-VSAE model with
SD-network module to improve the efficiency.

The implementation details and the source code of our models
are available on https://git.io/JelML.
Evaluation metrics. The output of a detection method for
each trajectory is an anomaly score between 0.0 and 1.0. We
use Precision-Recall AUC (PR-AUC) as the metric [37]. PR-
AUC is appropriate to evaluate anomaly detection methods on
skewed datasets [37]. Note that the number of anomalies we
inject into the trajectory datasets are only small portions of
all the trajectories. We compute the PR-AUC value for each
(S,D) and report the average values over all (S,D).

B. Effectiveness Evaluation

Varying observed ratios. To evaluate the performance of
online detection, we use each method to detect the anoma-
lousness of a target trajectory with different observed ratios
(denoted as ρ ∈ [0.0, 1.0]). For example, ρ = 0.1 means to
detect a trajectory when we only observe the earliest 10%
locations of the trajectory. We use ρ = 1.0 to represent
the detection on complete trajectories. Note that TRAOD
and T-DBSCAN cannot detect anomalous trajectories in an
online manner. Therefore, we only evaluate them on detecting
complete trajectories (i.e., ρ = 1.0).
Detecting detour anomalies. We first compare all the methods
on detecting detour anomalies. In particular, we apply different
parameters to inject detour anomalies in both datasets, where
d = {3, 5} and α = {0.1, 0.3}. We set ρ = {0.1, 0.5, 1.0}
in the experiments. The trajectories in Beijing dataset are
usually very short, i.e., 10% of a trajectory may only contain
one or two points. Therefore, we only use ρ = {0.5, 1.0}
on Beijing. Tables IV and V show the PR-AUC of detecting
detour anomalies using different methods on Porto and Beijing
datasets, respectively.

For detecting complete trajectories (i.e., ρ = 1.0), we can
see that GM-VSAE is significantly better than all the baselines
on both datasets. For example, when d = 3 and α = 0.1, GM-
VSAE20 outperforms the best baseline (i.e., SAE) by 13.1%
on Porto, and GM-VSAE10 outperforms all the baselines by
at least 8% on Beijing. We also find out that the improvements
of VSAE over the distance and density based methods (e.g.,
TRAOD, T-DBSCAN) are more significant on Porto data than
on Beijing data. For example, when d = 5 and α = 0.1,

VSAE improves TRAOD by 163.3% on Porto while only
56.3% on Beijing. This indicates that using RNN can more
effectively capture useful information and reveal normal routes
on large-scale dense data (i.e., Porto) than on sparse data
(i.e., Beijing). Comparing with VSAE, GM-VSAE provides
more accurate detection on both datasets. For example, GM-
VSAE10 outperforms VSAE by 10.3% and 8.5%, on Porto and
Beijing, respectively, when setting d = 3 and α = 0.1. This
is because GM-VSAE models latent routes using Gaussian
mixture distribution, which can provide more useful insights
(i.e., route types) to detect anomalous trajectories.

For detecting partial trajectories (ρ = {0.1, 0.5}), we can
see that GM-VSAE is also the best among all the methods.
For example, when ρ = 0.5, d = 5 and α = 0.1, GM-
VSAE10 outperforms iBAT and SAE by 21.5% and 7.1% on
Beijing. Furthermore, at the very early stage of a trajectory
(i.e., ρ = 0.1), the performance improvement of GM-VSAE is
even better than the other models. For example, when d = 5
and α = 0.1, GM-VSAE20 improves VSAE by 92.5% when
ρ = 0.1, while only 6.0% when ρ = 1.0 on Porto data. This is
because GM-VSAE mines the information about route types,
which can provide extra confidence in anomaly detection even
when the trajectory generation has just started. Hence, GM-
VSAE would be more useful for launching early-warnings
when detecting anomalous trajectories.
Detecting route switching anomalies. Tables IV and V also
include the results of detecting route-switching anomalies
using different methods on Porto and Beijing, respectively.
In these experiments, we use β = {0.3, 0.5, 0.7} to inject
anomalies and report the results on detecting both partial and
complete trajectories. For detecting partial trajectories, we set
ρ = {0.5, 0.7, 0.9} for different β values correspondingly.
The results are qualitatively similar to the results of detecting
detour anomalies. We observe that GM-VSAE outperforms
all the baselines with respect to different β and ρ, in terms
of PR-AUC. For example, GM-VSAE5 performs better than
DBTOD-embed and T-DBSCAN by 46.8% and 51.7%, respec-
tively, on Beijing when β = 0.5 and ρ = 1.0.
GM-VSAE vs. SD-VSAE. Next, we study the effectiveness
of using SD-network (SDN) to distill the information of route
types. We compare the effectiveness of GM-VSAE10 and SD-
VSAE10 by detecting both detour anomalies (D) and route-
switching anomalies (RS), where the injection parameters are
set as d = 3, α = 0.3 and β = 0.3. We can see from Figure 6
that SD-VSAE has comparable performance to GM-VSAE for
detecting both types of anomalies on both datasets, in terms
of PR-AUC. For example, when detecting detour anomalies
(D) with complete trajectories (ρ = 1.0) on Porto data,
the PR-AUC value of SD-VSAE only decreases by 0.94%
compared to GM-VSAE. This indicates that our SDN module
can effectively infer the route type for a given trajectory. It is
worth noting that the effectiveness of SD-VSAE decreases less
on Porto than Beijing. This is because each (S,D) in Porto
has more trajectories, and thus can provide more information
for inferring the route type between (S,D).
Influence of the number of Gaussian components. We



TABLE IV
PERFORMANCE COMPARISON FOR ANOMALOUS TRAJECTORY DETECTION IN TERMS OF PR-AUC ON PORTO DATASET.

Detecting detour anomalies (D) Detecting route-switching anomalies (RS)
Perturb params d=3; α = 0.1 d=5; α = 0.1 d=3; α = 0.3 β = 0.3 β = 0.5 β = 0.7
Observed ratio (ρ) 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.5 1.0 0.7 1.0 0.9 1.0
TRAOD - - 0.212 - - 0.311 - - 0.161 - 0.189 - 0.183 - 0.179
T-DBSCAN - - 0.231 - - 0.305 - - 0.253 - 0.240 - 0.245 - 0.201
iBAT 0.156 0.184 0.181 0.159 0.196 0.193 0.182 0.371 0.406 0.200 0.179 0.177 0.173 0.177 0.175
DBTOD-embed 0.148 0.146 0.277 0.148 0.141 0.279 0.159 0.297 0.384 0.138 0.285 0.171 0.292 0.240 0.292
SAE 0.152 0.46 0.717 0.154 0.502 0.824 0.176 0.666 0.921 0.469 0.396 0.459 0.424 0.440 0.426
VSAE 0.170 0.455 0.701 0.174 0.501 0.819 0.197 0.660 0.910 0.614 0.566 0.619 0.571 0.605 0.591
GM-VSAE10 0.230 0.473 0.773 0.234 0.513 0.842 0.253 0.702 0.961 0.640 0.597 0.636 0.606 0.634 0.618
GM-VSAE20 0.334 0.494 0.811 0.335 0.522 0.868 0.361 0.711 0.969 0.717 0.662 0.721 0.678 0.720 0.706
GM-VSAE50 0.338 0.498 0.811 0.337 0.523 0.868 0.358 0.714 0.963 0.715 0.660 0.725 0.705 0.718 0.707

TABLE V
PERFORMANCE COMPARISON FOR ANOMALOUS TRAJECTORY DETECTION IN TERMS OF PR-AUC ON BEIJING DATASET.

Detecting detour anomalies (D) Detecting route-switching anomalies (RS)
Perturb params d=3; α = 0.1 d=5; α = 0.1 d=3; α = 0.3 β = 0.3 β = 0.5 β = 0.7
Observed ratio (ρ) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.7 1.0 0.9 1.0
TRAOD - 0.333 - 0.343 - 0.265 - 0.297 - 0.283 - 0.288
T-DBSCAN - 0.245 - 0.270 - 0.288 - 0.422 - 0.451 - 0.458
iBAT 0.383 0.352 0.396 0.364 0.413 0.367 0.500 0.477 0.472 0.448 0.480 0.468
DBTOD-embed 0.326 0.485 0.311 0.487 0.366 0.512 0.345 0.446 0.354 0.466 0.414 0.475
SAE 0.416 0.464 0.449 0.495 0.559 0.691 0.458 0.425 0.476 0.461 0.464 0.459
VSAE 0.421 0.506 0.461 0.536 0.588 0.741 0.454 0.445 0.469 0.467 0.465 0.472
GM-VSAE5 0.439 0.528 0.481 0.559 0.612 0.792 0.665 0.650 0.667 0.684 0.659 0.663
GM-VSAE10 0.454 0.549 0.481 0.598 0.608 0.799 0.608 0.599 0.606 0.621 0.618 0.622
GM-VSAE20 0.434 0.511 0.457 0.565 0.588 0.746 0.576 0.556 0.586 0.596 0.591 0.589
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Fig. 6. GM-VSAE10 vs. SD-VSAE10 (D: d = 3, α = 0.3; RS: β = 0.3).

conduct experiments for GM-VSAE with different number of
Gaussian components (i.e., the value of C). In particular, we
vary the value of C from 1 to 80, and use the GM-VSAE
models to detect detour and route-switching anomalies on both
datasets. Figure 7 shows the experimental results. We can see
that 1) the performance of our models depend on C, but even
our least performed one beats the existing methods; 2) GM-
VSAE achieves better results when C = {20, 50} on Porto
data, and C = {5, 10} on Beijing data.

C. Efficiency Evaluation

Overall detection efficiency. Figure 9 presents the average
runtime of detecting a trajectory using all the methods on both
datasets. Note that the y-axis of Figure 9 is in a logarithmic
scale. Firstly, we can see that all the methods are faster
on Beijing data, where the trajectories are shorter. Further-
more, DBTOD-embed is the fastest method for detecting
anomalous trajectories, because it is a linear model with low-

1 5 10 20 50 80
Number of Gaussian components

0.2

0.4

0.6

0.8

1.0

PR
-A

UC

Porto (D)
Porto (RS)
Beijing (D)
Beijing (RS)

Fig. 7. Varying the number of Gaus-
sian components of GM-VSAE (D:
d = 5, α = 0.1; RS: β = 0.3).
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Fig. 9. Efficiency comparison for anomalous trajectory detection.

dimensional grid embeddings as features, where the detection
can be accomplished very quickly. Among the other (i.e., non-
linear) models, we can see that VSAE and SD-VSAE10 both
have the lowest time cost for anomalous trajectory detection.
For example, SD-VSAE10 takes only 0.433ms to detect a
trajectory on Porto, while the runtime of TRAOD and T-
DBSCAN is around 40ms, which is over 100× slower. VSAE
is shown to be approximately 2× faster than SAE, where their
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Fig. 10. Accumulated time cost when a trajectory is generated sequentially.

time costs are 0.757ms and 0.357ms, respectively, on Porto
data. This is because SAE detects anomalies via trajectory
reconstruction, and thus needs to process a given trajectory
twice (i.e., encoding and decoding). However, VSAE uses the
detection-via-generation scheme, which is free of the encoding
(i.e., inference) step, and thus is more efficient. Moreover,
we find out that SD-VSAE10 is approximately 10× faster
than GM-VSAE10. This is because when detecting a target
trajectory, GM-VSAE10 needs to generate trajectories from
10 Gaussian components in the latent route distribution, while
in SD-VSAE10, only one component selected by the SDN
module is needed.
Detection scalability. Furthermore, we compare the runtime
of SAE, VSAE, GM-VSAE10 and SD-VSAE10 for detecting
ongoing trajectories on both datasets. For detecting each trajec-
tory, we record the time cost accumulated at different observed
ratios (i.e., ρ = {0.2, 0.4, 0.6, 0.8, 1.0}). The reported runtime
values are averaged on all the trajectories. Figure 10 shows
that (1) the time cost of SAE increases quadratically with the
generation of trajectories, while others increase linearly. This
is because SAE needs to re-encode the ongoing trajectory
when a new location is recorded, whose time complexity
of updating the anomaly score is O(n). (2) GM-VSAE10’s
accumulated time cost increases dramatically with more GPS
points being observed for a trajectory; (3) As a trajectory is
sequentially generated, the time costs for updating its anomaly
score of SD-VSAE and VSAE are the lowest among all these
methods. This shows the remarkable efficiency of SD-VSAE
for online detection. Along with the effectiveness comparison
between GM-VSAE and SD-VSAE shown in Figure 6, we
can conclude that SD-VSAE is able to largely reduce the time
cost of GM-VSAE for online anomalous trajectory detection,
while having similar effectiveness.
Training scalability. We also investigate the training scalabil-
ity of SAE, VSAE, GM-VSAE20 and SD-VSAE20. We vary
the size of Porto data for training these models from 20% to
100% of the whole dataset. All the trainings are conducted on
a single NVIDIA Tesla 100 SXM2 GPU. Figure 8 shows the
results. We can see from the figure that all the four methods
scale linearly w.r.t. the size of the training data. Thus, they are
promising to handle large-scale trajectory data. Among these
methods, the time costs of SAE, VSAE and GM-VSAE20 are
very similar, varying from around 300s (20%) to over 1300s
(100%). This is because they have similar architectures, where
most of the computation can be attributed to the recurrent

0 20 40 60 80 100 120 140
0

10

20

30

40

50

(a) Route type #15

0 20 40 60 80 100 120 140
0

10

20

30

40

50

(b) Route type #8

0 20 40 60 80 100 120 140
0

10

20

30

40

50

(c) Route type #19

0 20 40 60 80 100 120 140
0

10

20

30

40

50

(d) Route type #4

Fig. 11. Visualization of trajectories sampled from different route types.

encoding and decoding using RNNs. For SD-VSAE20, it
costs more training time than the other three models, as it
includes an extra SD-network module, which needs to be
trained together with GM-VSAE20. However, we can see that
the extra cost is not very high. Compared to GM-VSAE20,
SD-VSAE20 only costs an extra 325.6s (i.e., around 5 min)
for training on the whole dataset (100%), which is acceptable
in real-world applications.

D. Visualization

Different Route Types. We demonstrate the different route
types learned by GM-VSAE by visualizing trajectories that
belong to a specific route type. Figure 11 visualizes four
randomly selected route types from GM-VSAE20 on Porto
data. We can see that the trajectories in different route types are
different from each other. In particular, most of the trajectories
from route type #15 are crowded in the downtown area, while
the trajectories from route type #8 cover the highways outside
of the central district. Moreover, the trajectories from route
type #4 usually travel across the city and trajectories from
route type #19 usually commute within the west side of
Porto. Therefore, GM-VSAE is able to reveal route types with
different semantic meanings, which is helpful for detecting
anomalous trajectories.
Case Study. We visualize the trajectories between 16 ran-
domly selected (S,D) pairs on Porto data. Among the trajec-
tories between each (S,D) pair, we highlight the trajectory
with the highest anomaly score detected by SD-VSAE20 as
shown in Figure 12. Note that in the case study, we do
not inject generated anomalies into the dataset, i.e., all the
trajectories shown are real-world trajectories. We can see
that the anomalous trajectories (i.e., orange dashed lines)
are intuitively very different from the majorities of other
trajectories (i.e., blue solid lines that overlap) traveling from S
to D. This demonstrate the superior capability of our method.

IX. CONCLUSION

In this paper, we propose a novel deep generative model,
namely GM-VSAE, to solve the problem of online anomalous
trajectory detection. GM-VSAE can 1) effectively capture
complex sequential information of trajectories and model nor-
mal route in a latent embedding space, and 2) efficiently detect
anomalous trajectories via a novel detection-via-generation
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scheme. We also develop SD-VSAE that significantly im-
proves the efficiency of GM-VSAE. Experiments on two large-
scale datasets demonstrate the superiority of our methods over
baseline methods in detecting anomalous trajectories.
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